
ARM-7 Assembly:

Example Programs

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Making a Function

• Why are functions useful in assembly?

2

Making a Function

• Why are functions useful in assembly?

• For the same reasons they are useful in any
programming language:

– Modularity, making code easy to design, write, read,
debug.

– Reusability.

• What functionality from the previous programs
would be a good candidate to make a function of?

3

Making a Function

• Why are functions useful in assembly?

• For the same reasons they are useful in any
programming language:

– Modularity, making code easy to design, write, read,
debug.

– Reusability.

• What functionality from the previous programs
would be a good candidate to make a function of?

– Printing a single hexadecimal digit.

– Printing an entire 32-bit number in hexadecimal.

4

Making a Function

• Functions are easy to define and call in languages like
C and Java.

• In assembly, calling a function requires several steps.

• This reflects that the CPU can do only a limited
amount of work in a single step.

• Note that, to correctly do a function call, both the
caller and the called function must do the right steps.

5

Caller Steps

• Step 1: Put arguments in the right place.

• Specific machines use specific conventions.

• Figure 5-4, on textbook page 355, specifies ARM-7 conventions:
– "R0-R3 hold parameters to the procedure being called".

• So:
– Argument 1 (if any) goes to r0.

– Argument 2 (if any) goes to r1.

– Argument 3 (if any) goes to r2.

– Argument 4 (if any) goes to r3.

• If there are more arguments, they have to be placed in
memory. We will worry about this case only if we encounter it.

6

Caller Steps

• Step 2: branch to the first instruction of the function.
– Here, we typically use the bl instruction, not the b instruction.

– The bl instruction, before branching, saves to register lr (the link
register, aka r14) the return address.

– The return address is the address of the instruction that should be
executed when the function is done.

• Step 3: after the function has returned, recover the return
value, and use it.
– We will follow the convention that the return value goes to r0.

7

Called Function Steps

• Step 1: Do the preamble:
– Allocate memory on the stack (more details in a bit).

– Save to memory the return address. Why?

– Save to memory all registers (except possibly for r0) that the function
modifies. Why?

• Step 2: Do the main body of the function.
– Assume arguments are in r0, r1, r2, r3.

– This is where the actual work is done.

• Step 3: Do the wrap-up:
– Store the return value (if any) on r0.

– Retrieve from memory the return address. Why?

– Retrieve from memory, and restore to registers, the original values of all
registers that the function modified (except possibly for r0). Why?

– Deallocate memory on the stack.

– Branch to the return address. 8

Placing Register Values in Memory

• Why do we need to save register values in memory at the
beginning of the function?

• Why do we need to restore the original register values from
memory at the end of the function?

9

Placing Register Values in Memory

• Why do we need to save register values in memory at the
beginning of the function?

• Why do we need to restore the original register values from
memory at the end of the function?

• Suppose function A gets calls from functions B, C, D, E, ...

• Function A has no idea what function it got called from.

• Therefore, function A has no idea what registers the caller
function was using.

• By saving register values at the beginning, and restoring them
at the end, function A makes sure that, when it returns, the
caller function finds all registers unchanged.

• This makes life more simple for the caller function, it doesn't
need to worry about whether any registers got changed.

10

Placing Register Values in Memory

• In summary: the called function must:
– Save register values at the beginning.

– Restore register values at the end.

• In theory, we could have used a different convention (but we
will not use it):
– The called function does not worry about saving and restoring register

values.

– The caller:

• Saves whatever register values it needs before making the function
call.

• Restores those register values after the function call has returned.

• Both conventions are okay, we just need to choose one and
stick with it.

11

Placing Register Values in Memory

• What about r0?

• Why don't we restore the original value of r0 at the
end of the function?

12

Placing Register Values in Memory

• What about r0?

• Why don't we restore the original value of r0 at the
end of the function?

• Because r0 is supposed to hold the return value.

• This is the one register that the caller expects to find
changed at the end of the function.

• We will follow the convention that, if the function
does not return anything (returns void) then we will
be restoring the original value of r0 as well.

