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Making a Function 

• Why are functions useful in assembly? 
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Making a Function 

• Why are functions useful in assembly? 

• For the same reasons they are useful in any 
programming language: 

– Modularity, making code easy to design, write, read, 
debug. 

– Reusability. 

• What functionality from the previous programs 
would be a good candidate to make a function of? 
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Making a Function 

• Why are functions useful in assembly? 

• For the same reasons they are useful in any 
programming language: 

– Modularity, making code easy to design, write, read, 
debug. 

– Reusability. 

• What functionality from the previous programs 
would be a good candidate to make a function of? 

– Printing a single hexadecimal digit. 

– Printing an entire 32-bit number in hexadecimal.  
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Making a Function 

• Functions are easy to define and call in languages like 
C and Java. 

• In assembly, calling a function requires several steps. 

• This reflects that the CPU can do only a limited 
amount of work in a single step. 

• Note that, to correctly do a function call, both the 
caller and the called function must do the right steps.  

5 



Caller Steps  

• Step 1: Put arguments in the right place. 

• Specific machines use specific conventions. 

• Figure 5-4, on textbook page 355, specifies ARM-7 conventions: 
– "R0-R3 hold parameters to the procedure being called". 

• So: 
– Argument 1 (if any) goes to r0. 

– Argument 2 (if any) goes to r1. 

– Argument 3 (if any) goes to r2. 

– Argument 4 (if any) goes to r3. 

• If there are more arguments, they have to be placed in 
memory. We will worry about this case only if we encounter it. 
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Caller Steps  

• Step 2: branch to the first instruction of the function. 
– Here, we typically use the bl instruction, not the b instruction. 

– The bl instruction, before branching, saves to register lr (the link 
register, aka r14) the return address. 

– The return address is the address of the instruction that should be 
executed when the function is done. 

• Step 3: after the function has returned, recover the return 
value, and use it. 
– We will follow the convention that the return value goes to r0. 
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Called Function Steps 

• Step 1: Do the preamble:  
– Allocate memory on the stack (more details in a bit). 

– Save to memory the return address. Why? 

– Save to memory all registers (except possibly for r0) that the function 
modifies. Why? 

• Step 2: Do the main body of the function. 
– Assume arguments are in r0, r1, r2, r3. 

– This is where the actual work is done. 

• Step 3: Do the wrap-up: 
– Store the return value (if any) on r0. 

– Retrieve from memory the return address. Why? 

– Retrieve from memory, and restore to registers, the original values of all 
registers that the function modified (except possibly for r0). Why? 

– Deallocate memory on the stack. 

– Branch to the return address. 8 



Placing Register Values in Memory 

• Why do we need to save register values in memory at the 
beginning of the function? 

• Why do we need to restore the original register values from 
memory at the end of the function? 
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Placing Register Values in Memory 

• Why do we need to save register values in memory at the 
beginning of the function? 

• Why do we need to restore the original register values from 
memory at the end of the function? 

• Suppose function A gets calls from functions B, C, D, E, ... 

• Function A has no idea what function it got called from. 

• Therefore, function A has no idea what registers the caller 
function was using. 

• By saving register values at the beginning, and restoring them 
at the end, function A makes sure that, when it returns, the 
caller function finds all registers unchanged. 

• This makes life more simple for the caller function, it doesn't 
need to worry about whether any registers got changed. 
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Placing Register Values in Memory 

• In summary: the called function must: 
– Save register values at the beginning.  

– Restore register values at the end. 

• In theory, we could have used a different convention (but we 
will not use it): 
– The called function does not worry about saving and restoring register 

values. 

– The caller: 

• Saves whatever register values it needs before making the function 
call. 

• Restores those register values after the function call has returned. 

• Both conventions are okay, we just need to choose one and 
stick with it. 
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Placing Register Values in Memory 

• What about r0? 

• Why don't we restore the original value of r0 at the 
end of the function? 
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Placing Register Values in Memory 

• What about r0? 

• Why don't we restore the original value of r0 at the 
end of the function? 

• Because r0 is supposed to hold the return value. 

• This is the one register that the caller expects to find 
changed at the end of the function. 

• We will follow the convention that, if the function 
does not return anything (returns void) then we will 
be restoring the original value of r0 as well. 
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Placing Register Values in Memory 

• What about lr (the link register)? 

