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Examples of Algorithms 

• Union-Find. 

• Binary Search. 

• Selection Sort. 

• What each of these algorithms does is the 
next topic we will cover. 
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Connectivity: An Example 

• Suppose that we have a large number of 
computers, with no connectivity. 

– No computer is connected to any other computer. 

• We start establishing direct computer-to-
computer links. 

• We define connectivity(A, B) as follows: 

– If A and B are directly linked, they are connected. 

– If A and B are connected, and B and C are 
connected, then A and C are connected. 

• Connectivity is transitive.  
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

• How do we tell the computer? What do we need to 
provide? 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

• How do we tell the computer? What do we need to 
provide? 

• Answer: we need to provide two integers, specifying 
the two computers that are getting linked. 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• What does it mean that "connectivity changed"? 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• What does it mean that "connectivity changed"? 

• It means that there exist at least two computers X and Y 
that were not connected before the new link was in 
place, but are connected now. 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• Can you come up with an example where the new link 
does not change connectivity? 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

• Can you come up with an example where the new link 
does not change connectivity? 

• Suppose we have computers 1, 2, 3, 4. Suppose 1 and 2 
are connected, and 2 and 3 are connected. Then, 
directly linking 1 to 3 does not add connectivity. 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

– How do we do that? 
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A Useful Connectivity Property 

• Suppose we have N computers. 

• At each point (as we establish links), these N 
computers will be divided into separate 
networks. 

– All computers within a network are connected. 

– If computers A and B belong to different networks, 
they are not connected. 

• Each of these networks is called a connected 
component. 
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Initial Connectivity 

• Suppose we have N computers.  

• Before we have established any links, how 
many connected components do we have? 
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Initial Connectivity 

• Suppose we have N computers.  

• Before we have established any links, how 
many connected components do we have? 

– N components: each computer is its own 
connected component. 
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Labeling Connected Components 

• Suppose we have N computers.  

• Suppose we have already established some 
links, and we have K connected components. 

• How can we keep track, for each computer, 
what connected component it belongs to? 
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Labeling Connected Components 

• Suppose we have N computers.  

• Suppose we have already established some links, and 
we have K connected components. 

• How can we keep track, for each computer, what 
connected component it belongs to? 

– Answer: maintain an array id of N integers.  

– id[p] will be the ID of the connected component of 
computer p (where p is an integer). 

– For convenience, we can establish the convention that the 
ID of a connected component X is just some integer p such 
that computer p belongs to X. 
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The Union-Find Problem 

• We want a program that behaves as follows: 

– Each computer is represented as a number. 

– We start our program. 

– Every time we establish a link between two 
computers, we tell our program about that link. 

– We want the program to tell us if the new link has 
changed connectivity or not. 

– How do we do that? 
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Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were already connected, we do not need to 
do anything. 

– How can we check if they were already 
connected? 
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Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were already connected, we do not need to 
do anything. 

– How can we check if they were already 
connected? 

• Answer: id[p] == id[q] 
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Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were not already connected, then the 
connected components of p and q need to be 
merged. 
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Union-Find: First Solution 

• It is rather straightforward to come up with a 
brute force method: 

• Every time we establish a link between p and 
q: 

– The new link means p and q are connected. 

– If they were not already connected, then the 
connected components of p and q need to be 
merged. 

– We can go through each computer i in the 
network, and if id[i] == id[p], we set id[i] = id[q]. 
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Union-Find: First Solution 

#include <stdio.h> 

#define N 10000 

main() 

  { int i, p, q, t, id[N]; 

    for (i = 0; i < N; i++) id[i] = i; 

    while (scanf("%d %d\n", &p, &q) == 2) 

      {  

        if (id[p] == id[q]) continue; 

        for (t = id[p], i = 0; i < N; i++) 

          if (id[i] == t) id[i] = id[q]; 

        printf(" %d %d\n", p, q); 

      } 

 } 
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Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

• What is the best case, that will lead to faster 
execution? 
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Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

• What is the best case, that will lead to faster 
execution? 

