
Example Algorithms

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Examples of Algorithms

• Union-Find.

• Binary Search.

• Selection Sort.

• What each of these algorithms does is the
next topic we will cover.

2

Connectivity: An Example

• Suppose that we have a large number of
computers, with no connectivity.

– No computer is connected to any other computer.

• We start establishing direct computer-to-
computer links.

• We define connectivity(A, B) as follows:

– If A and B are directly linked, they are connected.

– If A and B are connected, and B and C are
connected, then A and C are connected.

• Connectivity is transitive.
3

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

• How do we tell the computer? What do we need to
provide?

4

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

• How do we tell the computer? What do we need to
provide?

• Answer: we need to provide two integers, specifying
the two computers that are getting linked.

5

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

• What does it mean that "connectivity changed"?

6

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

• What does it mean that "connectivity changed"?

• It means that there exist at least two computers X and Y
that were not connected before the new link was in
place, but are connected now.

7

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

• Can you come up with an example where the new link
does not change connectivity?

8

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

• Can you come up with an example where the new link
does not change connectivity?

• Suppose we have computers 1, 2, 3, 4. Suppose 1 and 2
are connected, and 2 and 3 are connected. Then,
directly linking 1 to 3 does not add connectivity.

9

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

– How do we do that?

10

A Useful Connectivity Property

• Suppose we have N computers.

• At each point (as we establish links), these N
computers will be divided into separate
networks.

– All computers within a network are connected.

– If computers A and B belong to different networks,
they are not connected.

• Each of these networks is called a connected
component.

11

Initial Connectivity

• Suppose we have N computers.

• Before we have established any links, how
many connected components do we have?

12

Initial Connectivity

• Suppose we have N computers.

• Before we have established any links, how
many connected components do we have?

– N components: each computer is its own
connected component.

13

Labeling Connected Components

• Suppose we have N computers.

• Suppose we have already established some
links, and we have K connected components.

• How can we keep track, for each computer,
what connected component it belongs to?

14

Labeling Connected Components

• Suppose we have N computers.

• Suppose we have already established some links, and
we have K connected components.

• How can we keep track, for each computer, what
connected component it belongs to?

– Answer: maintain an array id of N integers.

– id[p] will be the ID of the connected component of
computer p (where p is an integer).

– For convenience, we can establish the convention that the
ID of a connected component X is just some integer p such
that computer p belongs to X.

15

The Union-Find Problem

• We want a program that behaves as follows:

– Each computer is represented as a number.

– We start our program.

– Every time we establish a link between two
computers, we tell our program about that link.

– We want the program to tell us if the new link has
changed connectivity or not.

– How do we do that?

16

Union-Find: First Solution

• It is rather straightforward to come up with a
brute force method:

• Every time we establish a link between p and
q:

– The new link means p and q are connected.

– If they were already connected, we do not need to
do anything.

– How can we check if they were already
connected?

17

Union-Find: First Solution

• It is rather straightforward to come up with a
brute force method:

• Every time we establish a link between p and
q:

– The new link means p and q are connected.

– If they were already connected, we do not need to
do anything.

– How can we check if they were already
connected?

• Answer: id[p] == id[q]
18

Union-Find: First Solution

• It is rather straightforward to come up with a
brute force method:

• Every time we establish a link between p and
q:

– The new link means p and q are connected.

– If they were not already connected, then the
connected components of p and q need to be
merged.

19

Union-Find: First Solution

• It is rather straightforward to come up with a
brute force method:

• Every time we establish a link between p and
q:

– The new link means p and q are connected.

– If they were not already connected, then the
connected components of p and q need to be
merged.

– We can go through each computer i in the
network, and if id[i] == id[p], we set id[i] = id[q].

20

Union-Find: First Solution

#include <stdio.h>

#define N 10000

main()

 { int i, p, q, t, id[N];

 for (i = 0; i < N; i++) id[i] = i;

 while (scanf("%d %d\n", &p, &q) == 2)

 {

 if (id[p] == id[q]) continue;

 for (t = id[p], i = 0; i < N; i++)

 if (id[i] == t) id[i] = id[q];

 printf(" %d %d\n", p, q);

 }

 }

21

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

• What is the best case, that will lead to faster
execution?

22

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

• What is the best case, that will lead to faster
execution?

– Best case: all links are identical, we only need to
do one union. Then, we need at least N
instructions.

23

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

• What is the worst case, that will lead to the
slowest execution?

24

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

• What is the worst case, that will lead to the
slowest execution?

– Worst case: each link requires a new union
operation. Then, we need at least N*L
instructions, where L is the number of links.

25

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

– L is the number of links.

• Source of variance: M. In the best case, M =
???. In the worst case, M = ???.

