
Introduction 

CSE 2320 – Algorithms and Data Structures 

Vassilis Athitsos 

University of Texas at Arlington 

1 



Administrative Overview 

• VERY IMPORTANT: course web page. 

http://vlm1.uta.edu/~athitsos/courses/cse2320_spring2014/ 

– The course web page will be the primary source of 
information about the class. 

• To find the course web page: 

– Google my name. 

– Go to my web page. 

– Click on the CSE 2320 link. 

• If you have any trouble: E-MAIL ME. 

2 

http://vlm1.uta.edu/~athitsos/courses/cse2320_spring2014/
http://vlm1.uta.edu/~athitsos/courses/cse2320_spring2014/


Administrative Overview 

• VERY IMPORTANT: Blackboard. 

– Blackboard will be the platform for submitting ALL 
assignments. 

– No submissions via e-mail, or via hard copy in class. 

– If Blackboard says the submission is late, then it is late. 

– Occasionally people submit the wrong files. YOU ARE 
RESPONSIBLE FOR VERIFYING you submitted the right files, 
and on time. 

• Assignment 0 will be posted today, and due Thursday. 

– It simply checks that you know how to use Blackboard. 

– No credit, the goal is to prevent people saying "I did not know 
how to use Blackboard" for the first real assignment. 

3 



Administrative Overview 

• VERY IMPORTANT: syllabus (see web page) 

– You are RESPONSIBLE for understanding what the syllabus 
says, especially if you worry about your grade. 

– The syllabus policies will be STRICTLY followed. 

4 



Why Algorithms? An Example 

• In 1996, we were working on a web search engine. 

• Every day, we had a list A of web pages we have 
already visited. 

– "visiting" a web page means that our program has 
downloaded that web page and processed it, so that it can 
show up in search results. 

• Every day, we also had a list B of links to web pages 
that we still had not processed. 

• Question: which links in list B are NOT in A? 

• Why was this a useful question? 

5 



Why Algorithms? An Example 

• In 1996, we were working on a web search engine. 

• Every day, we had a list A of web pages we have 
already visited. 

– "visiting" a web page means that our program has 
downloaded that web page and processed it, so that it can 
show up in search results. 

• Every day, we also had a list B of links to web pages 
that we still had not processed. 

• Question: which links in list B are NOT in A? 

• Why was this a useful question? 

– Most links in B had already been seen in A. 

– It was a huge waste of resources to revisit those links. 6 



Why Algorithms? An Example 

• Recap:  
– A set A of items 

– A set B of items 

– Define setdiff(B, A) to be the set of items in B that are not 
in A. 

• Question: how do we compute setdiff(B, A). 

• Any ideas? 

7 



setdiff(B, A) – First Version 

setdiff(B, A): 

   result = empty set 

   for each item b of B: 

      found = false 

      for each item a of A: 

         if (b == a) then found = true 

      if (found == false) add b to result 

   return result. 

     

• What can we say about how fast this would 
run? 

8 



setdiff(B, A) – First Version 

setdiff(B, A): 

   result = empty set 

   for each item b of B: 

      for each item a of A: 

         if (b == a) then add b to result 

   return result. 
 

• This needs to compare each item of B with each item 
of A.  

• If we denote the size of B as |B|, and the size of A as 
|A|, we need |B| * |A| comparisons. 

9 



setdiff(B, A) – First Version 

setdiff(B, A): 

   result = empty set 

   for each item b of B: 

      for each item a of A: 

         if (b == a) then add b to result 

   return result. 
 

• This needs to compare each item of B with each item 
of A.  

• If we denote the size of B as |B|, and the size of A as 
|A|, we need |B| * |A| comparisons. 

• This is our first analysis of time complexity. 10 



setdiff(B, A) – First Version - Speed 

• We need to perform |B| * |A| comparisons. 

• What does this mean in practice? 

• Suppose A has 1 billion items. 

• Suppose B has 1 million items. 

• We need to do 1 quadrilion comparisons. 

11 



setdiff(B, A) – First Version - Speed 

• We need to perform |B| * |A| comparisons. 

• What does this mean in practice? 

• Suppose A has 1 billion items. 

• Suppose B has 1 million items. 

• We need to do 1 quadrilion comparisons. 

• On a computer that can do 1 billion comparisons 
per second, this would take 11.6 days. 

– This is very optimistic, in practice, it would be at least 
several months. 

– CAN WE DO BETTER? 12 



setdiff(B, A) – Second Version 
setdiff(B, A): 

   result = empty set 

   sort A and B in alphabetical order 

   i = 0; j = 0 

   while (i < size(B)) and (j < size(A)): 

      if (B[i] < A[j]) then: 

         add B[i] to the result 

         i = i+1 

      else if (B[i] > a[i]) then j = j+1 

      else i = i+1; j = j+1 

   while i < size(B): 

         add B[i] to result 

         i = i+1 

   return result 

13 



Application to an Example 

• Suppose: 

–  B = {January, February, March, April, May, June, July, 
August, September, October, November, December} 

– A = {May, August, June, July} 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

14 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = August, B[i] = April.  