– Best case: all links are identical, we only need to 
do one union. Then, we need at least N 
instructions. 
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Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

• What is the worst case, that will lead to the 
slowest execution? 
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Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

• What is the worst case, that will lead to the 
slowest execution? 

– Worst case: each link requires a new union 
operation. Then, we need at least N*L 
instructions, where L is the number of links. 

25 



Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

– L is the number of links. 

• Source of variance: M. In the best case, M = 
???. In the worst case, M = ???. 
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Time Analysis 

• The first solution to the Union-Find problem 
takes at least M*N instructions, where: 

– N is the number of objects. 

– M is the number of union operations. 

– L is the number of links. 

• Source of variance: M. In the best case, M = 1. 
In the worst case, M = L. 
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The Find and Union Operations 

• find: given an object p, find out what set it belongs 
to. 

• union: given two objects p and q, unite their two 
sets. 

• Time complexity of find in our first solution: 

– ??? 

• Time complexity of union in our first solution: 

– ??? 
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The Find and Union Operations 

• find: given an object p, find out what set it belongs 
to. 

• union: given two objects p and q, unite their two 
sets. 

• Time complexity of find in our first solution: 

– Just checking id[p]. 

– One instruction in C, a constant number of instructions on 
the CPU. 

• Time complexity of union in our first solution: 

– At least N instructions, if p and q belong to different sets. 
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Rewriting First Solution With Functions 
- Part 1 

#include <stdio.h> 

#define N 10  /* Made N smaller, so we can print all ids */ 

 

/* returns the set id of the object. */ 

int find(int object, int id[]) 

{ 

  return id[object]; 

} 

 

/* unites the two sets specified by set_id1 and set_id2*/ 

void set_union(int set_id1, int set_id2, int id[], int size) 

{ 

  int i; 

  for (i = 0; i < size; i++) 

    if (id[i] == set_id1) id[i] = set_id2; 

} 
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Rewriting First Solution With Functions 
- Part 2 

main() 

{ int p, q, i, id[N], p_id, q_id; 

  for (i = 0; i < N; i++) id[i] = i; 

  while (scanf("%d %d", &p, &q) == 2) 

  {  

    p_id = find(p, id); q_id = find(q, id); 

    if (p_id == q_id)  

    { 

      printf(" %d and %d were on the same set\n", p, q); 

      continue; 

    } 

    set_union(p_id, q_id, id, N); 

    printf(" %d %d link led to set union\n", p, q); 

    for (i = 0; i < N; i++)   

      printf("    id[%d] = %d\n", i, id[i]); 

    } 

  } 

} 31 



Why Rewrite? 

• The rewritten code makes the find and union 
operations explicit. 

• We can replace find and union as we wish, 
and we can keep the main function 
unchanged. 

• Note: union is called set_union in the code, 
because union is a reserved keywords in C. 

 

• Next: try different versions of find and union, 
to make the code more efficient. 
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Next Version 

• id[p] will not point to the set_id of p. 

– It will point to just another element of the same set. 

– Thus, id[p] initiates a sequence of elements: 

– id[p] = p2, id[p2] = p3, …, id[pn] = pn 

• This sequence of elements ends when we find an 
element pn such that id[pn] = pn. 

• We will call this pn the id of the set. 

• This sequence is not allowed to contain cycles. 

• We re-implement find and union to follow these rules. 
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Second Version 

int find(int object, int id[]) 

{ int next_object; 

  next_object = id[object]; 

   

  while (next_object != id[next_object]) 

    next_object = id[next_object]; 

 

  return next_object; 

} 

 

/* unites the two sets specified by set_id1 and set_id2 */ 

void set_union(int set_id1, int set_id2, int id[], int size) 

{ 

  id[set_id1] = set_id2; 

} 
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id Array Defines Trees of Pointers 

• By drawing out what points to what in the id array, 
we obtain trees. 

– Each connected component corresponds to a tree. 

– Each object p corresponds to a node whose parent is id[p]. 

– Exception: if id[p] == p, then p is the root of a tree. 

