Introduction

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Administrative Overview

 VERY IMPORTANT: course web page.
http://vim1.uta.edu/~athitsos/courses/cse2320 spring2014/

— The course web page will be the primary source of
information about the class.

* To find the course web page:
— Google my name.
— Go to my web page.
— Click on the CSE 2320 link.

* If you have any trouble: E-MAIL ME.

http://vlm1.uta.edu/~athitsos/courses/cse2320_spring2014/
http://vlm1.uta.edu/~athitsos/courses/cse2320_spring2014/

Administrative Overview

* VERY IMPORTANT: Blackboard.

— Blackboard will be the platform for submitting ALL
assignments.

— No submissions via e-mail, or via hard copy in class.
— If Blackboard says the submission is late, then it is late.

— Occasionally people submit the wrong files. YOU ARE
RESPONSIBLE FOR VERIFYING you submitted the right files,
and on time.

* Assignment O will be posted today, and due Thursday.

— It simply checks that you know how to use Blackboard.

— No credit, the goal is to prevent people saying "l did not know
how to use Blackboard" for the first real assignment.

Administrative Overview

 VERY IMPORTANT: syllabus (see web page)

— You are RESPONSIBLE for understanding what the syllabus
says, especially if you worry about your grade.

— The syllabus policies will be STRICTLY followed.

Why Algorithms? An Example

In 1996, we were working on a web search engine.

Every day, we had a list A of web pages we have
already visited.

— "visiting" a web page means that our program has
downloaded that web page and processed it, so that it can
show up in search results.

Every day, we also had a list B of links to web pages
that we still had not processed.

Question: which links in list B are NOT in A?
Why was this a useful question?

Why Algorithms? An Example

In 1996, we were working on a web search engine.

Every day, we had a list A of web pages we have
already visited.

— "visiting" a web page means that our program has
downloaded that web page and processed it, so that it can
show up in search results.

Every day, we also had a list B of links to web pages
that we still had not processed.

Question: which links in list B are NOT in A?

Why was this a useful question?
— Most links in B had already been seen in A.
— |t was a huge waste of resources to revisit those links.

Why Algorithms? An Example

* Recap:
— A set A of items

— A set B of items

— Define setdiff(B, A) to be the set of items in B that are not
in A.

* Question: how do we compute setdiff(B, A).
 Any ideas?

setdiff(B, A) — First Version

setdiff (B, A):
result = empty set
for each item b of B:
found = false
for each item a of A:
if (b == a) then found = true
i1f (found == false) add b to result

return result.

 What can we say about how fast this would
run?

setdiff(B, A) — First Version

setdiff (B, A):
result = empty set
for each item b of B:
for each item a of A:
if (b == a) then add b to result

return result.

* This needs to compare each item of B with each item
of A.

* If we denote the size of B as |B|, and the size of A as
|A|, we need |B| * |A| comparisons.

setdiff(B, A) — First Version

setdiff (B, A):
result = empty set
for each item b of B:

for each i1tem a of A:

if (b == a) then add b to result
return result.

* This needs to compare each item of B with each item
of A.

* If we denote the size of B as |B|, and the size of A as
|A|, we need |B| * |A| comparisons.

* This is our first analysis of time complexity.

setdiff(B, A) — First Version - Speed

We need to perform |B| * |A| comparisons.
What does this mean in practice?

Suppose A has 1 billion items.

Suppose B has 1 million items.

We need to do 1 quadrilion comparisons.

setdiff(B, A) — First Version - Speed

We need to perform |B| * |A| comparisons.
What does this mean in practice?

Suppose A has 1 billion items.

Suppose B has 1 million items.

We need to do 1 quadrilion comparisons.

On a computer that can do 1 billion comparisons
per second, this would take 11.6 days.

— This is very optimistic, in practice, it would be at least
several months.

— CAN WE DO BETTER?

setdiff(B, A) — Second Version

setdiff (B, A):
result = empty set
sort A and B in alphabetical order
i=0;,3=20
while (i1 < size(B)) and (j < size(A)):
if (B[i] < A[j]) then:
add B[1i] to the result
i =i+l
else if (B[i] > a[i]) then j = j+1
else i = i+l; j = j+1
while 1 < size (B):
add B[1i] to result
i =i+l

return result

Application to an Example

* Suppose:

— B ={January, February, March, April, May, June, July,
August, September, October, November, December}

— A = {May, August, June, July}
* After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
* A[j] = August, B[i] = April.