• Why do we need to save it to memory at the beginning, and 
restore it from memory at the end of the function? 
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Placing Register Values in Memory 

• What about lr (the link register)? 

• Why do we need to save it to memory at the beginning, and 
restore it from memory at the end of the function? 

• Every time our function calls other functions, lr changes. 

• By restoring it at the end of the function, we make sure we 
get the right return address. 

• In principle, if our function does not make any other function 
calls, we do not really need to save lr to memory. 

• In practice, personally I will follow the convention to always 
save lr, so as to avoid possible bugs. 

• You will probably get a bug at some point, where: 
– You forget to restore lr at the end of the function. 

– Your function branches to a weird place at the end, instead of 
returning to the caller. 
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Saving to Memory 

• When does a function need to save information to 
memory? 

– At the beginning, to save the original values of the 
registers. 

– At any later time, if there are not enough registers to store 
useful intermediate values. 

• A very important question:  

– How does the function know what memory to use? 

– How can the function avoid messing up memory already 
used by other functions? 

• Answer: the stack, and the stack pointer. 
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The Stack Pointer 

• The stack pointer points to the beginning of the memory space used by a 
specific function. 

• When we write an assembly function, at the end, we look at all the 
memory that we needed. 

• Suppose that we needed X bytes. 

• Then, at the beginning (first line) of the function, we put this line: 
 

sub sp, sp, #X 
 

• At the end of the function (right before returning), we put this line: 
 

add sp, sp, #X 
 

• This way, we mark that the function uses memory addresses from [sp] to 
[sp+X-1]. 

• When the function is done, it restores the original value of sp. 

• This way, when execution goes back to the caller, sp has the appropriate 
value for the caller. 
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Memory Organization 

18 

• In the simulated ARM machine we are using, memory 
addresses from 0 to0xffff are read-only memory. 

– In decimal, these are addresses from 0 to 65535. 

• Instructions will be saved at addresses 0x10000 and up. 

– In decimal, this is address 65536. 

• Typically instructions will take no more than 20K. 

– Therefore, instructions go up to address 86000. 

• At the beginning of the program (NOT the beginning of 
each function, just the beginning of the entire program) 
we will hardcode the stack pointer to hexadecimal 
address 0x100000. 

• In decimal, this address is about 1.05 million. 

• This leaves about (1.05 million - 86 thousand) bytes, i.e., 
roughly about 920 thousand bytes, for use by functions. 

• By the term "stack" we simply mean these bytes, that are 
available for use by functions. 

Memory 

1048576 

86000 

65536 

65535 

0 

ROM 

code 

stack 



Stack Pointer Example 
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• At the beginning of the program, we do: 
 

mov sp, #0x100000 
 

• This points the stack pointer to the top of 
the stack. 

Stack 

Top = 1048576 

86000 

start of program: sp  



Stack Pointer Example 
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• At the beginning of the program, we do: 
 

mov sp, #0x100000 
 

• This points the stack pointer to the top of 
the stack. 

• Then, the initial function (called _start in 
our examples) immediately subtracts 
from the sp the space that it needs for its 
own use. Suppose it needs X1 bytes. 

 

sub sp, sp, #X1 
 

 

Stack 

Top = 1048576 

Top – X1 

86000 

start of program: sp  

_start function:  sp  

memory for _start 



Stack Pointer Example 
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• At the beginning of the program, we do: 
 

mov sp, #0x100000 
 

• This points the stack pointer to the top of 
the stack. 

• Then, the initial function (called _start in 
our examples) immediately subtracts 
from the sp the space that it needs for its 
own use. Suppose it needs X1 bytes. 

 

sub sp, sp, #X1 
 

• Then, suppose _start calls function foo. 
Function foo will set the sp to an even 
lower value. Suppose foo needs X2 bytes. 

 

sub sp, sp, #X2 

 

Stack 

Top = 1048576 

Top – X1 

Top – X1 – X2 

86000 

start of program: sp  

_start function:  sp  

memory for _start 

foo:  sp  

memory for foo 



Stack Pointer Example 
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• Then, suppose function foo calls function 
qqq. Function qqq will set the sp to an 
even lower value. Suppose qqq needs X3 
bytes. 

