
ARM-7 Assembly:

Example Programs

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Overview

• We are now ready to look at several types of ARM-7
instructions.

• The goal is not to cover every single instruction and feature.

• The goal is to learn enough instructions and see enough
examples to be able to write some interesting code.

2

Hello World in Assembly

3

.globl _start

_start:

 ldr r0,=0x101f1000

 @ ASCII codes stored

 @ at [r0] get printed

 mov r1, #104 @ 'h'

 str r1,[r0]

 mov r1, #101 @ 'e'

 str r1,[r0]

 mov r1, #108 @ 'l'

 str r1,[r0]

 mov r1, #108 @ 'l'

 str r1,[r0]

 mov r1, #111 @ 'o'

 str r1,[r0]

 mov r1, #32 @ ' '

 str r1,[r0]

 mov r1, #119 @ 'w'

 str r1,[r0]

 mov r1, #111 @ 'o'

 str r1,[r0]

 mov r1, #114 @ 'r'

 str r1,[r0]

 mov r1, #108 @ 'l'

 str r1,[r0]

 mov r1, #100 @ 'd'

 str r1,[r0]

my_exit: @do infinite loop at the end

 b my_exit

Hello World in Assembly, Version 2.

4

.globl _start

_start:

 ldr r0,=0x101f1000

 @ ASCII codes stored

 @ at [r0] get printed

 mov r1, #'h' @ 'h'

 str r1,[r0]

 mov r1, #'e' @ 'e'

 str r1,[r0]

 mov r1, #'l' @ 'l'

 str r1,[r0]

 mov r1, #'l' @ 'l'

 str r1,[r0]

 mov r1, #'o' @ 'o'

 str r1,[r0]

 mov r1, #' ' @ ' '

 str r1,[r0]

 mov r1, #'w' @ 'w'

 str r1,[r0]

 mov r1, #'o' @ 'o'

 str r1,[r0]

 mov r1, #'r' @ 'r'

 str r1,[r0]

 mov r1, #'l' @ 'l'

 str r1,[r0]

 mov r1,#'d' @ 'd'

 str r1,[r0]

my_exit: @do infinite loop at the end

 b my_exit

Hexadecimal Numbers

• Hexadecimal numbers are numbers written using base-16
representation.

• Note: we use the assembler format for numbers.
– We put # before a number.

• Example:
– #123 is (123)10, i.e., 123 in decimal.

– #0x7b is (7b)16, i.e., number 7b in hexadecimal.

– #123 = #0x7b

• In the assembler environment we use, a lot of times it is much
easier to use hexadecimal values.
– You will see plenty of examples today.

• Thus, it is good to do a bit of a review in advance.

5

Hexadecimal Examples

• How do we write these numbers in hex?
– Hex is short for hexadecimal.

• #5 = #0x???

• #9 = #0x???

• #10 = #0x???

• #11 = #0x???

• #12 = #0x???

• #13 = #0x???

• #14 = #0x???

• #15 = #0x???

• #16 = #0x???

• #17 = #0x???

6

Hexadecimal Examples

• How do we write these numbers in hex?
– Hex is short for hexadecimal.

• #5 = #0x5

• #9 = #0x9

• #10 = #0xa (or #0xA)

• #11 = #0xb (or #0xB)

• #12 = #0xc (or #0xC)

• #13 = #0xd (or #0xD)

• #14 = #0xe (or #0xE)

• #15 = #0xf (or #0xF)

• #16 = #0x10

• #17 = #0x11

7

Hexadecimal Examples

• How do we write these numbers in hex?
– Hex is short for hexadecimal.

• #20 = #0x???

• #25 = #0x???

• #26 = #0x???

• #31 = #0x???

• #32 = #0x???

• #33 = #0x???

• #100 = #0x???

• #1000 = #0x???

8

Hexadecimal Examples

• How do we write these numbers in hex?
– Hex is short for hexadecimal.

• #20 = #0x14

• #25 = #0x19

• #26 = #0x1a (or #0x1A)

• #31 = #0x1f (or #0x1F)

• #32 = #0x20

• #33 = #0x21

• #100 = #0x64 Why? Because 100 = 6*16 + 4.

• #1000 = #0x3e8 (or #0x3E8)

 Why? Because 1000 = 3*162 + 14*161 + 8.

9

Hexadecimal Examples

• How do we write these hex numbers in decimal?

• #0x8 = ???

• #0xa = ???

• #0xd = ???

• #0xf = ???

• #0x40 = ???

• #0xa0 = ???

• #0xd3 = ???

• #0xe4a = ???

10

Hexadecimal Examples

• How do we write these hex numbers in decimal?

• #0x8 = #8

• #0xa = #10

• #0xd = #13

• #0xf = #15

• #0x40 = #64 64 = 4*161 + 0*160

• #0xa0 = #160 160 = 10*161 + 0*160

• #0xd3 = #211 211 = 13*161 + 3*160

• #0xe4a = #3658 14*162 + 4*161 + 10*160

11

Fun with Hexadecimals

• 0xdeadbeef = ???

