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Analysis of Algorithms 

• Given an algorithm, some key questions to ask are: 

– How efficient is this algorithm? 

– Can we predict its running time on specific inputs? 

– Should we use this algorithm or should we use an 
alternative? 

– Should we try to come up with a better algorithm? 

• Chapter 2 establishes some guidelines for answering 
these questions. 

• Using these guidelines, sometimes we can obtain 
easy answers. 

– At other times, getting the answers may be more difficult. 
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Empirical Analysis 

• This is an alternative to the more mathematically 
oriented methods we will consider. 

• Running two alternative algorithms on the same data 
and comparing the running times can be a useful 
tool. 

– 1 second vs. one minute is an easy-to-notice difference. 

• However, sometimes empirical analysis is not a good 
option. 

– For example, if it would take days or weeks to run the 
programs. 

3 



Data for Empirical Analysis 

• How do we choose the data that we use in the 
experiments? 
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Data for Empirical Analysis 

• How do we choose the data that we use in the 
experiments? 

– Actual data. 
• Pros:  

• Cons: 

– Random data. 
• Pros: 

• Cons: 

– Perverse data. 
• Pros: 

• Cons: 
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Data for Empirical Analysis 

• How do we choose the data that we use in the 
experiments? 

– Actual data. 
• Pros: give the most relevant and reliable estimates of performance. 

• Cons: may be hard to obtain. 

– Random data. 
• Pros: easy to obtain, make the estimate not data-specific. 

• Cons: may be too unrealistic. 

– Perverse data. 
• Pros: gives us worst case estimate, so we can obtain guarantees of 

performance. 

• Cons: the worst case estimate may be much worse than average 
performance. 
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Comparing Running Times 

• When comparing running times of two implementations, 
we must make sure the comparison is fair. 

• We are often much more careful optimizing "our" 
algorithm compared to the "competitor" algorithm. 

• Implementations using different programming languages 
may tell us more about the difference between the 
languages than the difference between implementations. 

• An easier case is when both implementations use mostly 
the same codebase, and differ in a few lines. 

– Example: the different implementations of Union-Find in 
Chapter 1. 
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Avoid Insufficient Analysis 

• Not performing analysis of algorithmic performance 
can be a problem. 

– Many (perhaps the majority) of programmers have no 
background in algorithms. 

– People with background in algorithmic analysis may be too 
lazy, or too pressured by deadlines, to use this background. 

• Unnecessarily slow software is a common 
consequence when skipping analysis. 
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Avoid Excessive Analysis 

• Worrying too much about algorithm performance 
can also be a problem. 

– Sometimes, slow is fast enough. 

– A user will not even notice an improvement from a 
millisecond to a microsecond. 

– The time spent optimizing the software should never 
exceed the total time saved by these optimizations. 
• E.g., do not spend 20 hours to reduce running time by 5 hours on a 

software that you will only run 3 times and then discard. 

• Ask yourself: what are the most important 
bottlenecks in my code, that I need to focus on? 

• Ask yourself: is this analysis worth it? What do I 
expect to gain? 9 



Mathematical Analysis of Algorithms 

• Some times it may be hard to mathematically predict 
how fast an algorithm will run. 

• However, we will study a relatively small set of 
techniques that applies on a relatively broad range of 
algorithms. 

• First technique: find key operations and key quantities. 

– Identify the important operations in the program that 
constitute the bottleneck in the computations. 
• This way, we can focus on estimating the number of times these 

operations are performed, vs. trying to estimate the number of CPU 
instructions and/or nanoseconds the program will take. 

– Identify a few key quantities that measure the size of the data 
that determine the running time. 10 



Finding Key Operations 

• We said it is a good idea to identify the important 
operations in the code, that constitute the 
bottleneck in the computations. 

• How can we do that? 

11 



Finding Key Operations 

• We said it is a good idea to identify the important 
operations in the code, that constitute the 
bottleneck in the computations. 

• How can we do that? 

– One approach is to just think about it. 

– Another approach is to use software profilers, which show 
how much time is spent on each line of code. 
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Finding Key Operations 

• What were the key operations for Union Find? 

– ??? 

 

• What were the key operations for Binary Search? 

– ??? 

• What were the key operations for Selection Sort? 

– ??? 
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Finding Key Operations 

• What were the key operations for Union Find? 

– Checking and changing ids in Find. 

– Checking and changing ids in Union. 