— Bli] <Al[j]

— we add BJi] to the result

— iincreases by 1.

e result = {April}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
* A[j] = August, B[i] = August.

— B[i] equals A[j]

—iand j both increase by 1.

* result = {April}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
e Alj] =July, B[i] = December.

— Bli] <Al[j]

— we add BJi] to the result

— iincreases by 1.

* result = {April, December}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
e A[j] = July, B[i] = February.

— Bli] <Al[j]

— we add BJi] to the result

— iincreases by 1.

* result = {August, December, February}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
e A[j] = July, Bli] =January.

— Bli] <Al[j]

— we add BJi] to the result

— iincreases by 1.

* result = {August, December, February, January}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
e A[j] = July, B[i] = July.

— B[i] equals A[j]

—iand j both increase by 1.

* result = {August, December, February, January}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
* A[j] =June, BJi] = June.

— B[i] equals A[j]

—iand j both increase by 1.

* result = {August, December, February, January}

Application to an Example

e After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
* A[j] = May, BJi] = March.

— Bli] <Al[j]

— we add BJi] to the result

— iincreases by 1.

* result = {August, December, February, January,
March}

Application to an Example

After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
Alj] = May, B[i] = May.

— B[i] equals A[j]

—iand j both increase by 1.

result = {August, December, February, January,
March}

What happens next?

Application to an Example

After sorting in alphabetical order:

— B = {April, August, December, February, January, July,
June, March, May, November, October, September}

— A = {August, July, June, May}
We have reached the end of A.
We add to result the remaining items of B.

result = {August, December, February, January,
March, November, October, September}

We are done!!!

setdiff(B, A) — Second Version

setdiff (B, A):
result = empty set
sort A and B in alphabetical order
i=0;,3=0
while (1 < size(B)) and (j < size(A4)):
if (B[i] < A[j]) then:
add B[i] to the result
i= i+l
else if (B[i] > a[i]) then j = j+1
else 1 = i+l; j = j+1
while i < size (B):
add B[i] to result
i= i+l

return result

 What can we say about its speed? What takes time?

setdiff(B, A) — Second Version - Speed

setdiff (B, A):
result = empty set
sort A and B in alphabetical order
i=0; 3J=20
while (1 < size(B)) and (j < size(A4)):
if (B[i] < A[j]) then:
add B[i] to the result
i= i+l
else if (B[i] > a[i]) then j = j+1
else 1 = i+l; j = j+1
while i < size (B):
add B[i] to result
i= i+l

return result

* we need to: sort A and B, and execute the while loops.

setdiff(B, A) — Second Version - Speed

* We need to:
— sort A
— sort B
— execute the while loops.

* How many calculations it takes to sort A?

— We will learn in this class that the number of
calculations is |A| * log(|A|) * some unspecified
constant.

* How many iterations do the while loops take?
— no more than |A| + |B].

setdiff(B, A) — Second Version - Speed

* We will skip some details, since this is just an
introductory example.

— By the end of the course, you will be able to fill in
those details.

e |t turns out that the number of calculations is
proportional to |A|log(|A]) + |B]|log(|B]).

— Unless stated otherwise, all logarithms in this course
will be base 2.

setdiff(B, A) — Second Version - Speed

It turns out that the number of calculations is
proportional to |A|log(|A|) + |B|log(|B]).
Suppose A has 1 billion items.

— log(|A|) = about 30.

We need to do at least 30 billion calculations
(unrealistically optimistic).

On a computer that can do 1 billion calculations per
second, this would take 30 seconds.

— This is very optimistic, but compare to optimistic estimate of
11.6 days for first version of setdiff.

— in practice, it would be some minutes, possibly hours, but
compare to several months or more for first version.

setdiff(B, A) — Third Version

Use Hash Tables.

At this point, you are not supposed to know what hash
tables are.

By the end of the course, you should be able to
implement and evaluate all three versions.

Programming Skills vs. Algorithmic
Skills

* The setdiff example illustrates the difference

between programming skills and algorithmic
skills.

* Before taking this course, if faced with the
setdiff problem, you should ideally be able to:
— come up with the first version of the algorithm.
— implement that version.

e After taking this course, you should be able to
come up with the second and third versions,
and implement them.

Programming Skills vs. Algorithmic
Skills

 Many professional programmers do not know
much about algorithms.