13

Placing Register Values in Memory

• What about lr (the link register)?

• Why do we need to save it to memory at the beginning, and
restore it from memory at the end of the function?

14

Placing Register Values in Memory

• What about lr (the link register)?

• Why do we need to save it to memory at the beginning, and
restore it from memory at the end of the function?

• Every time our function calls other functions, lr changes.

• By restoring it at the end of the function, we make sure we
get the right return address.

• In principle, if our function does not make any other function
calls, we do not really need to save lr to memory.

• In practice, personally I will follow the convention to always
save lr, so as to avoid possible bugs.

• You will probably get a bug at some point, where:
– You forget to restore lr at the end of the function.

– Your function branches to a weird place at the end, instead of
returning to the caller.

15

Saving to Memory

• When does a function need to save information to
memory?

– At the beginning, to save the original values of the
registers.

– At any later time, if there are not enough registers to store
useful intermediate values.

• A very important question:

– How does the function know what memory to use?

– How can the function avoid messing up memory already
used by other functions?

• Answer: the stack, and the stack pointer.

16

The Stack Pointer

• The stack pointer points to the beginning of the memory space used by a
specific function.

• When we write an assembly function, at the end, we look at all the
memory that we needed.

• Suppose that we needed X bytes.

• Then, at the beginning (first line) of the function, we put this line:

sub sp, sp, #X

• At the end of the function (right before returning), we put this line:

add sp, sp, #X

• This way, we mark that the function uses memory addresses from [sp] to
[sp+X-1].

• When the function is done, it restores the original value of sp.

• This way, when execution goes back to the caller, sp has the appropriate
value for the caller.

17

Memory Organization

18

• In the simulated ARM machine we are using, memory
addresses from 0 to0xffff are read-only memory.

– In decimal, these are addresses from 0 to 65535.

• Instructions will be saved at addresses 0x10000 and up.

– In decimal, this is address 65536.

• Typically instructions will take no more than 20K.

– Therefore, instructions go up to address 86000.

• At the beginning of the program (NOT the beginning of
each function, just the beginning of the entire program)
we will hardcode the stack pointer to hexadecimal
address 0x100000.

• In decimal, this address is about 1.05 million.

• This leaves about (1.05 million - 86 thousand) bytes, i.e.,
roughly about 920 thousand bytes, for use by functions.

• By the term "stack" we simply mean these bytes, that are
available for use by functions.

Memory

1048576

86000

65536

65535

0

ROM

code

stack

Stack Pointer Example

19

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

Stack

Top = 1048576

86000

start of program: sp 

Stack Pointer Example

20

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

• Then, the initial function (called _start in
our examples) immediately subtracts
from the sp the space that it needs for its
own use. Suppose it needs X1 bytes.

sub sp, sp, #X1

Stack

Top = 1048576

Top – X1

86000

start of program: sp 

_start function: sp 

memory for _start

Stack Pointer Example

21

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

• Then, the initial function (called _start in
our examples) immediately subtracts
from the sp the space that it needs for its
own use. Suppose it needs X1 bytes.

sub sp, sp, #X1

• Then, suppose _start calls function foo.
Function foo will set the sp to an even
lower value. Suppose foo needs X2 bytes.

sub sp, sp, #X2

Stack

Top = 1048576

Top – X1

Top – X1 – X2

86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

22

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Top - X1 - X2 -X3

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

qqq: sp 

memory for qqq

Stack Pointer Example

23

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

• Then, function qqq is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X3

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

24

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

• Then, function qqq is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X3

• Then, function foo calls function rrr.
Suppose function rrr needs X4 bytes:

sub sp, sp, #X4

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Top-X1-X2-X4

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

rrr: sp 
memory for rrr

Stack Pointer Example

25

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

26

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

• Function foo is now also getting ready to
return, and restores the sp to the value it
was said to by the caller function
(function _start).

add sp, sp, #X2

Stack

Top = 1048576

Top – X1

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

Stack Pointer Example

27

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

• Function foo is now also getting ready to
return, and restores the sp to the value it
was said to by the caller function
(function _start).

add sp, sp, #X2

• Finally, function _start is wrapping up,
and restores the sp to point to the top of
the stack:

add sp, sp, #X1.