• What were the key operations for Binary Search? 

– Comparisons between numbers. 

• What were the key operations for Selection Sort? 

– Comparisons between numbers. 

• In all three cases, the running time was proportional 
to the total number of those key operations. 
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Finding Key Quantities 

• We said that it is a good idea to identify a few key 
quantities that measure the size of the data and that 
are the most important in determining the running 
time. 

• What were the key quantities for Union-Find? 

– ??? 

• What were the key quantities for Binary Search? 

– ??? 

• What were the key quantities for Selection Sort? 

– ??? 

 

 
15 



Finding Key Quantities 

• We said that it is a good idea to identify a few key 
quantities that measure the size of the data and that 
are the most important in determining the running 
time. 

• What were the key quantities for Union-Find? 

– Number of nodes, number of edges. 

• What were the key quantities for Binary Search? 

– Size of the array. 

• What were the key quantities for Selection Sort? 

– Size of the array. 
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Finding Key Quantities 

• These key quantities are different for each set of data 
that the algorithm runs on. 

• Focusing on these quantities greatly simplifies the 
analysis. 

– For example, there is a huge number of integer arrays of 
size 1,000,000, that could be passed as inputs to Binary 
Search or to Selection Sort.  

– However, to analyze the running time, we do not need to 
worry about the contents of these arrays (which are too 
diverse), but just about the size, which is expressed as a 
single number. 
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Describing Running Time 

• Rule: most algorithms have a primary parameter N, 
that measures the size of the data and that affects 
the running time most significantly. 

• Example: for binary search, N is ??? 

• Example: for selection sort, N is ??? 

• Example: for Union-Find, N is ??? 
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Describing Running Time 

• Rule: most algorithms have a primary parameter N, 
that measures the size of the data and that affects 
the running time most significantly. 

• Example: for binary search, N is the size of the array. 

• Example: for selection sort, N is the size of the array. 

• Example: for Union-Find, N is ??? 

– Union-Find is one of many exceptions.  

– Two key parameters, number of nodes, and number of 
edges, must be considered to determine the running time. 
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Describing Running Time 

• Rule: most algorithms have a primary parameter N, 
that affects the running time most significantly. 

• When we analyze an algorithm, our goal is to find a 
function f(N), such that the running time of the 
algorithm is proportional to f(N). 

• Why proportional and not equal? 
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Describing Running Time 

• Rule: most algorithms have a primary parameter N, 
that affects the running time most significantly. 

• When we analyze an algorithm, our goal is to find a 
function f(N), such that the running time of the 
algorithm is proportional to f(N). 

• Why proportional and not equal? 

• Because the actual running time is not a defining 
characteristic of an algorithm. 

– Running time depends on programming language, actual 
implementation, compiler used, machine executing the 
code, … 
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Describing Running Time 

• Rule: most algorithms have a primary parameter N, 
that affects the running time most significantly. 

• When we analyze an algorithm, our goal is to find a 
function f(N), such that the running time of the 
algorithm is proportional to f(N). 

• We will now take a look at the most common 
functions that are used to describe running time. 

22 



The Constant Function: f(N) = 1 

• f(N) = 1. What does it mean to say that the running 
time of an algorithm is described by 1? 
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The Constant Function: f(N) = 1 

• f(N) = 1. What does it mean to say that the running 
time of an algorithm is described by 1? 

• It means that the running time of the algorithm is 
proportional to 1, which means… 
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The Constant Function: f(N) = 1 

• f(N) = 1: What does it mean to say that the running 
time of an algorithm is described by 1? 

• It means that the running time of the algorithm is 
proportional to 1, which means… 

– that the running time is constant, or at least bounded by a 
constant. 

• This happens when all instructions of the program 
are executed only once, or at least no more than a 
certain fixed number of times. 

• If f(N) = 1, we say that the algorithm takes constant 
time. This is the best case we can ever hope for. 
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The Constant Function: f(N) = 1 

• What algorithm (or part of an algorithm) have we 
seen whose running time is constant? 
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The Constant Function: f(N) = 1 

• What algorithm (or part of an algorithm) have we 
seen whose running time is constant? 

• The find operation in the quick-find version of Union-
Find. 
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Logarithmic Time: f(N) = log N 

• f(N) = log N: the running time is proportional to the 
logarithm of N. 

• How good or bad is that? 
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Logarithmic Time: f(N) = log N 

• f(N) = log N: the running time is proportional to the 
logarithm of N. 