* However, even such programmers use non-
trivial algorithms all the time (e.g., sorting
functions or hash tables).

— They just rely on built-in functions that already
implement such algorithms.

 There are a lot of programming tasks that such
programmers are not qualified to work on.

Programming Skills vs. Algorithmic
Skills

* Alarge number of real-world problems are simply
impossible to solve without solid algorithmic skills.

— A small selection of examples: computer and cell phone
networks, GPS navigation, search engines, web-based
financial transactions, file compression, digital cable TV,
digital music and video players, speech recognition,
automatic translation, computer games, spell-checking,
movie special effects, robotics, spam filtering, ...

* Good algorithmic skills give you the ability to work on
many really interesting software-related tasks.

* Good algorithmic skills give you the ability to do more
scientific-oriented computer-related work.

Next Steps in the Course

Do a few algorithms, as examples.

Learn basic methods for analyzing algorithmic
properties, such as time complexity.

Learn about some basic data structures, such as
linked lists, stacks, and queues.

Explore, learn and analyze several types of
algorithms.
— Emphasis on sorting, tree algorithms, graph algorithms.

— Why? Should become a lot clearer as the course
progresses.

Up Next: Examples of Algorithms

Union-Find.
Binary Search.
Selection Sort.

What each of these algorithms does is the
next topic we will cover.

Connectivity: An Example

Suppose that we have a large number of
computers, with no connectivity.

— No computer is connected to any other computer.

We start establishing direct computer-to-
computer links.
We define connectivity(A, B) as follows:

— If A and B are directly linked, they are connected.

— If A and B are connected, and B and C are
connected, then A and C are connected.

Connectivity is transitive.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

 How do we tell the computer? What do we need to
provide?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.
— Every time we establish a link between two

computers, we tell our program about that link.

 How do we tell the computer? What do we need to
provide?

* Answer: we need to provide two integers, specifying
the two computers that are getting linked.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

 What does it mean that "connectivity changed"?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.
 What does it mean that "connectivity changed"?

* It means that there exist at least two computers X and Y
that were not connected before the new link was in
place, but are connected now.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

e Can you come up with an example where the new link
does not change connectivity?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

e Can you come up with an example where the new link
does not change connectivity?

* Suppose we have computers 1, 2, 3, 4. Suppose 1 and 2
are connected, and 2 and 3 are connected. Then,
directly linking 1 to 3 does not add connectivity.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

— How do we do that?

A Useful Connectivity Property

* Suppose we have N computers.

e At each point (as we establish links), these N
computers will be divided into separate
networks.

— All computers within a network are connected.
— If computers A and B belong to different networks,
they are not connected.

e Each of these networks is called a connected
component.

Initial Connectivity

* Suppose we have N computers.

* Before we have established any links, how
many connected components do we have?

Initial Connectivity

* Suppose we have N computers.
* Before we have established any links, how
many connected components do we have?

— N components: each computer is its own
connected component.

Labeling Connected Components

* Suppose we have N computers.

* Suppose we have already established some
links, and we have K connected components.

* How can we keep track, for each computer,
what connected component it belongs to?

Labeling Connected Components

Suppose we have N computers.

Suppose we have already established some links, and
we have K connected components.

How can we keep track, for each computer, what
connected component it belongs to?
— Answer: maintain an array id of N integers.

— id[p] will be the ID of the connected component of
computer p (where p is an integer).

— For convenience, we can establish the convention that the
ID of a connected component X is just some integer p such
that computer p belongs to X.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

— How do we do that?

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were already connected, we do not need to
do anything.

— How can we check if they were already
connected?

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and

q:

— The new link means p and g are connected.

— If they were already connected, we do not need to
do anything.

— How can we check if they were already
connected?

* Answer: id[p] == id[q]

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were not already connected, then the
connected components of p and g need to be
merged.

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were not already connected, then the
connected components of p and g need to be
merged.

— We can go through each computeriin the
network, and if id[i] == id[p], we set id[i] = id[q].

Union-Find: First Solution

#include <stdio.h>
#define N 10000
main ()
{ int i, p, q, t, id[N];
for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d\n", &p, &q) == 2)
{
if (id[p] == id[qgq]) continue;
for (t = id[p], 1 = 0; i < N; i++)
if (id[i] == t) id[i] = id[q];

printf (" %d %d\n", p, q);