12

Fun with Hexadecimals

• 0xdeadbeef = 3735928559.

• This was (and is) a popular code for printing out an
error, in cheap and small LED-based hexadecimal
displays (that perhaps can only print out a
characters).

13

Conversion Tool: Google

• Try these searches on Google:

– 0xe4a to decimal

– 2014 in hex

14

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #1

 add r0, r0, #48

 str r0, [r4]

• What does this program do?

15

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #1

 add r0, r0, #48

 str r0, [r4]

• What does this program do?

– It prints "1".

16

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #1

 add r0, r0, 48

 str r0, [r4]

• What does this program do?

17

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #1

 add r0, r0, 48

 str r0, [r4]

• What does this program do?

– It does not compile (48 should be #48).

– If you type "make", you get:

– test1.s:7: Error: shift expression expected -- `add r0,r0,48'
18

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #1

 add r0, r0, #48

 str r0, [r4]

• How do we modify this program to print "2" instead
of "1"?

19

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #2

 add r0, r0, #48

 str r0, [r4]

• How do we modify this program to print "2" instead
of "1"?

20

Printing Some Numbers

.globl _start

_start:

 ldr r4,=0x101f1000 @ r4 := 0x 101f 1000.

 @ Any ASCII code stored on r4 gets printed

 mov r0, #2

 add r0, r0, #48

 str r0, [r4]

• How do we modify this program to print numbers
from 2 to 8?

21

.globl _start

_start:

 ldr r4,=0x101f1000

 @ ASCII codes stored
 @ at [r4] get printed

 mov r0, #2

 add r0, r0, #48

 str r0, [r4]

 mov r0, #3

 add r0, r0, #48

 str r0, [r4]

 mov r0, #4

 add r0, r0, #48

 str r0, [r4]

22

 mov r0, #5

 add r0, r0, #48

 str r0, [r4]

 mov r0, #6

 add r0, r0, #48

 str r0, [r4]

 mov r0, #7

 add r0, r0, #48

 str r0, [r4]

 mov r0, #8

 add r0, r0, #48

 str r0, [r4]

my_exit: @do infinite loop at the end

 b my_exit

Printing Numbers
2 to 8

• To print numbers
from 2 to 8, it makes
sense to use a loop.

• Notice:

– labels

– cmp

– bgt

23

.globl _start
_start:
 ldr r4,=0x101f1000
 @ ASCII codes stored
 @ at [r4] get printed

 mov r0, #2

my_loop:
 cmp r0, #8
 bgt my_exit
 add r1, r0, #48
 str r1, [r4]
 add r0, r0, #1
 b my_loop

my_exit: @do infinite loop at the end
 b my_exit

Printing Numbers
0 to 15 in Hex

• What do we want to
print?

0123456789ABCDEF

• The code on the
right prints what
we want.

24

.globl _start
_start:
 ldr r4,=0x101f1000 @
ASCII codes stored
 @ at [r4] get printed

 mov r0, #0

my_loop:
 cmp r0, #0xf
 bgt my_exit

 cmp r0, #10
 addlt r1, r0, #48
 addge r1, r0, #55
 str r1, [r4]
 add r0, r0, #1
 b my_loop

my_exit: @do infinite loop at the end
 b my_exit

Printing 2-Digit Hex Numbers

• The code in the next slide prints all numbers from
0x98 to 0xA5

• One number per line.

25

26

.globl _start

_start:

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 mov r0, #0x98

my_loop:

 cmp r0, #0xA5

 bgt my_exit

 lsr r1, r0, #4

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 lsr r1, r0, #0

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 mov r1, #13
 str r1, [r4]

 mov r1, #10

 str r1, [r4]

 add r0, r0, #1

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• Step 1: standard initialization:

.globl _start

_start:

 ldr r4, =0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

27

Printing a 32-bit Number in Hex

• Step 2: store some number to r0.

• Note: the mov instruction does not allow us to use arbitrary
32-bit constants, we can only use 8-bit constants. (Why?)

 @ set r0 := 0x12ad730f

 mov r0, #0x12

 lsl r0, r0, #8

 add r0, r0, #0xad

 lsl r0, r0, #8

 add r0, r0, #0x73

 lsl r0, r0, #8

 add r0, r0, #0x0f
28

Printing a 32-bit Number in Hex

• Step 2, shorter (but not faster) version: store some number to
r0.

• Use the ldr pseudoinstruction

 @ set r0 := 0x12ad730f

 ldr r0, =0x12ad730f

29

Printing a 32-bit Number in Hex

• Step 3: Print each digit,
using a loop.

• For each of the 8 digits,
starting from the leftmost
digit:
– Shift bits to the right, so that

the digit becomes the
rightmost.

– Isolate that digit by taking a
bitwise AND with 0x0000000f.

– Print the digit.

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

30

Printing a 32-bit Number in Hex

• For example: r0 := 0x12ad730f

• First (most significant) digit: 1.

• By how many bits do we need to
shift to make this digit rightmost?
??? bits.

• Register r2 holds the number of
bits we need to shift.

• We do the shift.

– Note that we store the result
on another register, not r0.

