
Arrays
Darin Brezeale

The University of Texas at Arlington

Arrays – p. 1/20



Arrays
While single variables have many uses, there are
times in which we wish to store multiple related
values. For these we may wish to use an array.

The mathematical equivalent of a one dimensional
array is a vector.

Example: We may have the vector
X = (3.5, 4.0, 9.34) whose terms are referenced as
x1, x2, andx3.

Arrays – p. 2/20



Arrays – Declaring
The declaration for arrays is similar to the declaration
for other data types. The difference is the addition of
square brackets (i.e., []) to the declaration.

Example: If we had a single variable of typeint, we
would declare it using

int some_variable;

To create an array of 10 variables of typeint, we
would declare it using

int some_array[10];

Arrays – p. 3/20



Arrays – Declaring cont.
Example of declaring and initializing an array.

double someData[3]; /* declare the array someData

that will hold 3 doubles */

/* later we can provide the specific array values.

notice how the array index begins at 0 */

someData[0] = 3.5;

someData[1] = 4.0;

someData[2] = 9.34;

Here we declare and initialize the array at the same
time, so we don’t need to include the number of array
members in the square brackets.

double myData[] = {3.5, 4.0, 9.34};

Arrays – p. 4/20



Arrays – Example
Once the array has been initialized, the members can
be referenced using the array name and the index of
the member.
#include <stdio.h>

int main(void)

{

double myData[] = {3.5, 4.0, 9.34};

printf("The last member of myData is %3.2f\n", myData[2]);

myData[2] = 6;

printf("The last member of myData is now %3.2f\n", myData[2]);

}

Output
The last member of myData is 9.34

The last member of myData is now 6.00

Arrays – p. 5/20



Arrays – Notes
Some comments on using arrays:

• Each element of the array will be of the same
type.

• Array indices began at 0.
• WARNING: A common error is the “array out of

bounds” error that occurs when the index goes
beyond the declared size.

Arrays – p. 6/20



Arrays – Indexing Error
This program attempts to change a value outside the
assigned range.

#include <stdio.h>

int main(void)

{

int data[3] = {6, 9, 12}; /* these are referenced as data[0],

data[1], and data[2] */

int i;

/* index stops at 3 instead of 2 as it should */

for(i = 0; i <= 3; i++)

printf("data[%d] is %d\n", i, data[i]);

data[3] = 8; /* here is where the problem occurs */

}

*/

Arrays – p. 7/20



Arrays – Indexing Error cont.

Arrays – p. 8/20



More 1D Array Examples
#include <stdio.h>

int main(void)

{

/* reserve memory for 4 ints; initialize the first 2 here */

int data[4] = {6, 94}; /* data[0] and data[1] */

int i;

data[3] = 3;

for(i = 0; i < 4; i++)

printf("data[%d] is %d\n", i, data[i]);

}

Output
data[0] is 6

data[1] is 94

data[2] is 0

data[3] is 3

Arrays – p. 9/20



Initialization Notes
If we initialize only some of the array values when the
array is declared,

• The initialized values will be at the beginning of
the array.

• The remaining values will be initialized to zero.

Seeexample-array-initialize.c on the
course website.

Arrays – p. 10/20



Arrays versus Single Variables
Why should we use arrays when we could just use
single variables? When we have many related values,
storing them in an array can make them easier to work
with.

Seeexample-array_vs_var.c on the course
website.

Arrays – p. 11/20



Arrays and Functions
We can pass arrays to functions just as we do with
other variable types.

Example: The definition for a function that receives
an array and returns a double.

double some_function(int data[])

Seeexample-array-function.c on the course
website.

Arrays – p. 12/20



Arrays and Functions cont.
There is a significant difference between passing
variables to functions and passing arrays to functions.

• When passing a variable by value, a copy of the
variable is used in the function and changes to it
do not affect the original.

• When passing an array to a function, we are
actually passing the address of the original so
changes to the array within the function DO
affect the original.

Seeexample-array-function2.c on the
course website.

Arrays – p. 13/20



Multidimensional Arrays
So far we have dealt with one-dimensional arrays. We
can also have arrays of arrays, also known as
multidimensional arrays.

A two-dimensional array is really two
one-dimensional arrays.

The basic form for declaring a 2D array is
type array_name[rows][columns];

The mathematical equivalent of a two-dimensional
array is a matrix.

Arrays – p. 14/20



Multidimensional Arrays cont.
A 2D array can be viewed like a table.

1 2 3
4 5 6

To create a 2D array for this table of values, we could
use

int some_data[2][3] = { {1, 2, 3},

{4, 5, 6} };

Arrays – p. 15/20



Multidimensional Arrays cont.
As with one-dimensional arrays, 2D arrays indices
begin at zero. The difference is now we have to keep
track of indices in two dimensions. So, if we create
the following array:

int sales[2][3] = { {1, 2, 3},

{4, 5, 6} };

the individual elements are referenced with the
following combinations of array name and indices:

sales[0][0] sales[0][1] sales[0][2]
sales[1][0] sales[1][1] sales[1][2]

Arrays – p. 16/20



2D Array Example
#include <stdio.h>

int main(void)

{

int i;

/* age, weight (lbs), height (in) */

int demographics[2][3] = { {24, 180, 72},

{39, 175, 65} };

/* print the weights, which are in the second column.

Remember, the second column has an index of 1. */

for(i = 0; i < 2; i++)

printf("%d\n", demographics[i][1]);

}

Output
180
175

Arrays – p. 17/20



3D Array Example
#include <stdio.h>

int main(void)

{

/* two 2D arrays; each 2D array consists of three 1D arrays

with four elements */

int data[2][3][4] = {{{ 1, 2, 3, 4},

{ 5, 6, 7, 8},

{ 9, 10, 11, 12}},

{{13, 14, 15, 16},

{17, 18, 19, 20},

{21, 22, 23, 24}}};

int i;

/* print the second row of the second 2D array */

for(i = 0; i < 4; i++)

printf("%d ", data[1][1][i]);

}

Output
17 18 19 20

Arrays – p. 18/20



1D and 2D Arrays Differences
When declaring a 2D array, the number of columns
must be stated.

Example

int array1D[] = {1, 2, 3};

int array2D[][3] = { {4, 5, 6},

{7, 8, 9} };

Arrays – p. 19/20



1D and 2D Arrays Differences
In function declarations and definitions that have 2D
arrays as parameters, the number of columns must be
stated.
#include <stdio.h>

void printColumn(int, int [][3]); /* function declaration */

int main(void)

{

int array2D[][3] = { {4, 5, 6},

{7, 8, 9} };

printColumn(2, array2D); /* print the third column */

}

void printColumn(int column, int input[][3])

{

int i;

for(i = 0; i < 2; i++)

printf("%d\n", input[i][column]);

}
Arrays – p. 20/20


	Arrays
	Arrays -- Declaring
	Arrays -- Declaring cont.
	Arrays -- Example
	Arrays -- Notes
	Arrays -- Indexing Error
	Arrays -- Indexing Error cont.
	More 1D Array Examples
	Initialization Notes
	Arrays versus Single Variables
	Arrays and Functions
	Arrays and Functions cont.
	Multidimensional Arrays
	Multidimensional Arrays cont.
	Multidimensional Arrays cont.
	2D Array Example
	3D Array Example
	1D and 2D Arrays Differences
	1D and 2D Arrays Differences

