
More on Pipelining

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Fetch-Decode-Execute Cycle in Detail

• The CPU clock ticks to mark start of cycle.

1. Fetch next instruction from memory

2. Change program counter to point to next instruction

3. Determine type of instruction just fetched

4. If instruction uses a word in memory, locate it

5. Fetch word, if needed, into a CPU register.

6. Execute instruction.

7. The clock cycle is completed. Go to step 1 to begin
executing the next instruction.

2

Toy ISA Instructions

• add A B C:
– Adds contents of registers A and B, stores result in register C.

• addi N A C:
– Adds integer N to contents of register A, stores result in register C.

• load address A:
– Loads data from the specified memory address to register A.

• store A address:
– Stores data from register A to the specified memory address.

• goto line:
– Set the instruction counter to the specified line. That line should be executed

next.

• if A line:
– If the contents of register A are NOT 0, set the instruction counter to the

specified line. That line should be be executed next. 3

Defining Pipeline Behavior

• In the following slides, we will explicitly define how
each instruction goes through the pipeline.

• This is a toy ISA that we have just made up, so the
following conventions are designed to be simple, and
easy to apply.

• You may find that, in some cases, we could have
followed other conventions that would make
execution even more efficient.

4

Pipeline Steps for: add A B C

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

5

Pipeline Steps for: add A B C

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement uses the ALU,
takes input from registers A and B, and modifies register C.

• Operand Fetch Step: Copy contents of registers A and B to ALU
input registers.

• Execution Step: The ALU unit performs addition.

• Output Save Step: The result of the addition is copied to
register C.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
registers A and B.

6

Pipeline Steps for: addi N A C

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

7

Pipeline Steps for: addi N A C

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement uses the ALU,
takes input from register A, and modifies register C.

• Operand Fetch Step: Copy content of register A into one ALU
input register, copy integer N into the other ALU input register.

• Execution Step: The ALU unit performs addition.

• Output Save Step: The result of the addition is copied to
register C.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
register A.

8

Pipeline Steps for: load address A

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

9

Pipeline Steps for: load address A

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement accesses
memory, takes input from address, and modifies register A.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: The bus brings to the CPU the contents of
address.

• Output Save Step: The data brought by the bus is copied to
register C.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
address.

10

Pipeline Steps for: store A address

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

11

Pipeline Steps for: store A address

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement accesses
memory, takes input from register A, and modifies address.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: The bus receives the contents of register A
from the CPU.

• Output Save Step: The bus saves the data at address.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
register A.

12

Pipeline Steps for: goto line

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

13

Pipeline Steps for: goto line

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement is a goto. Flush
(erase) what is stored at the fetch step in the pipeline.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: Not applicable for this instruction.

• Output Save Step: The program counter (PC) is set to the
specified line.

• NOTES: See next slide.

14

Pipeline Steps for: goto line

• NOTES: When a goto instruction completes the decode step:
– The pipeline stops receiving any new instructions. However,

instructions that entered the pipeline before the goto instruction
continue normal execution.

– The pipeline ignores and does not process any further the instruction
that was fetched while the goto instruction was decoded.

• Fetching statements resumes as soon as the goto instruction
has finished executing, i.e., when the goto instruction has
completed the output save step.

15

Pipeline Steps for: if A line

• Fetch Step:

• Decode Step:

• Operand Fetch Step:

• Execution Step:

• Output Save Step:

• NOTES:

16

Pipeline Steps for: if A line

• Fetch Step: Fetch instruction from memory location specified
by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement is an if and that it
accesses register A. Flush (erase) what is stored at the fetch
step in the pipeline.

• Operand Fetch Step: Copy contents of register A to first ALU
input register.

• Execution Step: The ALU compares the first input register with
0, and outputs 0 if the input register equals 0, outputs 1
otherwise.

• Output Save Step: If the ALU output is 1, the program counter
(PC) is set to the specified line. Nothing done otherwise.

• NOTES: See next slide. 17

Pipeline Steps for: if A line

• NOTE 1: an if instruction must wait at the decode step until
all previous instructions have finished modifying register A.

• When an if instruction completes the decode step:
– The pipeline stops receiving any new instructions. However,

instructions that entered the pipeline before the if instruction
continue normal execution.

– The pipeline erases and does not process any further the instruction
that was fetched while the if instruction was decoded.

• Fetching statements resumes as soon as the if instruction has
finished executing, i.e., when the if instruction has completed
the output save step.

18

Pipeline Execution: An Example

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

19

• Consider the program on the right.

• The previous specifications define
how this program is executed step-
by-step through the pipeline.

• To trace the execution, we need to
specify the inputs to the program.

• Program inputs:

• Program outputs:

Pipeline Execution: An Example

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

20

• Consider the program on the right.

• The previous specifications define
how this program is executed step-
by-step through the pipeline.

• To trace the execution, we need to
specify the inputs to the program.

• Program inputs:
– address1, let's assume it contains 0.

– address2, let's assume it contains 10.

• Program outputs:
– address10

– address11

– address12

21

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

6 4 3 X X 2 4

7 X X 3 X X 4
line 3 moves on. if detected. Stop
fetching, flush line 4 from fetch step.

8 X X X 3 X 4

9 X X X X 3 4

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

22

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

9 X X X X 3 4

10 4 X X X X 4 if has finished, PC does NOT change.