26

Time Analysis

• The first solution to the Union-Find problem
takes at least M*N instructions, where:

– N is the number of objects.

– M is the number of union operations.

– L is the number of links.

• Source of variance: M. In the best case, M = 1.
In the worst case, M = L.

27

The Find and Union Operations

• find: given an object p, find out what set it belongs
to.

• union: given two objects p and q, unite their two
sets.

• Time complexity of find in our first solution:

– ???

• Time complexity of union in our first solution:

– ???

28

The Find and Union Operations

• find: given an object p, find out what set it belongs
to.

• union: given two objects p and q, unite their two
sets.

• Time complexity of find in our first solution:

– Just checking id[p].

– One instruction in C, a constant number of instructions on
the CPU.

• Time complexity of union in our first solution:

– At least N instructions, if p and q belong to different sets.

29

Rewriting First Solution With Functions
- Part 1

#include <stdio.h>

#define N 10 /* Made N smaller, so we can print all ids */

/* returns the set id of the object. */

int find(int object, int id[])

{

 return id[object];

}

/* unites the two sets specified by set_id1 and set_id2*/

void set_union(int set_id1, int set_id2, int id[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 if (id[i] == set_id1) id[i] = set_id2;

}

30

Rewriting First Solution With Functions
- Part 2

main()

{ int p, q, i, id[N], p_id, q_id;

 for (i = 0; i < N; i++) id[i] = i;

 while (scanf("%d %d", &p, &q) == 2)

 {

 p_id = find(p, id); q_id = find(q, id);

 if (p_id == q_id)

 {

 printf(" %d and %d were on the same set\n", p, q);

 continue;

 }

 set_union(p_id, q_id, id, N);

 printf(" %d %d link led to set union\n", p, q);

 for (i = 0; i < N; i++)

 printf(" id[%d] = %d\n", i, id[i]);

 }

 }

} 31

Why Rewrite?

• The rewritten code makes the find and union
operations explicit.

• We can replace find and union as we wish,
and we can keep the main function
unchanged.

• Note: union is called set_union in the code,
because union is a reserved keywords in C.

• Next: try different versions of find and union,
to make the code more efficient.

32

Next Version

• id[p] will not point to the set_id of p.

– It will point to just another element of the same set.

– Thus, id[p] initiates a sequence of elements:

– id[p] = p2, id[p2] = p3, …, id[pn] = pn

• This sequence of elements ends when we find an
element pn such that id[pn] = pn.

• We will call this pn the id of the set.

• This sequence is not allowed to contain cycles.

• We re-implement find and union to follow these rules.

33

Second Version

int find(int object, int id[])

{ int next_object;

 next_object = id[object];

 while (next_object != id[next_object])

 next_object = id[next_object];

 return next_object;

}

/* unites the two sets specified by set_id1 and set_id2 */

void set_union(int set_id1, int set_id2, int id[], int size)

{

 id[set_id1] = set_id2;

}

34

id Array Defines Trees of Pointers

• By drawing out what points to what in the id array,
we obtain trees.

– Each connected component corresponds to a tree.

– Each object p corresponds to a node whose parent is id[p].

– Exception: if id[p] == p, then p is the root of a tree.

• In first version of Union-Find, a connected
component of two or more objects corresponded to
a tree with two levels.

• Now, a connected component of n objects (n >= 2)
can have anywhere from 2 to n levels.

• See textbook figures 1.4, 1.5 (pages 13-14).
35

Time Analysis of Second Version

• How much time does union take?

• How much time does find take?

36

Time Analysis of Second Version

• How much time does union take?

– a constant number of operations (which is the
best result we could hope for).

• How much time does find take?

– find(p) needs to find the root of the tree that p
belongs to. This needs at least as many
instructions as the distance from p to the root of
the tree.

37

Time Analysis of Second Version

• Worst case?

38

Time Analysis of Second Version

• Worst case: we process M links in this order:

– 1 0

– 2 1

– 3 2

– …

– M M-1

• Then, how will the ids look after we process each
link?

39

Time Analysis of Second Version

• Worst case: we process M links in this order:

– 1 0

– 2 1

– 3 2

– …

– M M-1

• Then, how will the ids look after we process the m-th
link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

40

Time Analysis of Second Version

• Worst case: we process links in this order:

– 1 0, 2 1, 3 2, …, M M-1.

• Then, how will the ids look after we process each
link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

• How many instructions will find take?

41

Time Analysis of Second Version

• Worst case: we process links in this order:

– 1 0, 2 1, 3 2, …, M M-1.

• Then, how will the ids look after we process each link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

• How many instructions will find take?

– at least m instructions for the m-th link.

• Total?

42

Time Analysis of Second Version

• Worst case: we process links in this order:

– 1 0, 2 1, 3 2, …, M M-1.