• How good or bad is that? 

– log 1000 ~= ???. 

– The logarithm of one million is about ???. 

– The logarithm of one billion is about ???. 

– The logarithm of one trillion is about ???. 
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Logarithmic Time: f(N) = log N 

• f(N) = log N: the running time is proportional to the 
logarithm of N. 

• How good or bad is that? 

– log 1000 ~= 10. 

– The logarithm of one million is about 20. 

– The logarithm of one billion is about 30. 

– The logarithm of one trillion is about 40. 

• Function log N grows very slowly: 

• This means that the running time when N = one 
trillion is only four times the running time when N = 
1000. This is really good scaling behavior. 
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Logarithmic Time: f(N) = log N 

• If f(N) = log N, we say that the algorithm takes 
logarithmic time. 

• What algorithm (or part of an algorithm) have we 
seen whose running time is proportional to log N? 
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Logarithmic Time: f(N) = log N 

• If f(N) = log N, we say that the algorithm takes 
logarithmic time. 

• What algorithm (or part of an algorithm) have we 
seen whose running time is proportional to log N? 

• Binary Search. 

• The Find function on the weighted-cost quick-union 
version of Union-Find. 
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Logarithmic Time: f(N) = log N 

• Logarithmic time commonly occurs when solving a 
big problem is solved in a sequence of steps, where: 

– Each step reduces the size of the problem by some 
constant factor. 

– Each step requires no more than a constant number of 
operations. 

• Binary search is an example: 

– Each step reduces the size of the problem by a factor of 2. 

– Each step requires only one comparison, and a few 
variable updates. 
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Linear Time: f(N) = N 

• f(N) = N: the running time is proportional to N. 

• This happens when we need to do some fixed 
amount of processing on each input element. 

• What algorithms (or parts of algorithms) are 
examples? 
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Linear Time: f(N) = N 

• f(N) = N: the running time is proportional to N. 

• This happens when we need to do some fixed 
amount of processing on each input element. 

• What algorithms (or parts of algorithms) are 
examples? 

– The Union function in the quick-find version of Union-Find. 

– Sequential search for finding the min or max value in an 
array. 

– Sequential search for determining whether a value 
appears somewhere in an array. 
• Is this ever useful? Can't we always just do binary search? 
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Linear Time: f(N) = N 

• f(N) = N: the running time is proportional to N. 

• This happens when we need to do some fixed 
amount of processing on each input element. 

• What algorithms (or parts of algorithms) are 
examples? 

– The Union function in the quick-find version of Union-Find. 

– Sequential search for finding the min or max value in an 
array. 

– Sequential search for determining whether a value 
appears somewhere in an array. 
• Is this ever useful? Can't we always just do binary search? 

• If the array is not already sorted, binary search does not work. 
36 



N log N Time 

• f(N) = N log N: the running time is proportional to  
N log N.  

• This running time is commonly encountered, especially 
in algorithms working as follows: 

– Break problem into smaller subproblems. 

– Solve subproblems independently. 

– Combine the solutions of the subproblems. 

• Many sorting algorithms have this complexity. 

• Comparing linear to N log N time. 

– N = 1 million, N log N is about ??? 

– N = 1 billion, N log N is about ??? 

– N = 1 trillion, N log N is about ??? 37 



N log N Time 

• Comparing linear to N log N time. 

– N = 1 million, N log N is about 20 million. 

– N = 1 billion, N log N is about 30 billion. 

– N = 1 trillion, N log N is about 40 trillion. 

• N log N is worse than linear time, but not by much. 
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Quadratic Time 

• f(N) = N2: the running time is proportional to the 
square of N. 

• In this case, we say that the running time is quadratic 
to N. 

• Any example where we have seen quadratic time? 
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Quadratic Time 

• f(N) = N2: the running time is proportional to the 
square of N. 

• In this case, we say that the running time is quadratic 
to N. 

• Any example where we have seen quadratic time? 

– Selection Sort. 
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Quadratic Time 

• Comparing linear, N log N, and quadratic time. 

 

 

 

 
 

• Quadratic time algorithms become impractical (too slow) 
much faster than linear and N log N time algorithms. 

• Of course, what we consider "impractical" depends on 
the application.  

