
ARM-7 Assembly:

Functions

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Making a Function

• Why are functions useful in assembly?

2

Making a Function

• Why are functions useful in assembly?

• For the same reasons they are useful in any
programming language:

– Modularity, making code easy to design, write, read,
debug.

– Reusability.

• What functionality from the previous programs
would be a good candidate to make a function of?

3

Making a Function

• Why are functions useful in assembly?

• For the same reasons they are useful in any
programming language:

– Modularity, making code easy to design, write, read,
debug.

– Reusability.

• What functionality from the previous programs
would be a good candidate to make a function of?

– Printing a single hexadecimal digit.

– Printing an entire 32-bit number in hexadecimal.

4

Making a Function

• Functions are easy to define and call in languages like
C and Java.

• In assembly, calling a function requires several steps.

• This reflects that the CPU can do only a limited
amount of work in a single step.

• Note that, to correctly do a function call, both the
caller and the called function must do the right steps.

5

Caller Steps

• Step 1: Put arguments in the right place.

• Specific machines use specific conventions.

• Figure 5-4, on textbook page 355, specifies ARM-7 conventions:
– "R0-R3 hold parameters to the procedure being called".

• So:
– Argument 1 (if any) goes to r0.

– Argument 2 (if any) goes to r1.

– Argument 3 (if any) goes to r2.

– Argument 4 (if any) goes to r3.

• If there are more arguments, they have to be placed in
memory. We will worry about this case only if we encounter it.

6

Caller Steps

• Step 2: branch to the first instruction of the function.
– Here, we typically use the bl instruction, not the b instruction.

– The bl instruction, before branching, saves to register lr (the link
register, aka r14) the return address.

– The return address is the address of the instruction that should be
executed when the function is done.

• Step 3: after the function has returned, recover the return
value, and use it.
– We will follow the convention that the return value goes to r0.

– If there is a second return value, it goes to r1.

7

Called Function Steps

• Step 1: Do the preamble:
– Allocate memory on the stack (more details in a bit).

– Save to memory the return address. Why?

– Save to memory all registers (except possibly for r0) that the function
modifies. Why?

• Step 2: Do the main body of the function.
– Assume arguments are in r0, r1, r2, r3.

– This is where the actual work is done.

• Step 3: Do the wrap-up:
– Store the return value (if any) on r0, and second return value (if any) on r1.

– Retrieve from memory the return address. Why?

– Retrieve from memory, and restore to registers, the original values of all
registers that the function modified (except possibly for r0). Why?

– Deallocate memory on the stack.

– Branch to the return address. 8

Placing Register Values in Memory

• Why do we need to save register values in memory at the
beginning of the function?

• Why do we need to restore the original register values from
memory at the end of the function?

9

Placing Register Values in Memory

• Why do we need to save register values in memory at the
beginning of the function?

• Why do we need to restore the original register values from
memory at the end of the function?

• Suppose function A gets calls from functions B, C, D, E, ...

• Function A has no idea what function it got called from.

• Therefore, function A has no idea what registers the caller
function was using.

• By saving register values at the beginning, and restoring them
at the end, function A makes sure that, when it returns, the
caller function finds all registers unchanged.

• This makes life more simple for the caller function, it doesn't
need to worry about whether any registers got changed.

10

Placing Register Values in Memory

• In summary: the called function must:
– Save register values at the beginning.

– Restore register values at the end.

• In theory, we could have used a different convention (but we
will not use it):
– The called function does not worry about saving and restoring register

values.

– The caller:

• Saves whatever register values it needs before making the function
call.

• Restores those register values after the function call has returned.

• Both conventions are okay, we just need to choose one and
stick with it.

11

Placing Register Values in Memory

• What about r0?

• Why don't we restore the original value of r0 at the
end of the function?

12

Placing Register Values in Memory

• What about r0?

• Why don't we restore the original value of r0 at the
end of the function?

• Because r0 is supposed to hold the return value.

• This is the one register that the caller expects to find
changed at the end of the function.

• We will follow the convention that, if the function
does not return anything (returns void) then we will
be restoring the original value of r0 as well.

• If the function returns a second value on r1, then
obviously r1 should also not be restored.

