Discussion of Assignment 9

CSE 2312
Computer Organization and Assembly Language Programming
Vassilis Athitsos
University of Texas at Arlington



Returning Versus Printing

Regarding the programming tasks in assignment 9, many
students have asked: "do we print/return decimal, ASCII, or
hexadecimal numbers"?

If you have this question, it means that you are making a
fundamental mistake: you are confusing "returning a value"
with "printing a value".

There are multiple ways to answer/clarify this question.

The simplest one, is to answer with another question: what
do the given C functions do?

— You are asked to implement specific C functions, so you have
guestions about what your code should be doing, just try to do exactly
what the C functions do.




Returning Versus Printing

Regarding the programming tasks in assignment 9, many
students have asked: "do we print/return decimal, ASCII, or
hexadecimal numbers"?

What do the given C functions do?
— The given C functions do not do any printing.
— Thus, your functions should not do any printing.

It is understandable (even recommended) that you may put
some code to print stuff for debugging purposes.

— | would actually recommend that you copy and paste the print_digit
and print_number functions to each of your programs, so that you can
call print_number for debugging.

However, once your code is done, you should clean it up and

remove, before you submit, any code that does printing.



Returning Versus Printing

In general, you are asked to implement functions that
compute and return something.

Once you have computed this something, you should store it
on register r0.

— This is the convention we follow for "returning a value".
ASCIl codes are only used for printing.

When you return a number, the ASCII code of that number is
irrelevant.

It is worth repeating, returning a value has nothing to do with
printing a value.



Reading Assembly Code

* Assembly code is painful to read and understand.

 However, you are expected to read any assembly
code that you are given.

 How to read assembly code?
— Start at the beginning.
— Start mentally executing instructions, one by one.

— On a piece of paper, write the values of registers and
memory addresses that you're using.

— For each instruction that you "execute" in your mind,
update those values on your piece of paper.



Reading Assembly Code

If you ask me a question of the sort "I do not understand how
this piece of code works", | will always ask you to show me
how you manually execute this code line by line.

Not understanding the code means that there is one specific
line such that:

— You do not understand that line.

— You understand everything before that.

If you ask me questions where you identify that line, | will be
happy to tell you what that line does.

If you ask me questions of the sort "what does this code do?"
| will simply ask you to show me how you manually execute
the code.

— Most of the times, by the time you are done with this exercise, you
have answered your own questions.



Existing Assembly Examples

Look at assembly examples that are available on the
slides and the course website.

A lot of questions can be answered by just looking at
those examples.

For example, consider the factorial function.
— How does it handle "returning" a value?

— How does it handle recursive calls?

ldentifying available code that does things similar to
what you need to do can save you a lot of time.



The GDB Debugger

Using the debugger is also a great tool for:
Understanding code.
Debugging your own code.

There are instructions on the course website on how
to use the debugger.