– Some applications are more tolerant of longer running times. 
41 

N N log N  N2 

106 (1 million) about 20 million 1012 (one trillion) 

109 (1 billion) about 30 billion 1018 (one quintillion) 

1012 (1 trillion) about 40 trillion 1024 (one septillion) 



Cubic Time 

• f(N) = N3: the running time is proportional to the 
cube of N. 

• In this case, we say that the running time is cubic to 
N. 
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Cubic Time 

• Example of a problem whose solution has cubic 
running time: the assignment problem. 

– We have two sets A and B. Each set contains N items. 

– We have a cost function C(a, b), assigning a cost to 
matching an item a of A with an item b of B. 

– Find the optimal one-to-one correspondence (i.e., a way to 
match each element of A with one element of B and vice 
versa), so that the sum of the costs is minimized. 
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Cubic Time 

• Wikipedia example of the assignment problem:  

– We have three workers, Jim, Steve, and Alan. 

– We have three jobs that need to be done. 

– There is a different cost associated with each worker doing 
each job. 

 

 

 

 

– What is the optimal job assignment? 

• Cubic running time means that it is too slow to solve 
this problem for, let's say, N = 1 million. 
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Clean 
bathroom 

Sweep 
floors 

Wash 
windows 

Jim $1 $3 $3 

Steve $3 $2 $3 

Alan $3 $4 $2 



Exponential Time 

• f(N) = 2N: this is what we call exponential running time. 

• Such algorithms are usually too slow unless N is small. 

• Even for N = 100, 2N is too large and the algorithm will 
not terminate in our lifetime, or in the lifetime of the 
Universe. 

• Exponential time arises when we try all possible 
combinations of solutions. 

– Example: travelling salesman problem: find an itinerary that 
goes through each of N cities, visits no city twice, and 
minimizes the total cost of the tickets. 

• Quantum computers (if they ever arrive) may solve 
some of these problems with manageable running time. 45 



Some Useful Constants and Functions 

symbol value 

e 2.71828… 

γ   (gamma) 0.57721… 

φ  (phi) (1 + 5) / 2 = 1.61803… 
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function name approximation 

𝑥  floor function x 

𝑥  ceiling function x 

FN Fibonacci numbers φN / 5 

HN harmonic numbers ln(N) + γ 

N! factorial function (N / e)N 

lg(N!) N lg(N) - 1.44N 

These tables are for reference. 
We may use such symbols and 
functions as we discuss 
specific algorithms. 



Motivation for Big-Oh Notation 

• Given an algorithm, we want to find a function that describes 
the running time of the algorithm. 

• Key question: how much data can this algorithm handle in a 
reasonable time? 

• There are some details that we would actually NOT want this 
function to include, because they can make a function 
unnecessarily complicated. 
– Constants. 

– Behavior fluctuations on small data. 

• The Big-Oh notation, which we will see in a few slides, 
achieves that, and greatly simplifies algorithmic analysis. 
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Why Constants Are Not Important 

• Does it matter if the running time is f(N) or 5*f(N)? 
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Why Constants Are Not Important 

• Does it matter if the running time is f(N) or 5*f(N)? 

• For the purposes of algorithmic analysis, it typically 
does NOT matter. 

• Constant factors are NOT an inherent property of the 
algorithm. They depend on parameters that are 
independent of the algorithm, such as: 

– Choice of programming language. 

– Quality of the code. 

– Choice of compiler. 

– Machine capabilities (CPU speed, memory size, …) 
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Why Asymptotic Behavior Matters 

• Asymptotic behavior: The behavior of a function as 
the input approaches infinity. 

50 Running Time for input of size N 
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Why Asymptotic Behavior Matters 

• Which of these functions works best asymptotically? 

51 Running Time for input of size N 
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Why Asymptotic Behavior Matters 

• Which of these functions works best asymptotically? 

– g(N) seems to grow VERY slowly after a while. 

52 Running Time for input of size N 
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Big-Oh Notation 

• A function g(N) is said to be O(f(N)) if there exist 
constants c0 and N0 such that: 
 

g(N) < c0 f(N)    for all N > N0. 
 

• THIS IS THE SINGLE MOST IMPORTANT THING YOU 
LEARN IN THIS COURSE. 

• Typically, g(N) is the running time of an algorithm, in 
your favorite units, implementation, and machine. 
This can be a rather complicated function. 

• In algorithmic analysis, we try to find a f(N) that is 
simple, and such that g(N) = O(f(N)). 
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Why Use Big-Oh Notation? 