• In first version of Union-Find, a connected 
component of two or more objects corresponded to 
a tree with two levels. 

• Now, a connected component of n objects (n >= 2) 
can have anywhere from 2 to n levels. 

• See textbook figures 1.4, 1.5 (pages 13-14). 
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Time Analysis of Second Version 

• How much time does union take? 

• How much time does find take? 
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Time Analysis of Second Version 

• How much time does union take? 

– a constant number of operations (which is the 
best result we could hope for). 

• How much time does find take? 

– find(p) needs to find the root of the tree that p 
belongs to. This needs at least as many 
instructions as the distance from p to the root of 
the tree. 
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Time Analysis of Second Version 

• Worst case? 
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Time Analysis of Second Version 

• Worst case: we process M links in this order: 

– 1 0 

– 2 1 

– 3 2 

– … 

– M M-1 

• Then, how will the ids look after we process each 
link? 
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Time Analysis of Second Version 

• Worst case: we process M links in this order: 

– 1 0 

– 2 1 

– 3 2 

– … 

– M M-1 

• Then, how will the ids look after we process the m-th 
link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 
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Time Analysis of Second Version 

• Worst case: we process links in this order: 

– 1 0, 2 1, 3 2, …, M M-1. 

• Then, how will the ids look after we process each 
link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 

• How many instructions will find take? 
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Time Analysis of Second Version 

• Worst case: we process links in this order: 

– 1 0, 2 1, 3 2, …, M M-1. 

• Then, how will the ids look after we process each link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 

• How many instructions will find take? 

– at least m instructions for the m-th link. 

• Total? 
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Time Analysis of Second Version 

• Worst case: we process links in this order: 

– 1 0, 2 1, 3 2, …, M M-1. 

• Then, how will the ids look after we process each link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 

• How many instructions will find take? 

– at least m instructions for the m-th link. 

• Total? 1 + 2 + 3 + … + M = 0.5 * M * (M+1). So, at least 
0.5 * M2 instructions.   Quadratic in M. 

• Compare to first version: M*N. Which is better? 
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Time Analysis of Second Version 

• Worst case: we process links in this order: 

– 1 0, 2 1, 3 2, …, M M-1. 

• Then, how will the ids look after we process each link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 

• How many instructions will find take? 

– at least m instructions for the m-th link. 

• Total? 1 + 2 + 3 + … + M = 0.5 * M * (M+1). So, at least 
0.5 * M2 instructions.   Quadratic in M. 

• Compare to first version: M*N. Which is better? 

– The new version, if M < N. 
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Time Analysis of Second Version 

• Worst case: we process links in this order: 

– 1 0, 2 1, 3 2, …, M M-1. 

• Then, how will the ids look after we process each link? 

– id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, … 

• What if M > N? 

• Then the number of instructions is: 
1+2+3+…+N+N+…+N. 

• Still better than first version (where we need M*N 
instructions). Compare: 
1+2+3+…+N+N+…+N  (second version) 
N+N+N+…+N+N+…+N (first version) 
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Second Vs. First Version 

• The second version is faster, but not by much. 

– About two times faster. 

– A constant factor of two will not be considered a 
big deal in this class. 

– Preview of chapter 2: constant factors like this will 
mostly be ignored. 
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Third Version 
• find: same as in second version. 

• union: always change the id of the smaller set to that 
of the larger one. 

 

void set_union(int set_id1, int set_id2, int id[], int sz[]) 

{ if (sz[set_id1] < sz[set_id2])  

  {  

    id[set_id1] = set_id2;  

    sz[set_id2] += sz[set_id1];   

  } 

  else  

  { 

    id[set_id2] = set_id1; 

    sz[set_id1] += sz[set_id2]; 

  } 

} 47 



Third Version 
main() 

{ int p, q, i, id[N], sz[n], p_id, q_id; 

  for (i = 0; i < N; i++)  

    { id[i] = i; sz[i] = 1; } 

  while (scanf("%d %d", &p, &q) == 2) 

  { p_id = find(p, id); q_id = find(q, id); 

    if (p_id == q_id)  

    { 

      printf(" %d and %d were on the same set\n", p, q); 

      continue; 

    } 

    set_union(p_id, q_id, id, sz); 

    printf(" %d %d link led to set union\n", p, q); 

    for (i = 0; i < N; i++) 

    { printf("    id[%d] = %d\n", i, id[i]);  } 

  } 

} 48 



Time Analysis of Third Version 

• What is the key effect of considering the size of the 
two sets? 
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Time Analysis of Third Version 

• What is the key effect of considering the size of the 
two sets? 

