
Guide to Assignment 3

Programming Tasks

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Task 1

• Goal: convert a data file from one endian format to the
other.

• Program flow:

– Open input and output files.

– While there is input data to be processed:
• Read the next record from the input file.

• Convert the record to the other endian format.

• Save the record to the output file.

– Close input and output files.

2

Task 1

• Goal: convert a data file from one endian format to the
other.

• Program flow:

– Open input and output files.

– While there is input data to be processed:
• Read the next record from the input file.

• Convert the record to the other endian format.

• Save the record to the output file.

– Close input and output files.

• If you use task1.c, you just have to write the function that
converts the record and saves it to the output file.

3

Converting the Record to the Other
Endian Format.

• You need to reorder the bytes of each integer in the
record.

• Pseudocode for reordering the bytes of the integer:

– Convert the integer into an array of chars.
• Use provided function integer_to_characters.

– Reverse the order of the chars in that array.

– Convert the array of chars back to an integer.
• Use provided function characters_to_integer.

• Then, you need to write the converted record on the
output file.

– Use provided function save_record.
4

Task 1 Sample Output (1)

• Run on an Intel machine (little endian):

./a.out 0 test1_little.bin test2_big.bin

read: Record: age = 56, name = john smith, department = 6

read: Record: age = 46, name = mary jones, department = 12

read: Record: age = 36, name = tim davis, department = 5

read: Record: age = 26, name = pam clark, department = 10

5

Task 1 Sample Output (2)

• Run on an Intel machine (little endian):

./a.out 0 test2_big.bin out2_little.bin

read: Record: age = 939524096, name = john smith, department = 100663296

read: Record: age = 771751936, name = mary jones, department = 201326592

read: Record: age = 603979776, name = tim davis, department = 83886080

read: Record: age = 436207616, name = pam clark, department = 167772160

• Since the machine is little endian and the input data
is big endian, the printout is nonsense.

6

The diff Command

• Suppose that you have run this command:

./a.out 0 test1_little.bin test2_big.bin

• How can you make sure that your output
(test2_big.bin) is identical to test1_big.bin?

• Answer: use the diff command on omega.

diff test1_big.bin test2_big.bin

 7

Task 2

• Goal: do parity-bit encoding/decoding of a file.

• Program flow:

– Open input and output files.

– While there is input data to be processed:
• Read the next word W1 from the input file.

• If (number == 0) convert W1 from original word to codeword W2.

• If (number == 1):

– convert W1 from codeword to original word W2.

– print out a message if an error was detected.

• Save W2 to the output file.

– Close input and output files.

 8

Task 2

• Goal: do parity-bit encoding/decoding of a file.

• Program flow:

– Open input and output files.

– While there is input data to be processed:
• Read the next word W1 from the input file.

• If (number == 0) convert W1 from original word to codeword W2.

• If (number == 1):

– convert W1 from codeword to original word W2.

– print out a message if an error was detected.

• Save W2 to the output file.

– Close input and output files.

• If you use task2.c, you just have to write the functions
that convert between original words and codewords.

9

Task 2 Files

• Task 2 works with bit patterns.

• In principle, the input and output files could be
binary.

• Problem: difficult to view and edit (for debugging).

• Solution: use text files.

– Bit 0 is represented as character '0'.

– Bit 1 is represented as character '1'.

10

Task 2 Unencoded File (in1.txt)

1010100110100011001010100000110101111000011101110110
0111110000111100101101111110111101000001101001111001
1010000011000011101110010000011000011101110110100111
0110111000011101100010000011101001101000110000111101
0001000001101100110100111101101100101111001101000001
1010011101110010000010000011110101111001111101001110
01011000011101100110100111000010101110

• This binary pattern contains the 7-bit ASCII codes for:
"The kangaroo is an animal that lives in Australia."

11

Task 2 Encoded File (coded1.txt)

1010100111010001110010100100000111010111110000111101
1101110011111100001111100100110111101101111001000001
1101001011100111010000011100001111011101010000011100
0011110111011101001011011011110000111101100001000001
1110100011010001110000111110100001000001110110001101
0010111011011100101011100111010000011101001011011101
0100000110000010111010111110011111101000111001001100
001111011000110100101100001101011100

• This binary pattern is the parity-bit encoding for:
"The kangaroo is an animal that lives in Australia."

12

Task 2 - Sample Output (1)

• Encoding:

./a.out 0 in1.txt out1.txt

Start of translation:

The kangaroo is an animal that lives in Australia.

End of translation

13

Task 2 - Sample Output (2)

• Decoding (no errors found):

./a.out 1 parity1.txt out2.txt

Start of translation:

The kangaroo is an animal that lives in Australia.

End of translation

14

Task 2 - Sample Output (3)

• Decoding (errors found):

1 parity2.txt out2.txt

error detected at word 0

error detected at word 8

error detected at word 16

error detected at word 24

error detected at word 32

error detected at word 48

Start of translation:

he kangAroo is qn animad that lmves in Australi`.

End of translation
15

Practice Question 1

• Goal: do encoding/decoding of a file using an error
correction code.

• It is specified as a text file, that the program reads.

• Example: code1.txt:
– 3 is the number of bits in each original word.

– 6 is the number of bits in each codeword.

– 000 gets mapped to 000000.

– 001 gets mapped to 001011.

– and so on...

16

3 6
000 000000
001 001011
010 010101
011 011110
100 100110
101 101101
110 110011
111 111000

Practice Question 1

• Program flow:

– Read code.

– Open input and output files.

– While there is input data to be processed:
• Read the next word W1 from the input file.

• If (number == 0) convert W1 from original word to codeword W2.

• If (number == 1):

– convert W1 from codeword to original word W2.

– print out a message if an error was corrected or detected.

• Save W2 to the output file.

– Close input and output files.

• In general_codes.c, you just have to write the functions
that convert between original words and codewords.

17

Practice Question 1: Code Struct

• This is the datatype that we use to store a code.

struct code_struct

{

 int m; // number of bits in original word

 int n; // number of bits in codeword columns.

 char ** original; // original words

 char ** codebook; // legal codewords

};

18

Practice Question 1: Encoding Logic

• Let W1 be the original word.

• Find the index K of W1 among the original words in
the code book.

• Return the codeword stored at index K among the
codewords.

19

Practice Question 1: Decoding Logic

• Let W1 be the codeword.

• Find the index K of the legal codeword L most
similar to W1, among all legal codewords.

– If L == W1, no errors.

– If L != W1:
• If unique L, error detected and corrected.

• If multiple legal codewords were as similar to W1 as L was, error
detected but not corrected.

• Return the original word stored at index K among the
original words in the code book.

20