11 5 4 X X X 5

12 6 5 4 X X 6

13 X X 5 4 X X
goto detected. Stop fetching, flush
line 6 from fetch step.

14 X X X 5 4 X

15 X X X X 5 X

16 7 X X X X 7 goto has finished, PC set to 7.

17 8 7 X X X 8

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

23

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

17 8 7 X X X 8

18 9 8 7 X X 9

19 9 8 X 7 X 9 line 8 waits for line 7 to finish.

20 9 8 X X 7 9

21 10 9 8 X X 10 line 8 moves on.

22 11 10 9 8 X 11

23 11 10 X 9 8 11 line 10 waits for line 9 to finish.

24 11 10 X X 9 11

25 12 11 10 X X 12 line 10 moves on.

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

24

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

25 12 11 10 X X 12 line 10 moves on.

26 X 12 11 10 X X no more instructions to fetch.

27 X 12 X 11 X X line 12 waits for line 11 to finish.

28 X 12 X X 11 X

29 X X 12 X X X line 12 moves on.

30 X X X 12 X X

31 X X X X 12 X

32 program execution has finished!

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

Reordering Instructions

25

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• Reordering of instructions can be
done by a compiler, as long as the
compiler knows how instructions are
executed.

• The goal of reordering is to obtain
more efficient execution through the
pipeline, by reducing dependencies.

• Obviously, reordering is not allowed
to change the meaning of the
program.

• What is the meaning of a program?

Meaning of a Program

26

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is the meaning of a program?

• A program can be modeled
mathematically as a function, that
takes specific input and produces
specific output.

• In this program, what is the input?
Where is information stored that the
program accesses?

• What is the output? What is
information left behind by the
program?

Meaning of a Program

27

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is the meaning of a program?

• A program can be modeled
mathematically as a function, that
takes specific input and produces
specific output.

• In this program, what is the input?
Where is information stored that the
program accesses?
– address1 and address2.

• What is the output? What is
information left behind by the
program?
– address10, address11, address12.

Reordering Instructions

28

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• Reordering is not allowed to change
the meaning of a program.

• Therefore, when given the same
input as the original program, the re-
ordered program must produce
same output as the original
program.

• Therefore, the re-ordered program
must ALWAYS leave the same results
as the original program on
address10, address11, address12, as
long as it starts with the same
contents as the original program on
address1 and address2.

Reordering Instructions

29

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• Reordering of instructions can be
done by a compiler, as long as the
compiler knows how instructions are
executed.

• How can we rearrange the order of
instructions?

• Heuristic approach: when we find an
instruction A that needs to wait on
instruction B:
– See if instruction B can be moved

earlier.

– See if some later instructions can be
moved ahead of instruction A.

Reordering Instructions

30

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is the first instruction that has
to wait?

• What can we do for that case?

Reordering Instructions

31

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is the first instruction that has
to wait?
– line 3 needs to wait on line 2.

• What can we do for that case?
– Swap line 2 and line 1, so that line 2

happens earlier.

Reordering Instructions

32

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is another instruction that has
to wait?

• What can we do for that case?

Reordering Instructions

33

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

• What is another instruction that has
to wait?
– line 8 needs to wait on line 7.

• What can we do for that case?
– We can move line 9 and line 11 ahead of

line 8.

Result of Reordering

34

line 1: load address2 R2

line 2: load address1 R1

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: store R4 address10

line 9: addi 30 R2 R5

line 10: store R5 address11

line 11: add R3 R2 R8

line 12: store R8 address12

line 1 (old 2): load address1 R1

line 2 (old 1): load address2 R2

line 3 (old 3): if R1 6

line 4 (old 4): addi 20 R1 R3

line 5 (old 5): goto 7

line 6 (old 6): addi 10 R1 R3

line 7 (old 7): addi 5 R2 R4

line 8 (old 9): addi 30 R2 R5

line 9 (old 11): add R3 R2 R8

line 10 (old 8): store R4 address10

line 11 (old 10): store R5 address11

line 12 (old 12): store R8 address12

35

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 1 to finish.

6 X X 3 X 2 4
line 3 moves on. if detected. Stop
fetching, flush line 4 from fetch step.

7 X X X 3 X 4

8 X X X X 3 4

9 4 X X X X 4 if has finished, PC does NOT change.

line 1: load address1 R1

line 2: load address2 R2

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: addi 30 R2 R5

line 9: add R3 R2 R8

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

36

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

9 4 X X X X 4 if has finished, PC does NOT change.

10 5 4 X X X 5

11 6 5 4 X X 6

12 X X 5 4 X X
goto detected. Stop fetching, flush
line 6 from fetch step.

13 X X X 5 X X

14 X X X X 5 X

15 7 X X X X 7 goto has finished, PC set to 7.

16 8 7 X X X 8

17 9 8 7 X X 9

line 1: load address1 R1

line 2: load address2 R2

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: addi 30 R2 R5

line 9: add R3 R2 R8

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

37

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

17 9 8 7 X X 9

18 10 9 8 7 X 10

19 11 10 9 8 7 11

20 12 11 10 9 8 12

21 X 12 11 10 9 X

22 X X 12 11 10 X

23 X X X 12 11 X

24 X X X X 12 X

25 program execution has finished!

line 1: load address1 R1

line 2: load address2 R2

line 3: if R1 6

line 4: addi 20 R1 R3

line 5: goto 7

line 6: addi 10 R1 R3

line 7: addi 5 R2 R4

line 8: addi 30 R2 R5

line 9: add R3 R2 R8

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

Execution took 24 clock ticks.
Compare to 31 ticks for the original program.