• A function g(N) is said to be O(f(N)) if there exist 
constants c0 and N0 such that: 
 

g(N) < c0 f(N)    for all N > N0. 
 

• The Big-Oh notation greatly simplifies the analysis 
task, by: 

1. Ignoring constant factors. How is this achieved? 
•  By the c0 in the definition. We are free to choose ANY constant c0 

we want, to make the formula work. 

• Thus, Big-Oh notation is independent of programming language, 
compiler, machine performance, and so on… 
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Why Use Big-Oh Notation? 

• A function g(N) is said to be O(f(N)) if there exist 
constants c0 and N0 such that: 
 

g(N) < c0 f(N)    for all N > N0. 
 

• The Big-Oh notation greatly simplifies the analysis 
task, by: 

2. Ignoring behavior for small inputs. How is this achieved? 
• By the N0 in the implementation. If a finite number of values are 

not compatible with the formula, just ignore them. 

• Thus, big-Oh notation focuses on asymptotic behavior. 
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Why Use Big-Oh Notation? 

• A function g(N) is said to be O(f(N)) if there exist 
constants c0 and N0 such that: 
 

g(N) < c0 f(N)    for all N > N0. 
 

• The Big-Oh notation greatly simplifies the analysis 
task, by: 

3. Allowing us to describe complex running time behaviors 
of complex algorithms with simple functions, such as N, 
log N, N2, 2N, and so on. 
• Such simple functions are sufficient for answering many 

important questions, once you get used to Big-Oh notation. 
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Inferences from Big-Oh Notation 

• Binary search takes logarithmic time. 

• This means that, if g(N) is the running time, there 
exist constants c0 and N0 such that: 
 

g(N) < c0 log(N)    for all N > N0. 
 

• Can this function handle trillions of data in reasonable 
time?  

– NOTE: the question is about time, not about memory. 
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Inferences from Big-Oh Notation 

• Binary search takes logarithmic time. 

• This means that, if g(N) is the running time, there 
exist constants c0 and N0 such that: 
 

g(N) < c0 log(N)    for all N > N0. 
 

• Can this function handle trillions of data in reasonable 
time?  

– NOTE: the question is about time, not about memory. 

• The answer is an easy YES! 

– We don't even know what c0 and N0
 are, and we don't care. 

– The key thing is that the running time is O(log(N)). 
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Inferences from Big-Oh Notation 

• Selection Sort takes quadratic time. 

• This means that, if g(N) is the running time, there 
exist constants c0 and N0 such that: 
 

g(N) < c0 N2    for all N > N0. 
 

• Can this function handle one billion data in 
reasonable time?  
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Inferences from Big-Oh Notation 

• Selection Sort takes quadratic time. 

• This means that, if g(N) is the running time, there 
exist constants c0 and N0 such that: 
 

g(N) < c0 N2    for all N > N0. 
 

• Can this function handle one billion data in 
reasonable time?  

• The answer is an easy NO! 

– Again, we don't know what c0
 and N0 are, and we don't care. 

– The key thing is that the running time is quadratic. 
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Is Big-Oh Notation Always Enough? 

• NO! Big-Oh notation does not always tell us which of 
two algorithms is preferable. 
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Is Big-Oh Notation Always Enough? 

• NO! Big-Oh notation does not always tell us which of 
two algorithms is preferable. 

– Example 1: if we know that the algorithm will only be 
applied to relatively small N, we may prefer a running time 
of N2 nanoseconds over log(N) centuries. 

– Example 2: even constant factors can be important. For 
many applications, we strongly prefer a running time of 3N 
over 1500N. 
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Is Big-Oh Notation Always Enough? 

• NO! Big-Oh notation does not always tell us which of 
two algorithms is preferable. 

– Example 1: if we know that the algorithm will only be 
applied to relatively small N, we may prefer a running time 
of N2 nanoseconds over log(N) centuries. 

– Example 2: even constant factors can be important. For 
many applications, we strongly prefer a running time of 3N 
over 1500N. 

• Big-Oh notation is not meant to tells us everything 
about running time. 

• But, Big-Oh notation tells us a lot, and is often much 
easier to compute than actual running times. 
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Simplifying Big-Oh Notation 

• Suppose that we are given this running time: 
 g(N) = 35N2 + 41N + log(N) + 1532. 