 

sub sp, sp, #X3 

 

 

Stack 

Top = 1048576 

Top – X1 

Top – X1 – X2 

Top - X1 - X2 -X3 

Bottom = 86000 

start of program: sp  

_start function:  sp  

memory for _start 

foo:  sp  

memory for foo 

qqq:  sp  

memory for qqq 



Stack Pointer Example 
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• Then, suppose function foo calls function 
qqq. Function qqq will set the sp to an 
even lower value. Suppose qqq needs X3 
bytes. 

 

sub sp, sp, #X3 
 

• Then, function qqq is getting ready to 
return, and restores the sp to the value it 
was set to by the caller function 
(function foo). 

 

add sp, sp, #X3 

 

Stack 

Top = 1048576 

Top – X1 

Top – X1 – X2 

Bottom = 86000 

start of program: sp  

_start function:  sp  

memory for _start 

foo:  sp  

memory for foo 



Stack Pointer Example 
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• Then, suppose function foo calls function 
qqq. Function qqq will set the sp to an 
even lower value. Suppose qqq needs X3 
bytes. 

 

sub sp, sp, #X3 
 

• Then, function qqq is getting ready to 
return, and restores the sp to the value it 
was set to by the caller function 
(function foo). 

 

add sp, sp, #X3 
 

• Then, function foo calls function rrr. 
Suppose function rrr needs X4 bytes: 

 

sub sp, sp, #X4 
 

 

 

Stack 

Top = 1048576 

Top – X1 

Top – X1 – X2 

Top-X1-X2-X4 

Bottom = 86000 

start of program: sp  

_start function:  sp  

memory for _start 

foo:  sp  

memory for foo 

rrr:  sp  
memory for rrr 



Stack Pointer Example 
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• Then, function rrr is getting ready to 
return, and restores the sp to the value it 
was set to by the caller function 
(function foo). 

 

add sp, sp, #X4 
 

 

 

Stack 

Top = 1048576 

Top – X1 

Top – X1 – X2 

Bottom = 86000 

start of program: sp  

_start function:  sp  

memory for _start 

foo:  sp  

memory for foo 



Stack Pointer Example 
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• Then, function rrr is getting ready to 
return, and restores the sp to the value it 
was set to by the caller function 
(function foo). 

 

add sp, sp, #X4 
 

 

• Function foo is now also getting ready to 
return, and restores the sp to the value it 
was said to by the caller function 
(function _start). 

 

add sp, sp, #X2 

Stack 

Top = 1048576 

Top – X1 

Bottom = 86000 

start of program: sp  

_start function:  sp  

memory for _start 



Stack Pointer Example 
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• Then, function rrr is getting ready to 
return, and restores the sp to the value it 
was set to by the caller function 
(function foo). 

 

add sp, sp, #X4 
 

 

• Function foo is now also getting ready to 
return, and restores the sp to the value it 
was said to by the caller function 
(function _start). 

 

add sp, sp, #X2 
 

• Finally, function _start is wrapping up, 
and restores the sp to point to the top of 
the stack: 

 

add sp, sp, #X1. 

Stack 

Top = 1048576 

Bottom = 86000 

start of program: sp  



Summary of Caller and Callee Steps 

• Caller steps: 
– Step 1: Put arguments in the registers r0, r1, r2, r3. 

– Step 2: Branch to the function, using the bl instruction. 

– Step 3: After the function has returned, recover the return value (if 
any), and use it. 

• Callee (called function) steps: 
– Step 1 (preamble): Allocate memory on the stack, and save register rl, 

and other registers that the function modifies, to the stack. 

– Step 2: Do the main body of the function. 

– Step 3 (wrap-up): 

• Store the return value (if any) on r0. 

• Restore, from the stack,  the original values of all registers that the 
function modified, as well as the value of register lr. 

• Deallocate memory on the stack (increment sp). 

• Branch to the return address using instruction bx. 
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A First Function Example  

• In this program, we define and use a function 
print_digit. 

• This function: 

– Takes a single argument. 

– Assumes that the argument is a number between 0 and 
15. 

– Prints that number in hexadecimal. 

