Darin Brezeale

The University of Texas at Arlington

Loops — p.1/:

The following operators are available in C for

Incrementing and decrementing variables by a val
of one:

++ Increment
-- decrement

Example: We could use
a =a + 1;

or
a++:

Loops — p.2/-

These operators can be placed before (prefix) or &
(postfix) a variable:

Int X = 5;

X- -

[~ X has a value of 4 here «/
or

Int X = 5;

s

[+ X has a value of 4 here =«/

Both reducex by one. Later we will see examples
where the choice of prefix or postfix matters.

Loops — p.3/-

C has the following loop constructs:
whi | e
for
do-whil e

Loops — p.4/:

Loops allow us to repeat a task. We need some wi
determine when the loop should terminate. This c¢
be

after a predetermined number of iterations
when some condition has been met

Loops — p.5/-

When the loop will terminate after a predeterminec
number of iterations, we need:

a counting variable
a test of that variable
to Increment/decrement that variable

Loops — p.6/:

The basic form of thenhi | e loop Is

whi | e(test)
do_something;

As long ag est Is true, the loop will repeat.

To do multiple things in each iteration, we use curl
braces:

whi | e(test)
{

}

do_something;

Loops —p.7/:

whi | e loop that stops after predetermined numbe
iterations:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int i =1, sum= 0;
while(i <=5)
{
sum = sum + i;
| ++:
}
printf("sumof the integers 1 to % is %\n", i-1, sum;
}

[+ sumof the integers 1 to 5 is 15 */

Loops — p.8/:

There are many occasions in which we don’t know
advance how many times the loop should repeat, |
we do know under what conditions the loop shoulc
terminate.

Seeexanmpl e- whi | e. ¢ on the course webpage.

Loops — p.9/:

Thef or loop has the following form:

f or (expression expressiog expressioy)
do_something;

where
expressioninitializes the counter
expressionis the condition for stopping
expressiopis the method of incrementing the counter a
the end of the loop

Note . Each expression is optional, but the semicolons are n
Note,: expressiogis always evaluated at the bottom of the lo

Loops — p.10/:

Int 1,
for(i = 1; i <=3; i++)
printf("1 1s %\n", 1);

which produces
1 1s 1
| IS 2
| 1S 3

Loops — p.11/:

The counter variable doesn’t have to be used in th
statements that are part of ther loop.

Int I
for(it =10; 1 > 6; 1--)
printf("Tick\n");

which produces

TI C
1 C
1 C
1 C

A AN A A

Loops — p.12/:

Here is the or loop version of thevhi | e loop we
saw earlier:

#i ncl ude <stdi o. h>

I nt mai n(voi d)

{
int i, sum= O;
for(i =1; 1 <=5; i++)
sum = sum + i
printf("sumof the integers 1 to % is %\n", i-1, sum;
}

[+ sumof the integers 1 to 5is 15 =/

Loops — p.13/:

The probabillity distribution function for a normal
distribution Is

1 —(z—p)?
€T) = e 202
/(@) o\ 2

where
(L = mean
o = standard deviation

Seenor nmal . ¢ for an implementation of this.

Note: This example shows that when multiple statementsantt
of the loop, we must use curly braces. It also shows that figa
point numbers can be used for counting.

Loops — p.14/:

8.2

8.18

8.16

8.14

a.12

8.1

8.83

8.86

8.84

8.82

1
"nornal.out” ——

(i

Loops — p.15/:

Thedo- whi | e loop differs from theahi | e loop In
that the body will be visited once before the test is
evaluated. It has the form:

do
do_something;

whi | e(test);

or

do

{ .
do_something;

}

whi | e(test);

Seeexanpl e- dowhi | e. ¢ on the course webpag

Loops — p.16/:

Sometimes we want to end a loop early or move o
the next value. We have two ways of doing this:

1. cont | nue — jump to the very end of the curre
loop

2. br eak — get out of the current loop completely

Loops — p.17/:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
Int i;
for(i =1; i <= 10; i++)
{
if ((iR) '=0)
continue; /* skip over any renmining statenents x/
printf("the square of %d is %3d\n", i, i*i);
}
}
produces

the square of 2 is 4
the square of 4 is 16
the square of 6 is 36
the square of 8 is 64
the square of 10 is 100

Loops — p.18/:

#i ncl ude <stdio. h>
I nt mai n(voi d)

{
Int 1, Kk;
for(i =1; I < 5; i++)
for(k = 1; k < 5; k++4)
i f(k ==1)
{
printf("%l\n", Kk);
br eak;
}
el se
printf("%,", k);
}
produces
1
1,2
1,2,3
1,2,3,4

Loops — p.19/:

	Increment/Decrement Oper.
	Increment/Decrement cont.
	Basic Concepts -- Loops
	Basic Concepts -- Loops
	Basic Concepts -- Loops
		exttt {while} loop
		exttt {while} loop
		exttt {while} loop
		exttt {for} loop
		exttt {for} loop example
		exttt {for} cont.
		exttt {for} cont.
	Another 	exttt {for} example
	Normal distribution plotted
		exttt {do-while} loop
	Changing loop behavior
		exttt {continue} Statement
		exttt {break} Statement