13

Placing Register Values in Memory

• What about lr (the link register)?

• Why do we need to save it to memory at the beginning, and
restore it from memory at the end of the function?

14

Placing Register Values in Memory

• What about lr (the link register)?

• Why do we need to save it to memory at the beginning, and
restore it from memory at the end of the function?

• Every time our function calls other functions, lr changes.

• By restoring it at the end of the function, we make sure we
get the right return address.

• In principle, if our function does not make any other function
calls, we do not really need to save lr to memory.

• In practice, personally I will follow the convention to always
save lr, so as to avoid possible bugs.

• You will probably get a bug at some point, where:
– You forget to restore lr at the end of the function.

– Your function branches to a weird place at the end, instead of
returning to the caller.

15

Saving to Memory

• When does a function need to save information to
memory?

– At the beginning, to save the original values of the
registers.

– At any later time, if there are not enough registers to store
useful intermediate values.

• A very important question:

– How does the function know what memory to use?

– How can the function avoid messing up memory already
used by other functions?

• Answer: the stack, and the stack pointer.

16

The Stack Pointer

• The stack pointer points to the beginning of the memory space used by a
specific function.

• When we write an assembly function, at the end, we look at all the
memory that we needed.

• Suppose that we needed X bytes.

• Then, at the beginning (first line) of the function, we put this line:

sub sp, sp, #X

• At the end of the function (right before returning), we put this line:

add sp, sp, #X

• This way, we mark that the function uses memory addresses from [sp] to
[sp+X-1].

• When the function is done, it restores the original value of sp.

• This way, when execution goes back to the caller, sp has the appropriate
value for the caller.

17

Memory Organization

18

• In the simulated ARM machine we are using, memory
addresses from 0 to0xffff are read-only memory.

– In decimal, these are addresses from 0 to 65535.

• Instructions will be saved at addresses 0x10000 and up.

– In decimal, this is address 65536.

• Typically instructions will take no more than 20K.

– Therefore, instructions go up to address 86000.

• At the beginning of the program (NOT the beginning of
each function, just the beginning of the entire program)
we will hardcode the stack pointer to hexadecimal
address 0x100000.

• In decimal, this address is about 1.05 million.

• This leaves about (1.05 million - 86 thousand) bytes, i.e.,
roughly about 920 thousand bytes, for use by functions.

• By the term "stack" we simply mean these bytes, that are
available for use by functions.

Memory

1048576

86000

65536

65535

0

ROM

code

stack

Stack Pointer Example

19

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

Stack

Top = 1048576

86000

start of program: sp 

Stack Pointer Example

20

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

• Then, the initial function (called _start in
our examples) immediately subtracts
from the sp the space that it needs for its
own use. Suppose it needs X1 bytes.

sub sp, sp, #X1

Stack

Top = 1048576

Top – X1

86000

start of program: sp 

_start function: sp 

memory for _start

Stack Pointer Example

21

• At the beginning of the program, we do:

mov sp, #0x100000

• This points the stack pointer to the top of
the stack.

• Then, the initial function (called _start in
our examples) immediately subtracts
from the sp the space that it needs for its
own use. Suppose it needs X1 bytes.

sub sp, sp, #X1

• Then, suppose _start calls function foo.
Function foo will set the sp to an even
lower value. Suppose foo needs X2 bytes.

sub sp, sp, #X2

Stack

Top = 1048576

Top – X1

Top – X1 – X2

86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

22

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Top - X1 - X2 -X3

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

qqq: sp 

memory for qqq

Stack Pointer Example

23

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

• Then, function qqq is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X3

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

24

• Then, suppose function foo calls function
qqq. Function qqq will set the sp to an
even lower value. Suppose qqq needs X3
bytes.

sub sp, sp, #X3

• Then, function qqq is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X3

• Then, function foo calls function rrr.
Suppose function rrr needs X4 bytes:

sub sp, sp, #X4

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Top-X1-X2-X4

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

rrr: sp 
memory for rrr

Stack Pointer Example

25

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

Stack

Top = 1048576

Top – X1

Top – X1 – X2

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

foo: sp 

memory for foo

Stack Pointer Example

26

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

• Function foo is now also getting ready to
return, and restores the sp to the value it
was said to by the caller function
(function _start).

