
Analysis of Algorithms

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Analysis of Algorithms

• Given an algorithm, some key questions to ask are:

– How efficient is this algorithm?

– Can we predict its running time on specific inputs?

– Should we use this algorithm or should we use an
alternative?

– Should we try to come up with a better algorithm?

• Chapter 2 establishes some guidelines for answering
these questions.

• Using these guidelines, sometimes we can obtain
easy answers.

– At other times, getting the answers may be more difficult.

2

Empirical Analysis

• This is an alternative to the more mathematically
oriented methods we will consider.

• Running two alternative algorithms on the same data
and comparing the running times can be a useful
tool.

– 1 second vs. one minute is an easy-to-notice difference.

• However, sometimes empirical analysis is not a good
option.

– For example, if it would take days or weeks to run the
programs.

3

Data for Empirical Analysis

• How do we choose the data that we use in the
experiments?

4

Data for Empirical Analysis

• How do we choose the data that we use in the
experiments?

– Actual data.
• Pros:

• Cons:

– Random data.
• Pros:

• Cons:

– Perverse data.
• Pros:

• Cons:

5

Data for Empirical Analysis

• How do we choose the data that we use in the
experiments?

– Actual data.
• Pros: give the most relevant and reliable estimates of performance.

• Cons: may be hard to obtain.

– Random data.
• Pros: easy to obtain, make the estimate not data-specific.

• Cons: may be too unrealistic.

– Perverse data.
• Pros: gives us worst case estimate, so we can obtain guarantees of

performance.

• Cons: the worst case estimate may be much worse than average
performance.

6

Comparing Running Times

• When comparing running times of two implementations,
we must make sure the comparison is fair.

• We are often much more careful optimizing "our"
algorithm compared to the "competitor" algorithm.

• Implementations using different programming languages
may tell us more about the difference between the
languages than the difference between implementations.

• An easier case is when both implementations use mostly
the same codebase, and differ in a few lines.

– Example: the different implementations of Union-Find in
Chapter 1.

7

Avoid Insufficient Analysis

• Not performing analysis of algorithmic performance
can be a problem.

– Many (perhaps the majority) of programmers have no
background in algorithms.

– People with background in algorithmic analysis may be too
lazy, or too pressured by deadlines, to use this background.

• Unnecessarily slow software is a common
consequence when skipping analysis.

8

Avoid Excessive Analysis

• Worrying too much about algorithm performance
can also be a problem.

– Sometimes, slow is fast enough.

– A user will not even notice an improvement from a
millisecond to a microsecond.

– The time spent optimizing the software should never
exceed the total time saved by these optimizations.
• E.g., do not spend 20 hours to reduce running time by 5 hours on a

software that you will only run 3 times and then discard.

• Ask yourself: what are the most important
bottlenecks in my code, that I need to focus on?

• Ask yourself: is this analysis worth it? What do I
expect to gain? 9

Mathematical Analysis of Algorithms

• Some times it may be hard to mathematically predict
how fast an algorithm will run.

• However, we will study a relatively small set of
techniques that applies on a relatively broad range of
algorithms.

• First technique: find key operations and key quantities.

– Identify the important operations in the program that
constitute the bottleneck in the computations.
• This way, we can focus on estimating the number of times these

operations are performed, vs. trying to estimate the number of CPU
instructions and/or nanoseconds the program will take.

– Identify a few key quantities that measure the size of the data
that determine the running time. 10

Finding Key Operations

• We said it is a good idea to identify the important
operations in the code, that constitute the
bottleneck in the computations.

• How can we do that?

11

Finding Key Operations

• We said it is a good idea to identify the important
operations in the code, that constitute the
bottleneck in the computations.

• How can we do that?

– One approach is to just think about it.

– Another approach is to use software profilers, which show
how much time is spent on each line of code.

12

Finding Key Operations

• What were the key operations for Union Find?

– ???

• What were the key operations for Binary Search?

– ???

• What were the key operations for Selection Sort?

– ???

13

Finding Key Operations

• What were the key operations for Union Find?

– Checking and changing ids in Find.

– Checking and changing ids in Union.

• What were the key operations for Binary Search?

– Comparisons between numbers.

• What were the key operations for Selection Sort?

– Comparisons between numbers.

• In all three cases, the running time was proportional
to the total number of those key operations.

14

Finding Key Quantities

• We said that it is a good idea to identify a few key
quantities that measure the size of the data and that
are the most important in determining the running
time.