• Then, how will the ids look after we process each link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

• How many instructions will find take?

– at least m instructions for the m-th link.

• Total? 1 + 2 + 3 + … + M = 0.5 * M * (M+1). So, at least
0.5 * M2 instructions. Quadratic in M.

• Compare to first version: M*N. Which is better?

43

Time Analysis of Second Version

• Worst case: we process links in this order:

– 1 0, 2 1, 3 2, …, M M-1.

• Then, how will the ids look after we process each link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

• How many instructions will find take?

– at least m instructions for the m-th link.

• Total? 1 + 2 + 3 + … + M = 0.5 * M * (M+1). So, at least
0.5 * M2 instructions. Quadratic in M.

• Compare to first version: M*N. Which is better?

– The new version, if M < N.

44

Time Analysis of Second Version

• Worst case: we process links in this order:

– 1 0, 2 1, 3 2, …, M M-1.

• Then, how will the ids look after we process each link?

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, …

• What if M > N?

• Then the number of instructions is:
1+2+3+…+N+N+…+N.

• Still better than first version (where we need M*N
instructions). Compare:
1+2+3+…+N+N+…+N (second version)
N+N+N+…+N+N+…+N (first version)

45

Second Vs. First Version

• The second version is faster, but not by much.

– About two times faster.

– A constant factor of two will not be considered a
big deal in this class.

– Preview of chapter 2: constant factors like this will
mostly be ignored.

46

Third Version
• find: same as in second version.

• union: always change the id of the smaller set to that
of the larger one.

void set_union(int set_id1, int set_id2, int id[], int sz[])

{ if (sz[set_id1] < sz[set_id2])

 {

 id[set_id1] = set_id2;

 sz[set_id2] += sz[set_id1];

 }

 else

 {

 id[set_id2] = set_id1;

 sz[set_id1] += sz[set_id2];

 }

} 47

Third Version
main()

{ int p, q, i, id[N], sz[n], p_id, q_id;

 for (i = 0; i < N; i++)

 { id[i] = i; sz[i] = 1; }

 while (scanf("%d %d", &p, &q) == 2)

 { p_id = find(p, id); q_id = find(q, id);

 if (p_id == q_id)

 {

 printf(" %d and %d were on the same set\n", p, q);

 continue;

 }

 set_union(p_id, q_id, id, sz);

 printf(" %d %d link led to set union\n", p, q);

 for (i = 0; i < N; i++)

 { printf(" id[%d] = %d\n", i, id[i]); }

 }

} 48

Time Analysis of Third Version

• What is the key effect of considering the size of the
two sets?

49

Time Analysis of Third Version

• What is the key effect of considering the size of the
two sets?

• We get flatter trees. When we merge two trees, we
avoid creating long chains.

• How does that improve running time?

50

Time Analysis of Third Version

• What is the key effect of considering the size of the
two sets?

• We get flatter trees. When we merge two trees, we
avoid creating long chains.

• How does that improve running time?

• For a connected component of n objects, find will
need at most log n operations.

– Remember, log is always base 2.

• Thus, now we need how many steps in total, for all
the find operations in the program?

51

Time Analysis of Third Version

• What is the key effect of considering the size of the
two sets?

• We get flatter trees. When we merge two trees, we
avoid creating long chains.

• How does that improve running time?

• For a connected component of n objects, find will
need at most log n operations.

– Remember, log is always base 2.

• Thus, now we need at most M * log N steps in total.

52

Optional: Fourth Version

• As we go through a tree during a find operation,
flatten the tree at the same time.

int find(int object, int id[])

{

 int next_object;

 next_object = id[object];

 while (next_object != id[next_object])

 {

 id[next_object] = id[id[next_object]];

 next_object = id[next_object];

 }

 return next_object;

}

53

Optional: Fourth Version

• After repeated find operations, trees get flatter and
flatter, and closer to the best case (two levels).

int find(int object, int id[])

{

 int next_object;

 next_object = id[object];

 while (next_object != id[next_object])

 {

 id[next_object] = id[id[next_object]];

 next_object = id[next_object];

 }

 return next_object;

}

54

Optional: Fourth Version

• When all trees are flat (2 levels), how many
operations does a single find take?

55

Optional: Fourth Version

• When all trees are flat (2 levels), how many
operations does a single find take?

• It just needs to check id[p]. The number of
operations does not depend on the size of the
connected component, or the total number of
objects.

• When the number of operations does not depend on
any variables, we say that the number of operations
is constant.

• A constant number of operations is algorithmically
the best case we can ever hope for.

56

Next Problem: Membership Search

• We have a set S of N objects.

• Given an object v, we want to determine if v is
an element of S.

• For simplicity, now we will only handle the
case where objects are integers.

– It will become apparent later in the course that
the solution actually works for much more general
types of objects.