add sp, sp, #X2

Stack

Top = 1048576

Top – X1

Bottom = 86000

start of program: sp 

_start function: sp 

memory for _start

Stack Pointer Example

27

• Then, function rrr is getting ready to
return, and restores the sp to the value it
was set to by the caller function
(function foo).

add sp, sp, #X4

• Function foo is now also getting ready to
return, and restores the sp to the value it
was said to by the caller function
(function _start).

add sp, sp, #X2

• Finally, function _start is wrapping up,
and restores the sp to point to the top of
the stack:

add sp, sp, #X1.

Stack

Top = 1048576

Bottom = 86000

start of program: sp 

Summary of Caller and Callee Steps

• Caller steps:
– Step 1: Put arguments in the registers r0, r1, r2, r3.

– Step 2: Branch to the function, using the bl instruction.

– Step 3: After the function has returned, recover the return value (if any),
and use it.

• Callee (called function) steps:
– Step 1 (preamble): Allocate memory on the stack, and save register rl, and

other registers that the function modifies, to the stack.

– Step 2: Do the main body of the function.

– Step 3 (wrap-up):

• Store the return value (if any) on r0, second return value (if any) on r1.

• Restore, from the stack, the original values of all registers that the
function modified, as well as the value of register lr.

• Deallocate memory on the stack (increment sp).

• Branch to the return address using instruction bx.

28

A First Function Example

• In this program, we define and use a function
print_digit.

• This function:

– Takes a single argument.

– Assumes that the argument is a number between 0 and
15.

– Prints that number in hexadecimal.

• The program prints numbers 0 to 15 in hex.

29

.globl _start

_start:

 mov sp, #0x100000
 @initialize sp at start

@ program main body

 mov r5, #0x0

my_loop:

 cmp r5, #0xf

 bgt program_exit

 mov r0, r5

 bl print_digit

 add r5, r5, #1

 b my_loop

program_exit:

 ldr r4,=0x101f1000

 mov r1, #’\r’

 str r1, [r4]

 mov r1, #’\n’

 str r1, [r4]

 mov r1, #'E'

 str r1, [r4]

 mov r1, #'N'

 str r1, [r4]

 mov r1, #'D'

 str r1, [r4]

the_end:

 b the_end

print_digit:

 @ print_digit preamble

 sub sp, sp, #16

 str lr, [sp, #0]

 str r0, [sp, #4]

 str r4, [sp, #8]

 str r5, [sp, #12]

 @ print_digit main body

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 cmp r0, #10

 addlt r5, r0, #48

 addge r5, r0, #55

 str r5, [r4]

 @ print_digit wrap-up

 ldr lr, [sp, #0]

 ldr r0, [sp, #4]

 ldr r4, [sp, #8]

 ldr r5, [sp, #12]

 add sp, sp, #16

 bx lr

Things to Note

• Structure of the source code file:
– Part 1: definition of main.

– Part 2: definition of all functions (the order doesn't matter).

32

Things to Note

• The main program uses r5 as the loop variable.

– The values of r5 range from 0 to 15.

– For each of those values, print_digit is called.

• Function print_digit also uses r5.

• Why does that not mess up the value of r5 in the
main program?

33

Things to Note

• The main program uses r5 as the loop variable.

– The values of r5 range from 0 to 15.

– For each of those values, print_digit is called.

• Function print_digit also uses r5.

• Why does that not mess up the value of r5 in the
main program?

– Because print_digit leaves the values of all registers as it
found them.

– Every function should do that.

– It is the job of the function preamble and the function
wrap-up to do that.

34

Things to Note

• One of the registers we save and restore is lr.

• Strictly speaking, it is not necessary.

– Function print_digit does not modify lr at any point.

• If we wanted to make performance as fast as
possible, we would not save and restore lr.

• In practice, it is a good habit, so as to avoid bugs.

• It is recommended that you guys always save and
restore lr in any function you write.

35

How to Write a Function

• You can follow two approaches.

• Approach 1:

– First, write a preamble and wrapup that save and restore
all registers you may possibly need.