• What were the key quantities for Union-Find?

– ???

• What were the key quantities for Binary Search?

– ???

• What were the key quantities for Selection Sort?

– ???

15

Finding Key Quantities

• We said that it is a good idea to identify a few key
quantities that measure the size of the data and that
are the most important in determining the running
time.

• What were the key quantities for Union-Find?

– Number of nodes, number of edges.

• What were the key quantities for Binary Search?

– Size of the array.

• What were the key quantities for Selection Sort?

– Size of the array.

16

Finding Key Quantities

• These key quantities are different for each set of data
that the algorithm runs on.

• Focusing on these quantities greatly simplifies the
analysis.

– For example, there is a huge number of integer arrays of
size 1,000,000, that could be passed as inputs to Binary
Search or to Selection Sort.

– However, to analyze the running time, we do not need to
worry about the contents of these arrays (which are too
diverse), but just about the size, which is expressed as a
single number.

17

Describing Running Time

• Rule: most algorithms have a primary parameter N,
that measures the size of the data and that affects
the running time most significantly.

• Example: for binary search, N is ???

• Example: for selection sort, N is ???

• Example: for Union-Find, N is ???

18

Describing Running Time

• Rule: most algorithms have a primary parameter N,
that measures the size of the data and that affects
the running time most significantly.

• Example: for binary search, N is the size of the array.

• Example: for selection sort, N is the size of the array.

• Example: for Union-Find, N is ???

– Union-Find is one of many exceptions.

– Two key parameters, number of nodes, and number of
edges, must be considered to determine the running time.

19

Describing Running Time

• Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

• When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

• Why proportional and not equal?

20

Describing Running Time

• Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

• When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

• Why proportional and not equal?

• Because the actual running time is not a defining
characteristic of an algorithm.

– Running time depends on programming language, actual
implementation, compiler used, machine executing the
code, …

21

Describing Running Time

• Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

• When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

• We will now take a look at the most common
functions that are used to describe running time.

22

The Constant Function: f(N) = 1

• f(N) = 1. What does it mean to say that the running
time of an algorithm is described by 1?

23

The Constant Function: f(N) = 1

• f(N) = 1. What does it mean to say that the running
time of an algorithm is described by 1?

• It means that the running time of the algorithm is
proportional to 1, which means…

24

The Constant Function: f(N) = 1

• f(N) = 1: What does it mean to say that the running
time of an algorithm is described by 1?

• It means that the running time of the algorithm is
proportional to 1, which means…

– that the running time is constant, or at least bounded by a
constant.

• This happens when all instructions of the program
are executed only once, or at least no more than a
certain fixed number of times.

• If f(N) = 1, we say that the algorithm takes constant
time. This is the best case we can ever hope for.

25

The Constant Function: f(N) = 1

• What algorithm (or part of an algorithm) have we
seen whose running time is constant?

26

The Constant Function: f(N) = 1

• What algorithm (or part of an algorithm) have we
seen whose running time is constant?

• The find operation in the quick-find version of Union-
Find.

27

Logarithmic Time: f(N) = log N

• f(N) = log N: the running time is proportional to the
logarithm of N.

• How good or bad is that?

28

Logarithmic Time: f(N) = log N

• f(N) = log N: the running time is proportional to the
logarithm of N.

• How good or bad is that?

– log 1000 ~= ???.

– The logarithm of one million is about ???.

– The logarithm of one billion is about ???.

– The logarithm of one trillion is about ???.

29

Logarithmic Time: f(N) = log N

• f(N) = log N: the running time is proportional to the
logarithm of N.

• How good or bad is that?

– log 1000 ~= 10.

– The logarithm of one million is about 20.

– The logarithm of one billion is about 30.

– The logarithm of one trillion is about 40.

• Function log N grows very slowly:

• This means that the running time when N = one
trillion is only four times the running time when N =
1000. This is really good scaling behavior.

30

Logarithmic Time: f(N) = log N

• If f(N) = log N, we say that the algorithm takes
logarithmic time.

• What algorithm (or part of an algorithm) have we
seen whose running time is proportional to log N?

31

Logarithmic Time: f(N) = log N

• If f(N) = log N, we say that the algorithm takes
logarithmic time.

• What algorithm (or part of an algorithm) have we
seen whose running time is proportional to log N?

• Binary Search.

• The Find function on the weighted-cost quick-union
version of Union-Find.

32

Logarithmic Time: f(N) = log N

• Logarithmic time commonly occurs when solving a
big problem is solved in a sequence of steps, where:

– Each step reduces the size of the problem by some
constant factor.