• How can we express g(N) in Big-Oh notation? 
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Simplifying Big-Oh Notation 

• Suppose that we are given this running time: 
 g(N) = 35N2 + 41N + log(N) + 1532. 

• How can we express g(N) in Big-Oh notation? 

• Typically we say that g(N) = O(N2). 

• The following are also correct, but unnecessarily 
complicated, and thus less useful, and rarely used. 

– g(N) = O(N2) + O(N). 

– g(N) = O(N2) + O(N) + O(logN) + O(1). 

– g(N) = O(35N2 + 41N + log(N) + 1532). 
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Simplifying Big-Oh Notation 

• Suppose that we are given this running time: 
 g(N) = 35N2 + 41N + log(N) + 1532. 

• We say that g(N) = O(N2). 

• Why is this mathematically correct? 

– Why can we ignore the non-quadratic terms? 

• This is where the Big-Oh definition comes into play. 
We can find an N0 such that, for all N > N0: 
g(N) < 36N2. 

– If you don't believe this, do the calculations for practice. 
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Simplifying Big-Oh Notation 

• Suppose that we are given this running time: 
 g(N) = 35N2 + 41N + log(N) + 1532. 

• We say that g(N) = O(N2). 

• Why is this mathematically correct? 

– Why can we ignore the non-quadratic terms? 

• Another way to show correctness: as N goes to 
infinity, what is the limit of g(N) / N2 ?   
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Simplifying Big-Oh Notation 

• Suppose that we are given this running time: 
 g(N) = 35N2 + 41N + log(N) + 1532. 

• We say that g(N) = O(N2). 

• Why is this mathematically correct? 

– Why can we ignore the non-quadratic terms? 

• Another way to show correctness: as N goes to 
infinity, what is the limit of g(N) / N2 ?   

– 35. 

– This shows that the non-quadratic terms become 
negligible as N gets larger. 
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Trick Question 

• Let g(N) = N log N. 

• Is it true that g(N) = O(N100)? 
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Trick Question 

• Let g(N) = N log N. 

• Is it true that g(N) = O(N100)? 

• Yes. Let's look again at the definition of Big-Oh: 

• A function g(N) is said to be O(f(N)) if there exist 
constants c0 and N0 such that: 
 

g(N) < c0 f(N)    for all N > N0. 
 

• Note the "<" sign to the right of g(N). 

• Thus, if g(N) = O(f(N))  and f(N) < h(N), it follows that 
g(N) = O(h(N)). 
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Omega (Ω) and Theta (Θ) Notations 

• If f(N) = O(g(N)), then we also say that g(N) = Ω(f(N)). 
 

• If f(N) = O(g(N))  and  f(N) = Ω(g(N)), then we say that 
f(N) = Θ(g(N)). 

 

• The Theta notation is clearly stricter than the Big-Oh 
notation: 

– We can say that N2 = O(N100). 

– We cannot say that N2 = Θ(N100). 
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Big-Oh vs. Theta (Θ) Notation 

• The Big-Oh notation indicates a worst-case bound. 

• However, oftentimes (almost all the time) we say 
g(N) = O(f(N))  when we could say that g(N) = Θ(f(N)). 

• This is not wrong, it is simply not as strict as it could 
be. Still, in practice we use Big-Oh notation much 
more frequently than we use Θ notation. 

– This is somewhat similar to saying x <=3 when we actually 
know that x = 3. 
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Big-Oh vs. Theta (Θ) Notation 

• Why do we use so often Big-Oh instead of Θ? Partly 
habit, and partly because we care so much about worst 
cases. 

– E.g., saying that the running time is O(N log N) establishes 
that the running time is not worse than O(N log N). 

• Also, for some problems, coming up with an algorithm 
that solves the problem in Θ(f(N)) only means that the 
problem is solvable in O(f(N)). Why? 
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Big-Oh vs. Theta (Θ) Notation 

• Why do we use so often Big-Oh instead of Θ? Partly 
habit, and partly because we care so much about worst 
cases. 

– E.g., saying that the running time is O(N log N) establishes 
that the running time is not worse than O(N log N). 

• Also, for some problems, coming up with an algorithm 
that solves the problem in Θ(f(N)) only means that the 
problem is solvable in O(f(N)). Why? 

– Because the algorithm we came up with may not be optimal. 

– Unless we prove that our algorithm is optimal, it is 
mathematically possible that a better algorithm exists, with 
lower running time. 
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Using Limits 

• if  lim
𝑛→∞

𝑔(𝑁)

𝑓(𝑁)
  is a constant, then g(N) = O(f(N)). 