– B[i] < A[j] 

– we add B[i] to the result 

– i increases by 1. 

• result = {April} 

15 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = August, B[i] = August.  

– B[i] equals A[j] 

– i and j both increase by 1. 

• result = {April} 

16 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = July, B[i] = December.  

– B[i] < A[j] 

– we add B[i] to the result 

– i increases by 1. 

• result = {April, December} 

17 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = July, B[i] = February.  

– B[i] < A[j] 

– we add B[i] to the result 

– i increases by 1. 

• result = {August, December, February} 

18 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = July, B[i] = January.  

– B[i] < A[j] 

– we add B[i] to the result 

– i increases by 1. 

• result = {August, December, February, January} 

19 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = July, B[i] = July.  

– B[i] equals A[j] 

– i and j both increase by 1. 

• result = {August, December, February, January} 

20 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = June, B[i] = June.  

– B[i] equals A[j] 

– i and j both increase by 1. 

• result = {August, December, February, January} 

21 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = May, B[i] = March.  

– B[i] < A[j] 

– we add B[i] to the result 

– i increases by 1. 

• result = {August, December, February, January, 
March} 

22 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• A[j] = May, B[i] = May.  

– B[i] equals A[j] 

– i and j both increase by 1.  

• result = {August, December, February, January, 
March} 

• What happens next? 23 



Application to an Example 

• After sorting in alphabetical order: 

– B = {April, August, December, February, January, July, 
June, March, May, November, October, September} 

– A = {August, July, June, May} 

• We have reached the end of A. 

• We add to result the remaining items of B. 

• result = {August, December, February, January, 
March, November, October, September} 

• We are done!!! 

24 



setdiff(B, A) – Second Version 

setdiff(B, A): 

   result = empty set 

   sort A and B in alphabetical order 

   i = 0; j = 0 

   while (i < size(B)) and (j < size(A)): 

      if (B[i] < A[j]) then: 

         add B[i] to the result 

         i = i+1 

      else if (B[i] > a[i]) then j = j+1 

      else i = i+1; j = j+1 

   while i < size(B): 

         add B[i] to result 

         i = i+1 

   return result 
 

• What can we say about its speed? What takes time? 
 

25 



setdiff(B, A) – Second Version - Speed 
setdiff(B, A): 

   result = empty set 

   sort A and B in alphabetical order 

   i = 0; j = 0 

   while (i < size(B)) and (j < size(A)): 

      if (B[i] < A[j]) then: 

         add B[i] to the result 

         i = i+1 

      else if (B[i] > a[i]) then j = j+1 

      else i = i+1; j = j+1 

   while i < size(B): 

         add B[i] to result 

         i = i+1 

   return result 
 

• we need to: sort A and B, and execute the while loops. 

 
 

26 



setdiff(B, A) – Second Version - Speed 

• We need to:  

– sort A  

– sort B 

– execute the while loops. 

• How many calculations it takes to sort A? 

– We will learn in this class that the number of 
calculations is |A| * log(|A|) * some unspecified 
constant. 

• How many iterations do the while loops take? 

– no more than |A| + |B|. 
 

27 



setdiff(B, A) – Second Version - Speed 

• We will skip some details, since this is just an 
introductory example. 

– By the end of the course, you will be able to fill in 
those details. 

• It turns out that the number of calculations is 
proportional to |A|log(|A|) + |B|log(|B|). 

– Unless stated otherwise, all logarithms in this course 
will be base 2. 

 

28 



setdiff(B, A) – Second Version - Speed 

• It turns out that the number of calculations is 
proportional to |A|log(|A|) + |B|log(|B|). 

• Suppose A has 1 billion items. 

– log(|A|) = about 30. 

• We need to do at least 30 billion calculations 
(unrealistically optimistic). 

• On a computer that can do 1 billion calculations per 
second, this would take 30 seconds. 

– This is very optimistic, but compare to optimistic estimate of 
11.6 days for first version of setdiff. 

– in practice, it would be some minutes, possibly hours, but 
compare to several months or more for first version. 

29 



setdiff(B, A) – Third Version 

• Use Hash Tables. 

• At this point, you are not supposed to know what hash 
tables are. 

• By the end of the course, you should be able to 
implement and evaluate all three versions. 

 

30 



Programming Skills vs. Algorithmic 
Skills 

• The setdiff example illustrates the difference 
between programming skills and algorithmic 
skills. 

• Before taking this course, if faced with the 
setdiff problem, you should ideally be able to: 

– come up with the first version of the algorithm. 

– implement that version. 

• After taking this course, you should be able to 
come up with the second and third versions, 
and implement them. 

31 



Programming Skills vs. Algorithmic 
Skills 

• Many professional programmers do not know 
much about algorithms. 