– Each step requires no more than a constant number of
operations.

• Binary search is an example:

– Each step reduces the size of the problem by a factor of 2.

– Each step requires only one comparison, and a few
variable updates.

33

Linear Time: f(N) = N

• f(N) = N: the running time is proportional to N.

• This happens when we need to do some fixed
amount of processing on each input element.

• What algorithms (or parts of algorithms) are
examples?

34

Linear Time: f(N) = N

• f(N) = N: the running time is proportional to N.

• This happens when we need to do some fixed
amount of processing on each input element.

• What algorithms (or parts of algorithms) are
examples?

– The Union function in the quick-find version of Union-Find.

– Sequential search for finding the min or max value in an
array.

– Sequential search for determining whether a value
appears somewhere in an array.
• Is this ever useful? Can't we always just do binary search?

35

Linear Time: f(N) = N

• f(N) = N: the running time is proportional to N.

• This happens when we need to do some fixed
amount of processing on each input element.

• What algorithms (or parts of algorithms) are
examples?

– The Union function in the quick-find version of Union-Find.

– Sequential search for finding the min or max value in an
array.

– Sequential search for determining whether a value
appears somewhere in an array.
• Is this ever useful? Can't we always just do binary search?

• If the array is not already sorted, binary search does not work.
36

N log N Time

• f(N) = N log N: the running time is proportional to
N log N.

• This running time is commonly encountered, especially
in algorithms working as follows:

– Break problem into smaller subproblems.

– Solve subproblems independently.

– Combine the solutions of the subproblems.

• Many sorting algorithms have this complexity.

• Comparing linear to N log N time.

– N = 1 million, N log N is about ???

– N = 1 billion, N log N is about ???

– N = 1 trillion, N log N is about ??? 37

N log N Time

• Comparing linear to N log N time.

– N = 1 million, N log N is about 20 million.

– N = 1 billion, N log N is about 30 billion.

– N = 1 trillion, N log N is about 40 trillion.

• N log N is worse than linear time, but not by much.

38

Quadratic Time

• f(N) = N2: the running time is proportional to the
square of N.

• In this case, we say that the running time is quadratic
to N.

• Any example where we have seen quadratic time?

39

Quadratic Time

• f(N) = N2: the running time is proportional to the
square of N.

• In this case, we say that the running time is quadratic
to N.

• Any example where we have seen quadratic time?

– Selection Sort.

40

Quadratic Time

• Comparing linear, N log N, and quadratic time.

• Quadratic time algorithms become impractical (too slow)
much faster than linear and N log N time algorithms.

• Of course, what we consider "impractical" depends on
the application.

– Some applications are more tolerant of longer running times.
41

N N log N N2

106 (1 million) about 20 million 1012 (one trillion)

109 (1 billion) about 30 billion 1018 (one quintillion)

1012 (1 trillion) about 40 trillion 1024 (one septillion)

Cubic Time

• f(N) = N3: the running time is proportional to the
cube of N.

• In this case, we say that the running time is cubic to
N.

42

Cubic Time

• Example of a problem whose solution has cubic
running time: the assignment problem.

– We have two sets A and B. Each set contains N items.

– We have a cost function C(a, b), assigning a cost to
matching an item a of A with an item b of B.

– Find the optimal one-to-one correspondence (i.e., a way to
match each element of A with one element of B and vice
versa), so that the sum of the costs is minimized.

43

Cubic Time

• Wikipedia example of the assignment problem:

– We have three workers, Jim, Steve, and Alan.

– We have three jobs that need to be done.

– There is a different cost associated with each worker doing
each job.

– What is the optimal job assignment?

• Cubic running time means that it is too slow to solve
this problem for, let's say, N = 1 million.

44

Clean
bathroom

Sweep
floors

Wash
windows

Jim $1 $3 $3

Steve $3 $2 $3

Alan $3 $4 $2

Exponential Time

• f(N) = 2N: this is what we call exponential running time.

• Such algorithms are usually too slow unless N is small.

• Even for N = 100, 2N is too large and the algorithm will
not terminate in our lifetime, or in the lifetime of the
Universe.

• Exponential time arises when we try all possible
combinations of solutions.

– Example: travelling salesman problem: find an itinerary that
goes through each of N cities, visits no city twice, and
minimizes the total cost of the tickets.