– "Constant" includes zero, but does NOT include infinity. 
 

• if  lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
=  ∞  then g(N) = O(f(N)). 

 

• if  lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
  is a constant, then g(N) = Ω(f(N)). 

– Again, "constant" includes zero, but not infinity. 
 

• if  lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
  is a non-zero constant, then g(N) = Θ(f(N)). 

– In this definition, both zero and infinity are excluded. 
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Using Limits - Comments 

• The previous formulas relating limits to big-Oh 
notation show once again that big-Oh notation 
ignores: 

– constants 

– behavior for small values of N. 

• How do we see that? 

– In the previous formulas, it is sufficient that the limit is 
equal to a constant. The value of the constant does not 
matter. 

– In the previous formulas, only the limit at infinity matters. 
This means that we can ignore behavior up to any finite 
value, if we need to. 
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Basic Recurrences 

• How do we compute the running time of an 
algorithm in Big-Oh notation? 

• Sometimes it is easy, sometimes it is hard. 

• We will learn a few simple tricks that work in many 
cases that we will encounter this semester. 
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Case 1: Check All Items, Eliminate One 

• In this case, the algorithm proceeds in a sequence of 
similar steps, where: 

– each step loops through all items in the input, and 
eliminates one item. 

• Any examples of such an algorithm? 
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Case 1: Check All Items, Eliminate One 

• In this case, the algorithm proceeds in a sequence of 
similar steps, where: 

– each step loops through all items in the input, and 
eliminates one item. 

• Any examples of such an algorithm? 

– Selection Sort. 
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Case 1: Check All Items, Eliminate One 

• Let g(N) be an approximate estimate of the running 
time, measured in time units of our convenience. 

– In this case, we choose as time unit the time that it takes 
to examine one item. 

– Obviously, this is a simplification, since there are other 
things that such an algorithm will do, in addition to just 
examining one item. 

– That is one of the plusses of using Big-Oh notation. We can 
ignore parts of the algorithm that take a relatively small 
time to run, and focus on the part that dominates running 
time. 
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Case 1: Check All Items, Eliminate One 

• Let g(N) be the running time. 

• Then, g(N) = ??? 
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Case 1: Check All Items, Eliminate One 

• Let g(N) be the running time. 

• Then, g(N) = g(N-1) + N. Why? 

– Because we need to examine all items (N units of time), 
and then we need to run the algorithm on N-1 items. 

• g(N) = g(N-1) + N  

     = g(N-2) + (N-1) + N 

     = g(N-3) + (N-2) + (N-1) + N 

     ... 

     = 1 + 2 + 3 + ... + (N-1) + N 

 

     = N(N + 1) / 2 

     = O(N2) 

• Conclusion: The algorithm takes quadratic time. 82 



Case 2: Halve the Problem in 
Constant Time 

• In this case, each step of the algorithm consists of:  

– performing a constant number of operations, and then 
reducing the size of the input by half. 

• Any example of such an algorithm? 
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Case 2: Halve the Problem in 
Constant Time 

• In this case, each step of the algorithm consists of:  

– performing a constant number of operations, and then 
reducing the size of the input by half. 

• Any example of such an algorithm? 

– Binary Search. 

• What is a convenient unit of time to use here? 
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Case 2: Halve the Problem in 
Constant Time 

• In this case, each step of the algorithm consists of:  

– performing a constant number of operations, and then 
reducing the size of the input by half. 

• Any example of such an algorithm? 

– Binary Search. 

• What is a convenient unit of time to use here? 

– The time it takes to do the constant number of operations 
to halve the input. 
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• In this case, each step of the algorithm consists of:  

– performing a constant number of operations, and then 
reducing the size of the input by half. 

• g(2n) = ??? 
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Case 2: Halve the Problem in 
Constant Time 



• In this case, each step of the algorithm consists of:  

– performing a constant number of operations, and then 
reducing the size of the input by half. 

• g(2n) = 1 + g(2n-1) 

      = 2 + g(2n-2) 

      = 3 + g(2n-3) 

      ... 

      = n + g(20) 

      = n + 1. 

• O(n) time for N = 2n. 

• Substituting n for log N: O(log N) time. 
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Case 2: Halve the Problem in 
Constant Time 



Case 3: Halve the Input in 
Linear Time 

• In this case, each step of the algorithm consists of: 

– Performing a linear (i.e., O(N)) number of operations, and 
then reducing the size of the input by half. 