• However, even such programmers use non-
trivial algorithms all the time (e.g., sorting 
functions or hash tables). 

– They just rely on built-in functions that already 
implement such algorithms. 

• There are a lot of programming tasks that such 
programmers are not qualified to work on. 

32 



Programming Skills vs. Algorithmic 
Skills 

• A large number of real-world problems are simply 
impossible to solve without solid algorithmic skills. 

– A small selection of examples: computer and cell phone 
networks, GPS navigation, search engines, web-based 
financial transactions, file compression, digital cable TV, 
digital music and video players, speech recognition, 
automatic translation, computer games, spell-checking, 
movie special effects, robotics, spam filtering, … 

• Good algorithmic skills give you the ability to work on 
many really interesting software-related tasks. 

• Good algorithmic skills give you the ability to do more 
scientific-oriented computer-related work. 33 



Next Steps in the Course 

• Do a few algorithms, as examples. 

• Learn basic methods for analyzing algorithmic 
properties, such as time complexity. 

• Learn about some basic data structures, such as 
linked lists, stacks, and queues. 

• Explore, learn and analyze several types of 
algorithms. 

– Emphasis on sorting, tree algorithms, graph algorithms. 

– Why? Should become a lot clearer as the course 
progresses. 

34 



Up Next: Examples of Algorithms 

• Union-Find. 

• Binary Search. 

• Selection Sort. 

• What each of these algorithms does is the 
next topic we will cover. 

35 



Connectivity: An Example 

• Suppose that we have a large number of 
computers, with no connectivity. 

– No computer is connected to any other computer. 

• We start establishing direct computer-to-
computer links. 

• We define connectivity(A, B) as follows: 

– If A and B are directly linked, they are connected. 

– If A and B are connected, and B and C are 
connected, then A and C are connected. 

• Connectivity is transitive.  
36 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

• How do we tell the computer? What do we need to 
provide? 

 

37 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

• How do we tell the computer? What do we need to 
provide? 

• Answer: we need to provide two integers, specifying 
the two computers that are getting linked. 

 

38 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• What does it mean that "connectivity changed"? 

 

39 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• What does it mean that "connectivity changed"? 

• It means that there exist at least two computers X and Y 
that were not connected before the new link was in 
place, but are connected now. 

 
40 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• Can you come up with an example where the new link 
does not change connectivity? 

 

41 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• Can you come up with an example where the new link 
does not change connectivity? 

• Suppose we have computers 1, 2, 3, 4. Suppose 1 and 2 
are connected, and 2 and 3 are connected. Then, 
directly linking 1 to 3 does not add connectivity. 

 

42 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

– How do we do that? 

43 



A Useful Connectivity Property 

• Suppose we have N computers. 

• At each point (as we establish links), these N 
computers will be divided into separate 
networks. 

– All computers within a network are connected. 

– If computers A and B belong to different networks, 
they are not connected. 

• Each of these networks is called a connected 
component. 

44 



Initial Connectivity 

• Suppose we have N computers.  

• Before we have established any links, how 
many connected components do we have? 

45 



Initial Connectivity 

• Suppose we have N computers.  

• Before we have established any links, how 
many connected components do we have? 

– N components: each computer is its own 
connected component. 

46 



Labeling Connected Components 

• Suppose we have N computers.  

• Suppose we have already established some 
links, and we have K connected components. 

• How can we keep track, for each computer, 
what connected component it belongs to? 

47 



Labeling Connected Components 

• Suppose we have N computers.  

• Suppose we have already established some links, and 
we have K connected components. 

• How can we keep track, for each computer, what 
connected component it belongs to? 

– Answer: maintain an array id of N integers.  

– id[p] will be the ID of the connected component of 
computer p (where p is an integer). 

– For convenience, we can establish the convention that the 
ID of a connected component X is just some integer p such 
that computer p belongs to X. 

48 



The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

– How do we do that? 

49 



Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were already connected, we do not need to 
do anything. 

– How can we check if they were already 
connected? 

50 



Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were already connected, we do not need to 
do anything. 

– How can we check if they were already 
connected? 

• Answer: id[p] == id[q] 
51 



Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were not already connected, then the 
connected components of p and q need to be 
merged. 

52 



Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were not already connected, then the 
connected components of p and q need to be 
merged. 

– We can go through each computer i in the 
network, and if id[i] == id[p], we set id[i] = id[q]. 

53 



Union-Find: First Solution 

#include <stdio.h> 

#define N 10000 

main() 

  { int i, p, q, t, id[N]; 

    for (i = 0; i < N; i++) id[i] = i; 

    while (scanf("%d %d\n", &p, &q) == 2) 

      {  

        if (id[p] == id[q]) continue; 

        for (t = id[p], i = 0; i < N; i++) 

          if (id[i] == t) id[i] = id[q]; 

        printf(" %d %d\n", p, q); 

      } 

 } 

54 


