More on Assembly

CSE 2312
Computer Organization and Assembly Language Programming
Vassilis Athitsos
University of Texas at Arlington



Pseudo-Instructions

* A pseudo-instruction is something that:

— When you read assembly code, it looks like a regular
instruction.

— When it is translated to binary code, it is translated to
multiple actual CPU instructions.

e Pseudo-instructions are handy.

— We can write code that is shorter, easier to read, easier to
test.

 However, if we care about performance:

— We must always be aware of the difference between an
actual instruction and a pseudo-instruction.

— We should know how the pseudo-instruction is translated.



The LDR Pseudo-instruction

|dr rd, [rn]:
|dr rd, [rn, #constant]

— Idr is a regular instruction, that we have been using.

However, |dr can also be used as a pseudo-
instruction:
|dr rd, =constant.

— In this usage, constant is a 32-bit number, written in
decimal or hexadecimal.

Example: |dr r5,=2014.
— Sets r5 =2014.



The LDR Pseudo-instruction

Example: |dr r5,=2014.
— Sets r5 = 2014.

Why do we need this pseudo-instruction?
Why can't we just write: mov r5, #2014

mov r5, constant is a real instruction, that gets
translated to a single CPU instruction.

For that to be possible, constant must obey certain
rules (must be 8 bits, possibly shifted to the left).



The LDR Pseudo-instruction

 The |ldr pseudo-instruction allows us to replace bulky code like:

mov r5, #O0x7f

Isl r5, r5, #8

add r5, r5, #Oxff
Isl r5, r5, #8

add r5, r5, #Oxff
Isl r5, r5, #8

add r5, r5, #OxfO

e with a single line:

Idr r5, =7ffffffO



The PUSH/POP Pseudo-instructions

* Atypical function preamble looks like this:

sub sp, sp, #20
strlr, [sp, #0]
strrO, [sp, #4]
strrd, [sp, #8]
strr5, [sp, #12]
strr6, [sp, #16]

* This can all be replaced with this pseudo-instruction:

push {rO, r4, r5, r6, Ir}



The PUSH/POP Pseudo-instructions

push {rO, r4, r5, r6, Ir}

* The push pseudo-instruction is translated as follows:

— Decrement the stack pointer as much as is needed to make
room for the list of registers that is provided.

— Save the provided list of registers into the stack.



The PUSH/POP Pseudo-instructions

e Similarly, a typical function wrapup looks like this:

|dr Ir, [sp, #O]
|dr rO, [sp, #4]
|dr r4, [sp, #8]
|dr r5, [sp, #12]
|dr r6, [sp, #16]
add sp, sp, #20
bx Ir

* This can all be replaced with this pseudo-instruction:

pop {rO, r4, r5, r6, Ir}
bx Ir



The PUSH/POP Pseudo-instructions

* This line will produce a compiler warning:
push {lIr, rO, r4, r5, r6}
* The warning says:
test1.s:20: Warning: register range not in ascending order

 The compiler wants you to order the list of registers in
ascending order.

* Register Ir is really register r14, so should come after the
other registers in the list:

push {rO, r4, r5, r6, Ir}



Assembly Directives

* Adirective is a line that does not specify an
instruction, but provides other pieces of information.

* For the time being, we will cover these directives:
— equ
— ascii
— asciz
— byte
— word

10



The EQU directive

.equ I0_ADDRESS, 0x101f1000
... (possible other code in between)
|dr r4, =IO_ADDRESS

 The equ directive allows us to give names to constants.
* This helps make the code more readable.
* It also helps with editing the code faster.

— To change the value of the constant, we just need to change the .equ
line that assigns a name to the constant.

— Otherwise, we need to change the value of the constant in every
single line that uses the constant.

11



The ASCIlI and BYTE Directive

string_hello:
.ascii "hello world"
.byte 0x00

 The above lines of code define a memory location
that can be referred by the rest of the code as
string_hello.

* This memory location has the following contents:

— The ASCII codes for the characters in "hello world",
followed by:

— A byte with content 0x00.

12



Example of Usage

ldr r4, =1O_ADDRESS
Idr r5, =string_hello

print_str:
|drb r6,[r5]
cmp r6,#0x00
beq print_done
strr6,[rd]
add r5,r5,#1
b print_str

print_done:

@ r0 :=0x 101f 1000

@ "\0' = 0x00: null character?
@ if yes, quit

@ otherwise, write character
@ go to next character

@ repeat

13



The ASCIZ Directive

* Strings typically have a '\0O' character (ASCIl code 0) at their
end.

* Instead of having to specify manually the null character at the
end of the string, we can use the .asciz directive.

* For example, instead of writing

string_hello:

.ascii "hello world"
.byte 0x00

* We can just write:

string_hello:

.asciz "hello world"

14



The WORD Directive

 The byte directive specifies a byte of memory.
 The word directive specifies a word of memory.
 Aword is 4 bytes in the ARM-7 architecture.

* For example, consider this line of code in C:

int * arrayl = {2014, 1914, 1814, 1714};
* In assembly, you can write:

arrayl:
.word 2014
.word 1914
.word 1814
.word 1714

15



Negative Numbers

* |In most modern architectures, negative numbers are
represented using what is called "two's
complement".

e Suppose that your registers hold N bits.

* The two's complement representation of number -X
is: 2N - X.

16



Negative Numbers: Examples

 The two's complement representation of number -X
is: 2N - X.

* In ARM-7, N =32.

e How is number -1 represented:
— In binary?
— In hexadecimal?

17



Negative Numbers: Example

The two's complement representation of number -X
is: 2N - X.

In ARM-7, N = 32.

How is number -1 represented:

In binary:

— 232-1 =1 0000 0000 0000 0000 0000 0000 0000 0000 - 1
=111111111171117111 111111111111 1111

In hexadecimal:
— 232.1 =1 00000000-1
= Ox ffff ffff

If you call print_number with -1, you see Oxffffffff.

18



Input

We have already seen how to print:

— What we have to do is store each ASCIl code that we want to print into a
specific memory address: 0x101f1000

To get text input from the user, we do something similar:
— We load an ASCII code from the same memory address: 0x101f1000

However, input is a little bit more complicated than output.
How does the program know that we have something to print?

— Easy: when the program hits an instruction that stores something to the
designated address.

How does the program know that the user has entered text?

19



Input

We have already seen how to print:

— What we have to do is store each ASCIl code that we want to print into a
specific memory address: 0x101f1000

To get text input from the user, we do something similar:
— We load an ASCII code from the same memory address: 0x101f1000

However, input is a little bit more complicated than output.

How does the program know that we have something to print?

— Easy: when the program hits an instruction that stores something to the
designated address.

How does the program know that the user has entered text?

— Not so easy: the program hits an instruction that loads something from
the designated address.

— However, is there something at that address? Has the user typed
something yet?

20



Input

To read a character of text, we will follow a simple approach
(more sophisticated/efficient approaches are available):

— Wait until the user has entered a character.

— When the user has entered the character, read the character.

How can we know that the user has entered a character?

There is a specific memory address, that holds a specific bit,
that:

— Is automatically set to 0 when the user enters some text.
— Is automatically set to 1 when we read that text.

This specific memory address is: 1011018

The bit at position 4 in that address is set to 0 when the user
has entered data, and set to 1 when we read the data.
— (Bit O is the least significant bit).
21