• g(N) = ??? 
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Case 3: Halve the Input in 
Linear Time 

• In this case, each step of the algorithm consists of: 

– Performing a linear (i.e., O(N)) number of operations, and 
then reducing the size of the input by half. 

• g(N) = g(N/2) + N 

     = g(N/4) + N/2 + N 

     = g(N/8) + N/4 + N/2 + N 

     ... 

     = 1 + 2 + 4 + ... + N/4 + N/2 + N 

     = ??? 
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Case 3: Halve the Input in 
Linear Time 

• In this case, each step of the algorithm consists of: 

– Performing a linear (i.e., O(N)) number of operations, and 
then reducing the size of the input by half. 

• g(N) = g(N/2) + N 

     = g(N/4) + N/2 + N 

     = g(N/8) + N/4 + N/2 + N 

     ... 

     = 1 + 2 + 4 + ... + N/4 + N/2 + N 

     = about 2N 

• O(N) time. 
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Case 3: Halve the Input in 
Linear Time 

• In this case, each step of the algorithm consists of: 

– Performing a linear (i.e., O(N)) number of operations, and 
then reducing the size of the input by half. 

• g(N) = g(N/2) + N 

     = g(N/4) + N/2 + N 

     = g(N/8) + N/4 + N/2 + N 

     ... 

     = about 2N 

• What is our unit of time here? 
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Case 3: Halve the Input in 
Linear Time 

• In this case, each step of the algorithm consists of: 

– Performing a linear (i.e., O(N)) number of operations, and 
then reducing the size of the input by half. 

• g(N) = g(N/2) + N 

     = g(N/4) + N/2 + N 

     = g(N/8) + N/4 + N/2 + N 

     ... 

     = about 2N 

• What is our unit of time here? 

– 1/N * time to do the linear number of operations at 
the first step. 
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Case 4: Break Problem Into Two 
Halves in Linear Time 

• In this case, each step of the algorithm consists of: 

– Doing O(N) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(N) operations to combine the two answers. 

• g(N) = ??? 
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Case 4: Break Problem Into Two 
Halves in Linear Time 

• In this case, each step of the algorithm consists of: 

– Doing O(N) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(N) operations to combine the two answers. 

• g(N) = 2g(N/2) + N 

     = 4g(N/4) + N + N 

     = 8g(N/8) + N + N + N 

     ... 

     = N log N 

• What is our unit of time here? 
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Case 4: Break Problem Into Two 
Halves in Linear Time 

• In this case, each step of the algorithm consists of: 

– Doing O(N) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(N) operations to combine the two answers. 

• g(N) = 2g(N/2) + N 

     = 4g(N/4) + N + N 

     = 8g(N/8) + N + N + N 

     ... 

     = N log N 

• What is our unit of time here? 

– 1/N * time to do the O(N) operations at the first step. 
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Case 4: Break Problem Into Two 
Halves in Linear Time 

• In this case, each step of the algorithm consists of: 

– Doing O(N) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(N) operations to combine the two answers. 

• Note: we have not seen any examples of this case yet, 
but we will see several such examples when we study 
sorting algorithms. 
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Case 5: Break Problem Into Two 
Halves in Constant Time 

• In this case, each step of the algorithm consists of: 

– Doing O(1) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(1) operations to combine the two answers. 

• g(N) = ??? 
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Case 5: Break Problem Into Two 
Halves in Constant Time 

• In this case, each step of the algorithm consists of: 

– Doing O(1) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(1) operations to combine the two answers. 

• g(N) = 2g(N/2) + 1 

     = 4g(N/4) + 2 + 1 

     = 8g(N/8) + 4 + 2 + 1 

     ... 

     = about N  

• What is our unit of time here? 
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Case 5: Break Problem Into Two 
Halves in Constant Time 

• In this case, each step of the algorithm consists of: 

– Doing O(1) operations to split the problem into two halves. 

– Calling the algorithm recursively on each half. 

– Doing O(1) operations to combine the two answers. 

• g(N) = 2g(N/2) + 1 

     = 4g(N/4) + 2 + 1 

     = 8g(N/8) + 4 + 2 + 1 

     ... 

     = about N  

• What is our unit of time here? 

– The time to do the O(1) operations at the first step. 
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