– We still need the rest of the
data on r0.

• Result: r1 := ???

31

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• For example: r0 := 0x12ad730f

• First (most significant) digit: 1.

• By how many bits do we need to
shift to make this digit rightmost?
28 bits.

• Register r2 holds the number of
bits we need to shift.

• We do the shift.

• Result: r1 := 0x00000001.

• Now, we do bitwise AND between
r1 and 0x0000000f.

• Result: 0x00000002.

• We have managed to isolate the
digit, ready to print it.

32

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• example: r0 := 0x12ad730f

• Second digit: 2.

• By how many bits do we need to
shift to make this digit rightmost?
??? bits.

• Register r2 := r2 - 4, to hold the
number of bits we need to shift.

• We do the shift.

• Result: r1 := ???

• Now, we do bitwise AND between
r1 and 0x0000000f.

• Result: ???.

33

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• example: r0 := 0x12ad730f

• Second digit: 2.

• By how many bits do we need to
shift to make this digit rightmost?
24 bits.

• Register r2 := r2 - 4, to hold the
number of bits we need to shift.

• We do the shift.

• Result: r1 := 0x00000012

• Now, we do bitwise AND between
r1 and 0x0000000f.

• Result: 0x00000002.

• We have managed to isolate the
digit, ready to print it.

34

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• example: r0 := 0x12ad730f

• Third digit: a.

• By how many bits do we need to
shift to make this digit rightmost?
??? bits.

• Register r2 := r2 - 4, to hold the
number of bits we need to shift.

• We do the shift.

• Result: r1 := ???

• Now, we do bitwise AND between
r1 and 0x0000000f.

• Result: ???

35

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Printing a 32-bit Number in Hex

• example: r0 := 0x12ad730f

• Third digit: a.

• By how many bits do we need to
shift to make this digit rightmost?
20 bits.

• Register r2 := r2 - 4, to hold the
number of bits we need to shift.

• We do the shift.

• Result: r1 := 0x0000012a

• Now, we do bitwise AND between
r1 and 0x0000000f.

• Result: 0x0000000a.

• We have managed to isolate the
digit, ready to print it.

36

 mov r2, #28

my_loop:

 cmp r2, #0

 blt my_exit

 lsr r1, r0, r2

 and r1, r1, #0x0000000f

 cmp r1, #10

 addlt r1, r1, #48

 addge r1, r1, #55

 str r1, [r4]

 sub r2, r2, #4

 b my_loop

my_exit: @do infinite loop at the end

 b my_exit

Infinite Loops

• Why do we always put an infinite loop at the end?

• Otherwise, some programs keep rerunning from the
beginning.

• I have verified that even correct code can get into
this behavior.

• This phenomenon is somewhat complicated to
explain, but it is easy to fix.

37

Infinite Loops

• First of all, how to fix:

Short version:

• At the very end of your program (every program that
you write), put these lines (or something equivalent):

the_end:

 b the_end

• These lines make sure that your program, when it
reaches the end, stays there forever.

– No extra output is produced.

 38

Infinite Loops

Longer version:

• At the very end of your
program (every program that
you write), put the code on
the right.

• This way, when you get to
the end of the program, you
see the word END printed.
– You know that you reached the

end of your program (as
opposed to getting stuck in
some infinite loop somewhere
else, due to a bug).

39

 ldr r4,=0x101f1000
 mov r1, #’\r’
 str r1, [r4]
 mov r1, #’\n’
 str r1, [r4]
 mov r1, #'E'
 str r1, [r4]
 mov r1, #'N'
 str r1, [r4]
 mov r1, #'D'
 str r1, [r4]

the_end:
 b the_end

Infinite Loops

• The assembly programs that we write run in a very
primitive environment.

• How does a program know when to stop?

• What does the CPU execute when the program
stops?

40

Infinite Loops

• The assembly programs that we write run in a very
primitive environment.

• How does a program know when to stop?

• What does the CPU execute when the program
stops?

• These are issues that are typically handled by an
operating system.

• In our case, the the program runs on a simulated
machine with no operating system.

• When the program finishes, what is the CPU
supposed to do?

41

Infinite Loops

• When the program finishes, what is the CPU supposed to do?

• The CPU just fetches the next instruction from memory.

• What is the next instruction?

• It is just whatever happened to reside in memory at that time.

• Thus, while you think that your program has finished
executing, the program still executes meaningless
instructions.

• However, at some point, the program may reach memory that
you have used on your stack.

• Some of the data you have stored on the stack, when
interpreted as instructions, executes a branch to the
beginning of the program.

42

Infinite Loops

• In summary: correct code getting into an infinite loop is a
problem that you may or may have not run across.

• If you have not run across it,do not worry about it.

• If you have, it may take hours trying to find the mistake where
there isn't one.

• Using the suggested fixes (especially the one that prints END
at the end) resolves this issue.

• Plus, using the suggested fixes ensures that if you do observe
an infinite loop, the problem is with your code.

• If you mess up your stack (by adding or subtracting the wrong
values, or restoring the value of lr from the wrong place) you
may get all sorts of weird execution behavior.

43