Stack

Top = 1048576

Bottom = 86000

start of program: sp 

Summary of Caller and Callee Steps

• Caller steps:
– Step 1: Put arguments in the registers r0, r1, r2, r3.

– Step 2: Branch to the function, using the bl instruction.

– Step 3: After the function has returned, recover the return value (if
any), and use it.

• Callee (called function) steps:
– Step 1 (preamble): Allocate memory on the stack, and save register rl,

and other registers that the function modifies, to the stack.

– Step 2: Do the main body of the function.

– Step 3 (wrap-up):

• Store the return value (if any) on r0.

• Restore, from the stack, the original values of all registers that the
function modified, as well as the value of register lr.

• Deallocate memory on the stack (increment sp).

• Branch to the return address using instruction bx.

28

A First Function Example

• In this program, we define and use a function
print_digit.

• This function:

– Takes a single argument.

– Assumes that the argument is a number between 0 and
15.

– Prints that number in hexadecimal.

• The program prints numbers 0 to 15 in hex.

29

.globl _start

_start:

 mov sp, #0x100000
 @initialize sp at start of
program

 @ program preamble

 sub sp, sp, #8

 str r0, [sp, #0]

 str r5, [sp, #4]

@ program main body

 mov r5, #0x0

my_loop:

 cmp r5, #0xf

 bgt program_exit

 mov r0, r5

 bl print_digit

 add r5, r5, #1

 b my_loop

print_digit:

 @ print_digit preamble

 sub sp, sp, #16

 str lr, [sp, #0]

 str r0, [sp, #4]

 str r4, [sp, #8]

 str r5, [sp, #12]

 @ print_digit main body

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 cmp r0, #10

 addlt r5, r0, #48

 addge r5, r0, #55

 str r5, [r4]

 @ print_digit wrap-up

 ldr lr, [sp, #0]

 ldr r0, [sp, #4]

 ldr r4, [sp, #8]

 ldr r5, [sp, #12]

 add sp, sp, #16

 bx lr

program_exit:

 @ program wrap-up

 ldr r0, [sp, #0]

 ldr r5, [sp, #4]

 add sp, sp, #8

Things to Note

• Structure of the source code file:
– Part 1: definition of main.

– Part 2: definition of all functions (the order doesn't matter).

– Part 3: program exit.

• We treat the main program itself as a function.
– We save the registers it uses, at the beginning of the program.

– We restore the values of those registers at the end.

• Strictly speaking, these programs will run even if we don't do
that.
– It is just good habit to make sure that any program module leaves

registers as it found them.

32

Things to Note

• The main program uses r5 as the loop variable.

– The values of r5 range from 0 to 15.

– For each of those values, print_digit is called.

• Function print_digit also uses r5.

• Why does that not mess up the value of r5 in the
main program?

33

Things to Note

• The main program uses r5 as the loop variable.

– The values of r5 range from 0 to 15.

– For each of those values, print_digit is called.

• Function print_digit also uses r5.

• Why does that not mess up the value of r5 in the
main program?

– Because print_digit leaves the values of all registers as it
found them.

– Every function should do that.

– It is the job of the function preamble and the function
wrap-up to do that.

34

Things to Note

• One of the registers we save and restore is lr.

• Strictly speaking, it is not necessary.

– Function print_digit does not modify lr at any point.

• If we wanted to make performance as fast as
possible, we would not save and restore lr.

• In practice, it is a good habit, so as to avoid bugs.

• It is recommended that you guys always save and
restore lr in any function you write.

35

How to Write a Function

• You can follow two approaches.

• Approach 1:

– First, write a preamble and wrapup that save and restore
all registers you may possibly need.

– Second, write the main body, test, and debug the function.

– Third, rewrite the preamble and wrapup, to avoid saving
and restoring registers that you did not end up using.