• We get flatter trees. When we merge two trees, we 
avoid creating long chains. 

• How does that improve running time? 
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Time Analysis of Third Version 

• What is the key effect of considering the size of the 
two sets? 

• We get flatter trees. When we merge two trees, we 
avoid creating long chains. 

• How does that improve running time? 

• For a connected component of n objects, find will 
need at most log n operations. 

– Remember, log is always base 2. 

• Thus, now we need how many steps in total, for all 
the find operations in the program? 
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Time Analysis of Third Version 

• What is the key effect of considering the size of the 
two sets? 

• We get flatter trees. When we merge two trees, we 
avoid creating long chains. 

• How does that improve running time? 

• For a connected component of n objects, find will 
need at most log n operations. 

– Remember, log is always base 2. 

• Thus, now we need at most M * log N steps in total. 
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Optional: Fourth Version 

• As we go through a tree during a find operation, 
flatten the tree at the same time. 

 

int find(int object, int id[]) 

{ 

  int next_object; 

  next_object = id[object]; 

   

  while (next_object != id[next_object]) 

  { 

    id[next_object] = id[id[next_object]]; 

    next_object = id[next_object]; 

  } 

  return next_object; 

} 
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Optional: Fourth Version 

• After repeated find operations, trees get flatter and 
flatter, and closer to the best case (two levels). 

 

int find(int object, int id[]) 

{ 

  int next_object; 

  next_object = id[object]; 

   

  while (next_object != id[next_object]) 

  { 

    id[next_object] = id[id[next_object]]; 

    next_object = id[next_object]; 

  } 

  return next_object; 

} 
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Optional: Fourth Version 

• When all trees are flat (2 levels), how many 
operations does a single find take? 
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Optional: Fourth Version 

• When all trees are flat (2 levels), how many 
operations does a single find take? 

• It just needs to check id[p]. The number of 
operations does not depend on the size of the 
connected component, or the total number of 
objects. 

• When the number of operations does not depend on 
any variables, we say that the number of operations 
is constant. 

• A constant number of operations is algorithmically 
the best case we can ever hope for. 
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Next Problem: Membership Search 

• We have a set S of N objects. 

• Given an object v, we want to determine if v is 
an element of S. 

• For simplicity, now we will only handle the 
case where objects are integers. 

– It will become apparent later in the course that 
the solution actually works for much more general 
types of objects. 

• Can anyone think of a simple solution for this 
problem? 
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Sequential Search 

• We have a set S of N objects. 

• Given an object v, we want to determine if v is 
an element of S. 

• Sequential search: 

– Compare v with every element of S. 

• How long does this take? 
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Sequential Search 

• We have a set S of N objects. 

• Given an object v, we want to determine if v is 
an element of S. 

• Sequential search: 

– Compare v with every element of S. 

• How long does this take? 

– If v is in S, we need on average to compare v with 
|S|/2 objects. 

– If v is not in S, we need compare v with all |S| 
objects. 

59 



Sequential Search - Version 2 

• Assume that S is sorted in ascending order (this is an 
assumption that we did not make before). 

• Sequential search, version 2: 

– Compare v with every element of S, till we find the first 
element s such that s >= v. 

– Then, if s != v we can safely say that v is not in S. 

• How long does this take? 
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Sequential Search - Version 2 

• Assume that S is sorted in ascending order (this is an 
assumption that we did not make before). 

• Sequential search, version 2: 

– Compare v with every element of S, till we find the first 
element s such that s >= v. 