• The program prints numbers 0 to 15 in hex. 
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.globl _start 

_start: 

 mov sp, #0x100000 
 @initialize sp at start of 
program 

 

 @ program preamble 

 sub sp, sp, #8 

 str r0, [sp, #0] 

 str r5, [sp, #4] 

 

    

  

@ program main body  

 mov r5, #0x0 

my_loop: 

 cmp r5, #0xf 

 bgt program_exit 

 

 mov r0, r5 

 bl print_digit 

  

 add r5, r5, #1 

 b my_loop 

 



print_digit:  

 @ print_digit preamble 

 sub sp, sp, #16 

 str lr, [sp, #0] 

 str r0, [sp, #4] 

 str r4, [sp, #8] 

 str r5, [sp, #12] 

 

 @ print_digit main body 

 ldr r4,=0x101f1000  

 @ ASCII codes stored  

 @ at [r4] get printed 

  

 cmp r0, #10 

 addlt r5, r0, #48 

 addge r5, r0, #55 

 str r5, [r4] 

 

 @ print_digit wrap-up 

 ldr lr, [sp, #0] 

 ldr r0, [sp, #4] 

 ldr r4, [sp, #8] 

 ldr r5, [sp, #12] 

 add sp, sp, #16 

 bx lr 

 

program_exit: 

 @ program wrap-up 

 ldr r0, [sp, #0] 

 ldr r5, [sp, #4] 

 add sp, sp, #8 

 



Things to Note 

• Structure of the source code file: 
– Part 1: definition of main. 

– Part 2: definition of all functions (the order doesn't matter). 

– Part 3: program exit. 

• We treat the main program itself as a function. 
– We save the registers it uses, at the beginning of the program. 

– We restore the values of those registers at the end. 

• Strictly speaking, these programs will run even if we don't do 
that. 
– It is just good habit to make sure that any program module leaves 

registers as it found them. 
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Things to Note 

• The main program uses r5 as the loop variable. 

– The values of r5 range from 0 to 15. 

– For each of those values, print_digit is called. 

• Function print_digit also uses r5. 

• Why does that not mess up the value of r5 in the 
main program? 
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Things to Note 

• The main program uses r5 as the loop variable. 

– The values of r5 range from 0 to 15. 

– For each of those values, print_digit is called. 

• Function print_digit also uses r5. 

• Why does that not mess up the value of r5 in the 
main program? 

– Because print_digit leaves the values of all registers as it 
found them. 

– Every function should do that. 

– It is the job of the function preamble and the function 
wrap-up to do that. 
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Things to Note 

• One of the registers we save and restore is lr. 

• Strictly speaking, it is not necessary. 

– Function print_digit does not modify lr at any point. 

• If we wanted to make performance as fast as 
possible, we would not save and restore lr. 

• In practice, it is a good habit, so as to avoid bugs. 

• It is recommended that you guys always save and 
restore lr in any function you write. 
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How to Write a Function 

• You can follow two approaches. 

• Approach 1: 

– First, write a preamble and wrapup that save and restore 
all registers you may possibly need. 

– Second, write the main body, test, and debug the function. 

– Third, rewrite the preamble and wrapup, to avoid saving 
and restoring registers that you did not end up using. 
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How to Write a Function 

• Approach 2: 

– First, write the function main body. 

– Second, see what registers you are using in the function 
main body. 

– Third, write the preamble and wrapup, to save and restore 
all registers you use.  

• Disadvantage of second approach:  

– As you debug and make changes, you may use more or 
fewer registers. 

– You have to keep modifying the preamble and wrapup. 
• Value to subtract from sp. 

• Memory locations used for the registers. 
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A Second Function Example  

• In this program, we define and use a function 
print_number. 

• This function: 

– Takes a single argument, that is a 32-bit number. 

– Prints that number in hexadecimal. 

• The program prints numbers 0xffffffd to 0x1000010 
in hex. 
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.globl _start 

_start: 

 mov sp, #0x100000 
 @initialize sp at start of 
program 

 

 @ program preamble 

 sub sp, sp, #16 

 str r0, [sp, #0] 

 str r4, [sp, #4] 

 str r5, [sp, #8] 

 str r6, [sp, #12] 

 

 @ program main body  

 ldr r4,=0x101f1000  

 @ ASCII codes stored  

 @ at [r4] get printed 

 

 mov r5, #0x0f 

 lsl r5, r5, #8 

 add r5, r5, #0xff 

 lsl r5, r5, #8 

 add r5, r5, #0xff 

 lsl r5, r5, #8 

 add r5, r5, #0xfd 

 

 mov r6, #19 

my_loop: 

 cmp r6, #0 

 blt my_exit 

 

 mov r0, r5 

 bl print_number 

 add r5, r5, #1 

 sub r6, r6, #1 

 b my_loop 



print_number:  