36

How to Write a Function

• Approach 2:

– First, write the function main body.

– Second, see what registers you are using in the function
main body.

– Third, write the preamble and wrapup, to save and restore
all registers you use.

• Disadvantage of second approach:

– As you debug and make changes, you may use more or
fewer registers.

– You have to keep modifying the preamble and wrapup.
• Value to subtract from sp.

• Memory locations used for the registers.

37

A Second Function Example

• In this program, we define and use a function
print_number.

• This function:

– Takes a single argument, that is a 32-bit number.

– Prints that number in hexadecimal.

• The program prints numbers 0xffffffd to 0x1000010
in hex.

38

.globl _start

_start:

 mov sp, #0x100000
 @initialize sp at start of
program

 @ program preamble

 sub sp, sp, #16

 str r0, [sp, #0]

 str r4, [sp, #4]

 str r5, [sp, #8]

 str r6, [sp, #12]

 @ program main body

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 mov r5, #0x0f

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xfd

 mov r6, #19

my_loop:

 cmp r6, #0

 blt my_exit

 mov r0, r5

 bl print_number

 add r5, r5, #1

 sub r6, r6, #1

 b my_loop

print_number:

 @ print_number preamble

 sub sp, sp, #24

 str lr, [sp, #0]

 str r0, [sp, #4]

 str r4, [sp, #8]

 str r5, [sp, #12]

 str r6, [sp, #16]

 str r7, [sp, #20]

 @ print_number main body

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 mov r5, #28

 mov r6, r0

print_number_loop:

 cmp r5, #0

 blt print_number_exit

 lsr r7, r6, r5

 and r7, r7, #0x0000000f

 mov r0, r7

 bl print_digit

 sub r5, r5, #4

 b print_number_loop

print_number_exit:

 @ print newline

 mov r5, #13

 str r5, [r4]

 mov r5, #10

 str r5, [r4]

 @ print_number wrap-up

 ldr lr, [sp, #0]

 ldr r0, [sp, #4]

 ldr r4, [sp, #8]

 ldr r5, [sp, #12]

 ldr r6, [sp, #16]

 ldr r7, [sp, #20]

 sub sp, sp, #24

 bx lr

my_exit:

 @ program wrap-up

 ldr r0, [sp, #0]

 ldr r4, [sp, #4]

 ldr r5, [sp, #8]

 ldr r6, [sp, #8]

 add sp, sp, #16

Things to Note

• Function print_number uses r5.

• Function print_digit also uses r5.

• Again, this is no problem because each function
leaves the values of the registers as it found them.

42

Things to Note

• What would happen if print_number did not save
and restore the value of lr in its preamble and
wrapup?

43

Things to Note

• What would happen if print_number did not save
and restore the value of lr in its preamble and
wrapup?

• Register lr gets modified when, from print_number,
we call print_digit.

• At that time, lr is set to point to what instruction?

– The instruction "sub r5, r5, #4" that is in the print_number
function, right after the call to print_digit.

– If, at the end of print_number we do not restore lr, then
instruction "bx lr" will go right back to the "sub r5, r5, #4"
instruction, and the program gets into an infinite loop.

44

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

45

• How do we write function
factorial in assembly?

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)

{

 if (N== 0) return 0;

 return N* factorial(N -1);

}

46

• How do we write function
factorial in assembly?

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)

{

 if (N== 0) return 0;

 return N* factorial(N -1);

}

47

• How do we write function
factorial in assembly?

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

Recursive Function Example: Factorial
 @ factorial preamble

 ???

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

48

 @ factorial wrap-up

 ???

Recursive Function Example: Factorial
 @ factorial preamble

 sub sp, sp, #12

 str lr, [sp, #0]

 str r4, [sp, #4]

 str r5, [sp, #8]

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

49

 @ factorial wrap-up

 ldr lr, [sp, #0]

 ldr r4, [sp, #4]

 ldr r5, [sp, #8]

 add sp, sp, #12

 bx lr