– Second, write the main body, test, and debug the function.

– Third, rewrite the preamble and wrapup, to avoid saving
and restoring registers that you did not end up using.

36

How to Write a Function

• Approach 2:

– First, write the function main body.

– Second, see what registers you are using in the function
main body.

– Third, write the preamble and wrapup, to save and restore
all registers you use.

• Disadvantage of second approach:

– As you debug and make changes, you may use more or
fewer registers.

– You have to keep modifying the preamble and wrapup.
• Value to subtract from sp.

• Memory locations used for the registers.

37

A Second Function Example

• In this program, we define and use a function
print_number.

• This function:

– Takes a single argument, that is a 32-bit number.

– Prints that number in hexadecimal.

• The program prints numbers 0xffffffd to 0x1000010
in hex.

38

.globl _start

_start:

 mov sp, #0x100000
 @initialize sp at start

 @ program main body

 ldr r4,=0x101f1000

 mov r5, #0x0f

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xfd

 mov r6, #19

my_loop:

 cmp r6, #0

 blt my_exit

 mov r0, r5

 bl print_number

 add r5, r5, #1

 sub r6, r6, #1

 b my_loop

my_exit:

 @ program wrap-up

 b my_exit

print_number:

 @ print_number preamble

 sub sp, sp, #24

 str lr, [sp, #0]

 str r0, [sp, #4]

 str r4, [sp, #8]

 str r5, [sp, #12]

 str r6, [sp, #16]

 str r7, [sp, #20]

 @ print_number main body

 ldr r4,=0x101f1000

 @ ASCII codes stored

 @ at [r4] get printed

 mov r5, #28

 mov r6, r0

print_number_loop:

 cmp r5, #0

 blt print_number_exit

 lsr r7, r6, r5

 and r7, r7, #0x0000000f

 mov r0, r7

 bl print_digit

 sub r5, r5, #4

 b print_number_loop

print_number_exit:

 @ print newline

 mov r5, #13

 str r5, [r4]

 mov r5, #10

 str r5, [r4]

 @ print_number wrap-up

 ldr lr, [sp, #0]

 ldr r0, [sp, #4]

 ldr r4, [sp, #8]

 ldr r5, [sp, #12]

 ldr r6, [sp, #16]

 ldr r7, [sp, #20]

 add sp, sp, #24

 bx lr

Things to Note

• Function print_number uses r5.

• Function print_digit also uses r5.

• Again, this is no problem because each function
leaves the values of the registers as it found them.

42

Things to Note

• What would happen if print_number did not save
and restore the value of lr in its preamble and
wrapup?

43

Things to Note

• What would happen if print_number did not save
and restore the value of lr in its preamble and
wrapup?

• Register lr gets modified when, from print_number,
we call print_digit.

• At that time, lr is set to point to what instruction?

– The instruction "sub r5, r5, #4" that is in the print_number
function, right after the call to print_digit.

– If, at the end of print_number we do not restore lr, then
instruction "bx lr" will go right back to the "sub r5, r5, #4"
instruction, and the program gets into an infinite loop.

44

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

45

• How do we write function
factorial in assembly?

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)

{

 if (N== 0) return 0;

 return N* factorial(N -1);

}

46

• How do we write function
factorial in assembly?

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)

{

 if (N== 0) return 0;

 return N* factorial(N -1);

}

47

• How do we write function
factorial in assembly?

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

Recursive Function Example: Factorial
 @ factorial preamble

 ???

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

48

 @ factorial wrap-up

 ???

Recursive Function Example: Factorial
 @ factorial preamble

 sub sp, sp, #12

 str lr, [sp, #0]

 str r4, [sp, #4]

 str r5, [sp, #8]

 @ factorial main body

 mov r4, r0

 cmp r4, #0

 moveq r0, #1

 beq factorial_exit

 sub r0, r4, #1

 bl factorial

 mov r5, r0

 mul r0, r5, r4

49

 @ factorial wrap-up

 ldr lr, [sp, #0]

 ldr r4, [sp, #4]

 ldr r5, [sp, #8]

 add sp, sp, #12

 bx lr