• Quantum computers (if they ever arrive) may solve
some of these problems with manageable running time. 45

Some Useful Constants and Functions

symbol value

e 2.71828…

γ (gamma) 0.57721…

φ (phi) (1 + 5) / 2 = 1.61803…

46

function name approximation

𝑥 floor function x

𝑥 ceiling function x

FN Fibonacci numbers φN / 5

HN harmonic numbers ln(N) + γ

N! factorial function (N / e)N

lg(N!) N lg(N) - 1.44N

These tables are for reference.
We may use such symbols and
functions as we discuss
specific algorithms.

Motivation for Big-Oh Notation

• Given an algorithm, we want to find a function that describes
the running time of the algorithm.

• Key question: how much data can this algorithm handle in a
reasonable time?

• There are some details that we would actually NOT want this
function to include, because they can make a function
unnecessarily complicated.
– Constants.

– Behavior fluctuations on small data.

• The Big-Oh notation, which we will see in a few slides,
achieves that, and greatly simplifies algorithmic analysis.

47

Why Constants Are Not Important

• Does it matter if the running time is f(N) or 5*f(N)?

48

Why Constants Are Not Important

• Does it matter if the running time is f(N) or 5*f(N)?

• For the purposes of algorithmic analysis, it typically
does NOT matter.

• Constant factors are NOT an inherent property of the
algorithm. They depend on parameters that are
independent of the algorithm, such as:

– Choice of programming language.

– Quality of the code.

– Choice of compiler.

– Machine capabilities (CPU speed, memory size, …)

49

Why Asymptotic Behavior Matters

• Asymptotic behavior: The behavior of a function as
the input approaches infinity.

50 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h*f(N)

Why Asymptotic Behavior Matters

• Which of these functions works best asymptotically?

51 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h*f(N)

Why Asymptotic Behavior Matters

• Which of these functions works best asymptotically?

– g(N) seems to grow VERY slowly after a while.

52 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h*f(N)

Big-Oh Notation

• A function g(N) is said to be O(f(N)) if there exist
constants c0 and N0 such that:

g(N) < c0 f(N) for all N > N0.

• THIS IS THE SINGLE MOST IMPORTANT THING YOU
LEARN IN THIS COURSE.

• Typically, g(N) is the running time of an algorithm, in
your favorite units, implementation, and machine.
This can be a rather complicated function.

• In algorithmic analysis, we try to find a f(N) that is
simple, and such that g(N) = O(f(N)).

53

Why Use Big-Oh Notation?

• A function g(N) is said to be O(f(N)) if there exist
constants c0 and N0 such that:

g(N) < c0 f(N) for all N > N0.

• The Big-Oh notation greatly simplifies the analysis
task, by:

1. Ignoring constant factors. How is this achieved?
• By the c0 in the definition. We are free to choose ANY constant c0

we want, to make the formula work.

• Thus, Big-Oh notation is independent of programming language,
compiler, machine performance, and so on…

54

Why Use Big-Oh Notation?

• A function g(N) is said to be O(f(N)) if there exist
constants c0 and N0 such that:

g(N) < c0 f(N) for all N > N0.

• The Big-Oh notation greatly simplifies the analysis
task, by:

2. Ignoring behavior for small inputs. How is this achieved?
• By the N0 in the implementation. If a finite number of values are

not compatible with the formula, just ignore them.

• Thus, big-Oh notation focuses on asymptotic behavior.

55

Why Use Big-Oh Notation?

• A function g(N) is said to be O(f(N)) if there exist
constants c0 and N0 such that:

g(N) < c0 f(N) for all N > N0.

• The Big-Oh notation greatly simplifies the analysis
task, by:

3. Allowing us to describe complex running time behaviors
of complex algorithms with simple functions, such as N,
log N, N2, 2N, and so on.
• Such simple functions are sufficient for answering many

important questions, once you get used to Big-Oh notation.

56

Inferences from Big-Oh Notation

• Binary search takes logarithmic time.

• This means that, if g(N) is the running time, there
exist constants c0 and N0 such that:

g(N) < c0 log(N) for all N > N0.

• Can this function handle trillions of data in reasonable
time?

– NOTE: the question is about time, not about memory.

57

Inferences from Big-Oh Notation

• Binary search takes logarithmic time.

• This means that, if g(N) is the running time, there
exist constants c0 and N0 such that:

g(N) < c0 log(N) for all N > N0.

• Can this function handle trillions of data in reasonable
time?

– NOTE: the question is about time, not about memory.

• The answer is an easy YES!

