
Discussion of Assignment 9

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Returning Versus Printing

• Regarding the programming tasks in assignment 9, many
students have asked: "do we print/return decimal, ASCII, or
hexadecimal numbers"?

• If you have this question, it means that you are making a
fundamental mistake: you are confusing "returning a value"
with "printing a value".

• There are multiple ways to answer/clarify this question.

• The simplest one, is to answer with another question: what
do the given C functions do?
– You are asked to implement specific C functions, so you have

questions about what your code should be doing, just try to do exactly
what the C functions do.

2

Returning Versus Printing

• Regarding the programming tasks in assignment 9, many
students have asked: "do we print/return decimal, ASCII, or
hexadecimal numbers"?

• What do the given C functions do?
– The given C functions do not do any printing.

– Thus, your functions should not do any printing.

• It is understandable (even recommended) that you may put
some code to print stuff for debugging purposes.
– I would actually recommend that you copy and paste the print_digit

and print_number functions to each of your programs, so that you can
call print_number for debugging.

• However, once your code is done, you should clean it up and
remove, before you submit, any code that does printing.

3

Returning Versus Printing

• In general, you are asked to implement functions that
compute and return something.

• Once you have computed this something, you should store it
on register r0.
– This is the convention we follow for "returning a value".

• ASCII codes are only used for printing.

• When you return a number, the ASCII code of that number is
irrelevant.

• It is worth repeating, returning a value has nothing to do with
printing a value.

4

Reading Assembly Code

• Assembly code is painful to read and understand.

• However, you are expected to read any assembly
code that you are given.

• How to read assembly code?

– Start at the beginning.

– Start mentally executing instructions, one by one.

– On a piece of paper, write the values of registers and
memory addresses that you're using.

– For each instruction that you "execute" in your mind,
update those values on your piece of paper.

5

Reading Assembly Code

• If you ask me a question of the sort "I do not understand how
this piece of code works", I will always ask you to show me
how you manually execute this code line by line.

• Not understanding the code means that there is one specific
line such that:
– You do not understand that line.

– You understand everything before that.

• If you ask me questions where you identify that line, I will be
happy to tell you what that line does.

• If you ask me questions of the sort "what does this code do?"
I will simply ask you to show me how you manually execute
the code.
– Most of the times, by the time you are done with this exercise, you

have answered your own questions.

6

Existing Assembly Examples

• Look at assembly examples that are available on the
slides and the course website.

• A lot of questions can be answered by just looking at
those examples.

• For example, consider the factorial function.

– How does it handle "returning" a value?

– How does it handle recursive calls?

• Identifying available code that does things similar to
what you need to do can save you a lot of time.

7

The GDB Debugger

• Using the debugger is also a great tool for:

• Understanding code.

• Debugging your own code.

• There are instructions on the course website on how
to use the debugger.

8