• Can anyone think of a simple solution for this
problem?

57

Sequential Search

• We have a set S of N objects.

• Given an object v, we want to determine if v is
an element of S.

• Sequential search:

– Compare v with every element of S.

• How long does this take?

58

Sequential Search

• We have a set S of N objects.

• Given an object v, we want to determine if v is
an element of S.

• Sequential search:

– Compare v with every element of S.

• How long does this take?

– If v is in S, we need on average to compare v with
|S|/2 objects.

– If v is not in S, we need compare v with all |S|
objects.

59

Sequential Search - Version 2

• Assume that S is sorted in ascending order (this is an
assumption that we did not make before).

• Sequential search, version 2:

– Compare v with every element of S, till we find the first
element s such that s >= v.

– Then, if s != v we can safely say that v is not in S.

• How long does this take?

60

Sequential Search - Version 2

• Assume that S is sorted in ascending order (this is an
assumption that we did not make before).

• Sequential search, version 2:

– Compare v with every element of S, till we find the first
element s such that s >= v.

– Then, if s != v we can safely say that v is not in S.

• How long does this take?

– We need on average to compare v with |S|/2 objects,
regardless of whether v is in S or not.

• A little bit better than when S was not sorted, but
only by a factor of 2, only when v is not in S.

61

Binary Search

• Again, assume that S is sorted in ascending order.

• At first, if v is in S, v can appear in any position, from
0 to N-1 (where N is the size of S).

• Let's call left the leftmost position where v may be,
and right the rightmost position where v may be.

• Initially:

– left = 0

– right = N - 1

• Now, suppose we compare v with S[N/2].

– Note: if N/2 is not an integer, round it down.

– What can we say about left and right?
62

Binary Search

• Initially:

– left = 0

– right = N - 1

• Now, suppose we compare v with S[N/2].

– What can we say about left and right?

• If v == S[N/2], we found v, so we are done.

• If v < S[N/2], then right = N/2 - 1.

• If v > S[N/2], then left = N/2 + 1.

• Importance: We have reduced our search range in
half, with a single comparison.

63

Binary Search - Code

/* Determines if v is an element of S.

 If yes, it returns the position of v in a.

 If not, it returns -1.

 N is the size of S.

*/

int search(int S[], int N, int v)

{

 int left, right;

 left = 0; right = N-1;

 while (right >= left)

 { int m = (left+right)/2;

 if (v == S[m]) return m;

 if (v < S[m]) right = m-1; else left = m+1;

 }

 return -1;

}

64

Time Analysis of Binary Search

• How many elements do we need to compare v
with, if S contains N objects?

• At most log(N).

• This is what we call logarithmic time
complexity.

• While constant time is the best we can hope,
we are usually very happy with logarithmic
time.

65

Next Problem - Sorting

• Suppose that we have an array of items (numbers,
strings, etc.), that we want to sort.

• Why would we want to sort?

66

Next Problem - Sorting

• Suppose that we have an array of items (numbers,
strings, etc.), that we want to sort.

• Why would we want to sort?

– To use in binary search.

– To compute rankings, statistics (top-10, top-100, median).

• Sorting is one of the most common operations in
software.

• In this course we will do several different sorting
algorithms, with different properties.

• Today we will look at one of the simplest: Selection
Sort.

67

Selection Sort

• First step: find the smallest element, and exchange it
with element at position 0.

• Second step: find the second smallest element, and
exchange it with element at position 1.

• n-th step: find the n-th smallest element, and
exchange it with element at position n-1.

• If we do this |S| times, then S will be sorted.

68

Selection Sort - Code

• For simplicity, we only handle the case where the
items are integers.

/* sort array S in ascending order.

 N is the number of elements in S. */

void selection(int S[], int N)

{ int i, j, temp;

 for (i = 0; i < N; i++)

 { int min = i;

 for (j = i+1; j < N; j++)

 if (S[j] < S[min]) min = j;

 temp = S[min]; S[min] = S[i]; S[i] = temp;

 }

} 69

Selection Sort - Time Analysis

• First step: find the smallest element, and exchange it
with element at position 0.

– We need N-1 comparisons.

• Second step: find the second smallest element, and
exchange it with element at position 1.

– We need N-2 comparisons.

• n-th step: find the n-th smallest element, and
exchange it with element at position n-1.

– We need N-n comparisons.

• Total: (N-1) + (N-2) + (N-3) + … + 1 = about 0.5 * N2
comparisons.

70

Selection Sort - Time Analysis

• Total: (N-1) + (N-2) + (N-3) + … + 1 = about 0.5 * N2
comparisons.

• Quadratic time complexity.

• Commonly used sorting algorithms are a bit more
complicated, but have N * log(N) time complexity,
which is much better (as N gets large).

71

