
More on Assembly

1

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Pseudo-Instructions

• A pseudo-instruction is something that:

– When you read assembly code, it looks like a regular
instruction.

– When it is translated to binary code, it is translated to
multiple actual CPU instructions.

• Pseudo-instructions are handy.

– We can write code that is shorter, easier to read, easier to
test.

• However, if we care about performance:

– We must always be aware of the difference between an
actual instruction and a pseudo-instruction.

– We should know how the pseudo-instruction is translated.
2

The LDR Pseudo-instruction

• ldr rd, [rn]:

• ldr rd, [rn, #constant]

– ldr is a regular instruction, that we have been using.

• However, ldr can also be used as a pseudo-
instruction:

• ldr rd, =constant.

– In this usage, constant is a 32-bit number, written in
decimal or hexadecimal.

• Example: ldr r5, =2014.

– Sets r5 = 2014.

3

The LDR Pseudo-instruction

• Example: ldr r5, =2014.

– Sets r5 = 2014.

• Why do we need this pseudo-instruction?

• Why can't we just write: mov r5, #2014

• mov r5, constant is a real instruction, that gets
translated to a single CPU instruction.

• For that to be possible, constant must obey certain
rules (must be 8 bits, possibly shifted to the left).

 4

The LDR Pseudo-instruction

• The ldr pseudo-instruction allows us to replace bulky code like:

 mov r5, #0x7f

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xff

 lsl r5, r5, #8

 add r5, r5, #0xf0

• with a single line:

 ldr r5, =7ffffff0

5

The PUSH/POP Pseudo-instructions

• A typical function preamble looks like this:

 sub sp, sp, #20

 str lr, [sp, #0]

 str r0, [sp, #4]

 str r4, [sp, #8]

 str r5, [sp, #12]

 str r6, [sp, #16]

• This can all be replaced with this pseudo-instruction:

 push {r0, r4, r5, r6, lr}

 6

The PUSH/POP Pseudo-instructions

 push {r0, r4, r5, r6, lr}

• The push pseudo-instruction is translated as follows:

– Decrement the stack pointer as much as is needed to make
room for the list of registers that is provided.

– Save the provided list of registers into the stack.

7

The PUSH/POP Pseudo-instructions

• Similarly, a typical function wrapup looks like this:

 ldr lr, [sp, #0]

 ldr r0, [sp, #4]

 ldr r4, [sp, #8]

 ldr r5, [sp, #12]

 ldr r6, [sp, #16]

 add sp, sp, #20

 bx lr

• This can all be replaced with this pseudo-instruction:

 pop {r0, r4, r5, r6, lr}

 bx lr 8

The PUSH/POP Pseudo-instructions

• This line will produce a compiler warning:

 push {lr, r0, r4, r5, r6}

• The warning says:

test1.s:20: Warning: register range not in ascending order

• The compiler wants you to order the list of registers in
ascending order.

• Register lr is really register r14, so should come after the
other registers in the list:

 push {r0, r4, r5, r6, lr}

9

Assembly Directives

• A directive is a line that does not specify an
instruction, but provides other pieces of information.

• For the time being, we will cover these directives:

– equ

– ascii

– asciz

– byte

– word

10

The EQU directive

 .equ IO_ADDRESS, 0x101f1000

 ... (possible other code in between)

 ldr r4, =IO_ADDRESS

• The equ directive allows us to give names to constants.

• This helps make the code more readable.

• It also helps with editing the code faster.
– To change the value of the constant, we just need to change the .equ

line that assigns a name to the constant.

– Otherwise, we need to change the value of the constant in every
single line that uses the constant.

11

The ASCII and BYTE Directive

string_hello:

 .ascii "hello world"

 .byte 0x00

• The above lines of code define a memory location
that can be referred by the rest of the code as
string_hello.

• This memory location has the following contents:

– The ASCII codes for the characters in "hello world",
followed by:

– A byte with content 0x00.

12

Example of Usage

 ldr r4, =IO_ADDRESS @ r0 := 0x 101f 1000

 ldr r5, =string_hello

print_str:

 ldrb r6,[r5]

 cmp r6,#0x00 @ '\0' = 0x00: null character?

 beq print_done @ if yes, quit

 str r6,[r4] @ otherwise, write character

 add r5,r5,#1 @ go to next character

 b print_str @ repeat

print_done:

13

The ASCIZ Directive

• Strings typically have a '\0' character (ASCII code 0) at their
end.

• Instead of having to specify manually the null character at the
end of the string, we can use the .asciz directive.

• For example, instead of writing

string_hello:

 .ascii "hello world"

 .byte 0x00

• We can just write:

string_hello:

 .asciz "hello world"
14

The WORD Directive

• The byte directive specifies a byte of memory.

• The word directive specifies a word of memory.

• A word is 4 bytes in the ARM-7 architecture.

• For example, consider this line of code in C:

int * array1 = {2014, 1914, 1814, 1714};

• In assembly, you can write:

array1:

 .word 2014

 .word 1914

 .word 1814

 .word 1714

15

Negative Numbers

• In most modern architectures, negative numbers are
represented using what is called "two's
complement".

• Suppose that your registers hold N bits.

• The two's complement representation of number -X
is: 2N - X.

16

Negative Numbers: Examples

• The two's complement representation of number -X
is: 2N - X.

• In ARM-7, N = 32.

• How is number -1 represented:

– In binary?

– In hexadecimal?

17

Negative Numbers: Example

• The two's complement representation of number -X
is: 2N - X.

• In ARM-7, N = 32.

• How is number -1 represented:

• In binary:

– 232-1 = 1 0000 0000 0000 0000 0000 0000 0000 0000 - 1

 = 1111 1111 1111 1111 1111 1111 1111 1111

• In hexadecimal:

– 232-1 = 1 0000 0000 - 1

 = 0x ffff ffff

• If you call print_number with -1, you see 0xffffffff.

18

Input

• We have already seen how to print:
– What we have to do is store each ASCII code that we want to print into a

specific memory address: 0x101f1000

• To get text input from the user, we do something similar:
– We load an ASCII code from the same memory address: 0x101f1000

• However, input is a little bit more complicated than output.

• How does the program know that we have something to print?
– Easy: when the program hits an instruction that stores something to the

designated address.

• How does the program know that the user has entered text?

19

Input

• We have already seen how to print:
– What we have to do is store each ASCII code that we want to print into a

specific memory address: 0x101f1000

• To get text input from the user, we do something similar:
– We load an ASCII code from the same memory address: 0x101f1000

• However, input is a little bit more complicated than output.

• How does the program know that we have something to print?
– Easy: when the program hits an instruction that stores something to the

designated address.

• How does the program know that the user has entered text?
– Not so easy: the program hits an instruction that loads something from

the designated address.

– However, is there something at that address? Has the user typed
something yet?

20

Input

• To read a character of text, we will follow a simple approach
(more sophisticated/efficient approaches are available):
– Wait until the user has entered a character.

– When the user has entered the character, read the character.

• How can we know that the user has entered a character?

• There is a specific memory address, that holds a specific bit,
that:
– Is automatically set to 0 when the user enters some text.

– Is automatically set to 1 when we read that text.

• This specific memory address is: 101f1018

• The bit at position 4 in that address is set to 0 when the user
has entered data, and set to 1 when we read the data.
– (Bit 0 is the least significant bit).

21

