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Pseudo-Instructions

* A pseudo-instruction is something that:

— When you read assembly code, it looks like a regular
instruction.

— When it is translated to binary code, it is translated to
multiple actual CPU instructions.

e Pseudo-instructions are handy.

— We can write code that is shorter, easier to read, easier to
test.

 However, if we care about performance:

— We must always be aware of the difference between an
actual instruction and a pseudo-instruction.

— We should know how the pseudo-instruction is translated.



The LDR Pseudo-instruction

|dr rd, [rn]:
|dr rd, [rn, #constant]

— Idr is a regular instruction, that we have been using.

However, |dr can also be used as a pseudo-
instruction:
|dr rd, =constant.

— In this usage, constant is a 32-bit number, written in
decimal or hexadecimal.

Example: |dr r5,=2014.
— Sets r5 =2014.



The LDR Pseudo-instruction

Example: |dr r5,=2014.
— Sets r5 = 2014.

Why do we need this pseudo-instruction?
Why can't we just write: mov r5, #2014

mov r5, constant is a real instruction, that gets
translated to a single CPU instruction.

For that to be possible, constant must obey certain
rules (must be 8 bits, possibly shifted to the left).



The LDR Pseudo-instruction

 The |ldr pseudo-instruction allows us to replace bulky code like:

mov r5, #O0x7f

Isl r5, r5, #8

add r5, r5, #Oxff
Isl r5, r5, #8

add r5, r5, #Oxff
Isl r5, r5, #8

add r5, r5, #OxfO

e with a single line:

Idr r5, =7ffffffO



The PUSH/POP Pseudo-instructions

* Atypical function preamble looks like this:

sub sp, sp, #20
strlr, [sp, #0]
strrO, [sp, #4]
strrd, [sp, #8]
strr5, [sp, #12]
strr6, [sp, #16]

* This can all be replaced with this pseudo-instruction:

push {rO, r4, r5, r6, Ir}



The PUSH/POP Pseudo-instructions

push {rO, r4, r5, r6, Ir}

* The push pseudo-instruction is translated as follows:

— Decrement the stack pointer as much as is needed to make
room for the list of registers that is provided.

— Save the provided list of registers into the stack.



The PUSH/POP Pseudo-instructions

e Similarly, a typical function wrapup looks like this:

|dr Ir, [sp, #O]
|dr rO, [sp, #4]
|dr r4, [sp, #8]
|dr r5, [sp, #12]
|dr r6, [sp, #16]
add sp, sp, #20
bx Ir

* This can all be replaced with this pseudo-instruction:

pop {rO, r4, r5, r6, Ir}
bx Ir



The PUSH/POP Pseudo-instructions

* This line will produce a compiler warning:
push {lIr, rO, r4, r5, r6}
* The warning says:
test1.s:20: Warning: register range not in ascending order

 The compiler wants you to order the list of registers in
ascending order.

* Register Ir is really register r14, so should come after the
other registers in the list:

push {rO, r4, r5, r6, Ir}



Assembly Directives

* Adirective is a line that does not specify an
instruction, but provides other pieces of information.

* For the time being, we will cover these directives:
— equ
— ascii
— asciz
— byte
— word
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The EQU directive

.equ I0_ADDRESS, 0x101f1000
... (possible other code in between)
|dr r4, =IO_ADDRESS

 The equ directive allows us to give names to constants.
* This helps make the code more readable.
* It also helps with editing the code faster.

— To change the value of the constant, we just need to change the .equ
line that assigns a name to the constant.

— Otherwise, we need to change the value of the constant in every
single line that uses the constant.
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The ASCIlI and BYTE Directive

string_hello:
.ascii "hello world"
.byte 0x00

 The above lines of code define a memory location
that can be referred by the rest of the code as
string_hello.

* This memory location has the following contents:

— The ASCII codes for the characters in "hello world",
followed by:

— A byte with content 0x00.
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Example of Usage

ldr r4, =1O_ADDRESS
Idr r5, =string_hello

print_str:
|drb r6,[r5]
cmp r6,#0x00
beq print_done
strr6,[rd]
add r5,r5,#1
b print_str

print_done:

@ r0 :=0x 101f 1000

@ "\0' = 0x00: null character?
@ if yes, quit

@ otherwise, write character
@ go to next character

@ repeat
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The ASCIZ Directive

* Strings typically have a '\0O' character (ASCIl code 0) at their
end.

* Instead of having to specify manually the null character at the
end of the string, we can use the .asciz directive.

* For example, instead of writing

string_hello:

.ascii "hello world"
.byte 0x00

* We can just write:

string_hello:

.asciz "hello world"
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The WORD Directive

 The byte directive specifies a byte of memory.
 The word directive specifies a word of memory.
 Aword is 4 bytes in the ARM-7 architecture.

* For example, consider this line of code in C:

int * arrayl = {2014, 1914, 1814, 1714};
* In assembly, you can write:

arrayl:
.word 2014
.word 1914
.word 1814
.word 1714
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Negative Numbers

* |In most modern architectures, negative numbers are
represented using what is called "two's
complement".

e Suppose that your registers hold N bits.

* The two's complement representation of number -X
is: 2N - X.
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Negative Numbers: Examples

 The two's complement representation of number -X
is: 2N - X.

* In ARM-7, N =32.

e How is number -1 represented:
— In binary?
— In hexadecimal?
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Negative Numbers: Example

The two's complement representation of number -X
is: 2N - X.

In ARM-7, N = 32.

How is number -1 represented:

In binary:

— 232-1 =1 0000 0000 0000 0000 0000 0000 0000 0000 - 1
=111111111171117111 111111111111 1111

In hexadecimal:
— 232.1 =1 00000000-1
= Ox ffff ffff

If you call print_number with -1, you see Oxffffffff.
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Input

We have already seen how to print:

— What we have to do is store each ASCIl code that we want to print into a
specific memory address: 0x101f1000

To get text input from the user, we do something similar:
— We load an ASCII code from the same memory address: 0x101f1000

However, input is a little bit more complicated than output.
How does the program know that we have something to print?

— Easy: when the program hits an instruction that stores something to the
designated address.

How does the program know that the user has entered text?
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Input

We have already seen how to print:

— What we have to do is store each ASCIl code that we want to print into a
specific memory address: 0x101f1000

To get text input from the user, we do something similar:
— We load an ASCII code from the same memory address: 0x101f1000

However, input is a little bit more complicated than output.

How does the program know that we have something to print?

— Easy: when the program hits an instruction that stores something to the
designated address.

How does the program know that the user has entered text?

— Not so easy: the program hits an instruction that loads something from
the designated address.

— However, is there something at that address? Has the user typed
something yet?
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Input

To read a character of text, we will follow a simple approach
(more sophisticated/efficient approaches are available):

— Wait until the user has entered a character.

— When the user has entered the character, read the character.

How can we know that the user has entered a character?

There is a specific memory address, that holds a specific bit,
that:

— Is automatically set to 0 when the user enters some text.
— Is automatically set to 1 when we read that text.

This specific memory address is: 1011018

The bit at position 4 in that address is set to 0 when the user
has entered data, and set to 1 when we read the data.
— (Bit O is the least significant bit).
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