– Then, if s != v we can safely say that v is not in S. 

• How long does this take? 

– We need on average to compare v with |S|/2 objects, 
regardless of whether v is in S or not. 

• A little bit better than when S was not sorted, but 
only by a factor of 2, only when v is not in S. 

61 



Binary Search 

• Again, assume that S is sorted in ascending order. 

• At first, if v is in S, v can appear in any position, from 
0 to N-1 (where N is the size of S). 

• Let's call left the leftmost position where v may be, 
and right the rightmost position where v may be. 

• Initially: 

– left = 0 

– right = N - 1 

• Now, suppose we compare v with S[N/2]. 

– Note: if N/2 is not an integer, round it down. 

– What can we say about left and right? 
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Binary Search 

• Initially: 

– left = 0 

– right = N - 1 

• Now, suppose we compare v with S[N/2]. 

– What can we say about left and right? 

• If v == S[N/2], we found v, so we are done. 

• If v < S[N/2], then right = N/2 - 1. 

• If v > S[N/2], then left = N/2 + 1. 

• Importance: We have reduced our search range in 
half, with a single comparison. 
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Binary Search - Code 

/* Determines if v is an element of S.  

   If yes, it returns the position of v in a. 

   If not, it returns -1. 

   N is the size of S. 

*/ 

int search(int S[], int N, int v) 

{  

  int left, right; 

  left = 0; right = N-1;    

  while (right >= left) 

  { int m = (left+right)/2; 

    if (v == S[m]) return m; 

    if (v < S[m]) right = m-1; else left = m+1; 

  } 

  return -1; 

} 
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Time Analysis of Binary Search 

• How many elements do we need to compare v 
with, if S contains N objects? 

• At most log(N). 

• This is what we call logarithmic time 
complexity. 

• While constant time is the best we can hope, 
we are usually very happy with logarithmic 
time. 
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Next Problem - Sorting 

• Suppose that we have an array of items (numbers, 
strings, etc.), that we want to sort. 

• Why would we want to sort? 
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Next Problem - Sorting 

• Suppose that we have an array of items (numbers, 
strings, etc.), that we want to sort. 

• Why would we want to sort? 

– To use in binary search. 

– To compute rankings, statistics (top-10, top-100, median). 

• Sorting is one of the most common operations in 
software. 

• In this course we will do several different sorting 
algorithms, with different properties. 

• Today we will look at one of the simplest: Selection 
Sort. 
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Selection Sort 

• First step: find the smallest element, and exchange it 
with element at position 0. 

• Second step: find the second smallest element, and 
exchange it with element at position 1. 

• n-th step: find the n-th smallest element, and 
exchange it with element at position n-1. 

• If we do this |S| times, then S will be sorted. 
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Selection Sort - Code 

• For simplicity, we only handle the case where the 
items are integers. 
 

/* sort array S in ascending order. 

   N is the number of elements in S. */ 

void selection(int S[], int N) 

{ int i, j, temp; 

  for (i = 0; i < N; i++) 

  { int min = i; 

    for (j = i+1; j < N; j++)  

      if (S[j] < S[min]) min = j; 

    temp = S[min]; S[min] = S[i]; S[i] = temp; 

  }  

} 69 



Selection Sort - Time Analysis 

• First step: find the smallest element, and exchange it 
with element at position 0. 

– We need N-1 comparisons. 

• Second step: find the second smallest element, and 
exchange it with element at position 1. 

– We need N-2 comparisons. 

• n-th step: find the n-th smallest element, and 
exchange it with element at position n-1. 

– We need N-n comparisons. 

• Total: (N-1) + (N-2) + (N-3) + … + 1 = about 0.5 * N2 
comparisons. 
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Selection Sort - Time Analysis 

• Total: (N-1) + (N-2) + (N-3) + … + 1 = about 0.5 * N2 
comparisons. 

• Quadratic time complexity. 

• Commonly used sorting algorithms are a bit more 
complicated, but have N * log(N) time complexity, 
which is much better (as N gets large). 
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