 @ print_number preamble 

 sub sp, sp, #24 

 str lr, [sp, #0] 

 str r0, [sp, #4] 

 str r4, [sp, #8] 

 str r5, [sp, #12] 

 str r6, [sp, #16] 

 str r7, [sp, #20] 

 

 @ print_number main body 

 ldr r4,=0x101f1000  

 @ ASCII codes stored  

 @ at [r4] get printed 

 

 mov r5, #28 

 mov r6, r0 

  

print_number_loop:  

 cmp r5, #0 

 blt print_number_exit 

 

 lsr r7, r6, r5 

 and r7, r7, #0x0000000f 

 mov r0, r7 

 bl print_digit 

 

 sub r5, r5, #4 

 b print_number_loop 



print_number_exit: 

 @ print newline 

 mov r5, #13 

 str r5, [r4]   

 mov r5, #10   

 str r5, [r4]   

 

 @ print_number wrap-up 

 ldr lr, [sp, #0] 

 ldr r0, [sp, #4] 

 ldr r4, [sp, #8] 

 ldr r5, [sp, #12] 

 ldr r6, [sp, #16] 

 ldr r7, [sp, #20] 

 

 sub sp, sp, #24 

 bx lr 

my_exit: 

 @ program wrap-up 

 ldr r0, [sp, #0] 

 ldr r4, [sp, #4] 

 ldr r5, [sp, #8] 

 ldr r6, [sp, #8] 

 add sp, sp, #16 



Things to Note 

• Function print_number uses r5. 

• Function print_digit also uses r5. 

• Again, this is no problem because each function 
leaves the values of the registers as it found them. 
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Things to Note 

• What would happen if print_number did not save 
and restore the value of lr in its preamble and 
wrapup? 
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Things to Note 

• What would happen if print_number did not save 
and restore the value of lr in its preamble and 
wrapup? 

• Register lr gets modified when, from print_number, 
we call print_digit. 

• At that time, lr is set to point to what instruction? 

– The instruction "sub r5, r5, #4" that is in the print_number 
function, right after the call to print_digit.  

– If, at the end of print_number we do not restore lr, then 
instruction "bx lr" will go right back to the "sub r5, r5, #4" 
instruction, and the program gets into an infinite loop. 
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Recursive Function Example: Factorial 

• How do we write function 
factorial in C, as a recursive 
function? 
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• How do we write function 
factorial in assembly? 
 

  



Recursive Function Example: Factorial 

• How do we write function 
factorial in C, as a recursive 
function? 

 

int factorial(int N) 

{ 

  if (N== 0) return 0; 

  return N* factorial(N -1); 

} 
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• How do we write function 
factorial in assembly? 
 

  



Recursive Function Example: Factorial 

• How do we write function 
factorial in C, as a recursive 
function? 

 

int factorial(int N) 

{ 

  if (N== 0) return 0; 

  return N* factorial(N -1); 

} 
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• How do we write function 
factorial in assembly? 
 

 @ factorial main body 

 mov r4, r0 

 cmp r4, #0 

 moveq r0, #1 

 beq factorial_exit 

 

 sub r0, r4, #1 

 bl factorial 

 mov r5, r0 

 mul r0, r5, r4 



Recursive Function Example: Factorial 
 @ factorial preamble 

                ??? 

 

 @ factorial main body 

 mov r4, r0 

 cmp r4, #0 

 moveq r0, #1 

 beq factorial_exit 

 

 sub r0, r4, #1 

 bl factorial 

 mov r5, r0 

 mul r0, r5, r4 
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 @ factorial wrap-up 

                ??? 

 

 



Recursive Function Example: Factorial 
 @ factorial preamble 

                sub sp, sp, #12 

 str lr, [sp, #0] 

 str r4, [sp, #4] 

 str r5, [sp, #8] 
  

 @ factorial main body 

 mov r4, r0 

 cmp r4, #0 

 moveq r0, #1 

 beq factorial_exit 
 

 sub r0, r4, #1 

 bl factorial 

 mov r5, r0 

 mul r0, r5, r4 
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 @ factorial wrap-up 

                ldr lr, [sp, #0] 

 ldr r4, [sp, #4] 

 ldr r5, [sp, #8] 

 add sp, sp, #12 

 bx lr 

 

 