– We don't even know what c0 and N0
 are, and we don't care.

– The key thing is that the running time is O(log(N)).
58

Inferences from Big-Oh Notation

• Selection Sort takes quadratic time.

• This means that, if g(N) is the running time, there
exist constants c0 and N0 such that:

g(N) < c0 N2 for all N > N0.

• Can this function handle one billion data in
reasonable time?

59

Inferences from Big-Oh Notation

• Selection Sort takes quadratic time.

• This means that, if g(N) is the running time, there
exist constants c0 and N0 such that:

g(N) < c0 N2 for all N > N0.

• Can this function handle one billion data in
reasonable time?

• The answer is an easy NO!

– Again, we don't know what c0
 and N0 are, and we don't care.

– The key thing is that the running time is quadratic.

60

Is Big-Oh Notation Always Enough?

• NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

61

Is Big-Oh Notation Always Enough?

• NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

– Example 1: if we know that the algorithm will only be
applied to relatively small N, we may prefer a running time
of N2 nanoseconds over log(N) centuries.

– Example 2: even constant factors can be important. For
many applications, we strongly prefer a running time of 3N
over 1500N.

62

Is Big-Oh Notation Always Enough?

• NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

– Example 1: if we know that the algorithm will only be
applied to relatively small N, we may prefer a running time
of N2 nanoseconds over log(N) centuries.

– Example 2: even constant factors can be important. For
many applications, we strongly prefer a running time of 3N
over 1500N.

• Big-Oh notation is not meant to tells us everything
about running time.

• But, Big-Oh notation tells us a lot, and is often much
easier to compute than actual running times.

63

Simplifying Big-Oh Notation

• Suppose that we are given this running time:
 g(N) = 35N2 + 41N + log(N) + 1532.

• How can we express g(N) in Big-Oh notation?

64

Simplifying Big-Oh Notation

• Suppose that we are given this running time:
 g(N) = 35N2 + 41N + log(N) + 1532.

• How can we express g(N) in Big-Oh notation?

• Typically we say that g(N) = O(N2).

• The following are also correct, but unnecessarily
complicated, and thus less useful, and rarely used.

– g(N) = O(N2) + O(N).

– g(N) = O(N2) + O(N) + O(logN) + O(1).

– g(N) = O(35N2 + 41N + log(N) + 1532).

65

Simplifying Big-Oh Notation

• Suppose that we are given this running time:
 g(N) = 35N2 + 41N + log(N) + 1532.

• We say that g(N) = O(N2).

• Why is this mathematically correct?

– Why can we ignore the non-quadratic terms?

• This is where the Big-Oh definition comes into play.
We can find an N0 such that, for all N > N0:
g(N) < 36N2.

– If you don't believe this, do the calculations for practice.

66

Simplifying Big-Oh Notation

• Suppose that we are given this running time:
 g(N) = 35N2 + 41N + log(N) + 1532.

• We say that g(N) = O(N2).

• Why is this mathematically correct?

– Why can we ignore the non-quadratic terms?

• Another way to show correctness: as N goes to
infinity, what is the limit of g(N) / N2 ?

67

Simplifying Big-Oh Notation

• Suppose that we are given this running time:
 g(N) = 35N2 + 41N + log(N) + 1532.

• We say that g(N) = O(N2).

• Why is this mathematically correct?

– Why can we ignore the non-quadratic terms?

• Another way to show correctness: as N goes to
infinity, what is the limit of g(N) / N2 ?

– 35.

– This shows that the non-quadratic terms become
negligible as N gets larger.

68

Trick Question

• Let g(N) = N log N.

• Is it true that g(N) = O(N100)?

69

Trick Question

• Let g(N) = N log N.

• Is it true that g(N) = O(N100)?

• Yes. Let's look again at the definition of Big-Oh:

• A function g(N) is said to be O(f(N)) if there exist
constants c0 and N0 such that:

g(N) < c0 f(N) for all N > N0.

• Note the "<" sign to the right of g(N).

• Thus, if g(N) = O(f(N)) and f(N) < h(N), it follows that
g(N) = O(h(N)).

70

Omega (Ω) and Theta (Θ) Notations

• If f(N) = O(g(N)), then we also say that g(N) = Ω(f(N)).

• If f(N) = O(g(N)) and f(N) = Ω(g(N)), then we say that
f(N) = Θ(g(N)).

• The Theta notation is clearly stricter than the Big-Oh
notation:

– We can say that N2 = O(N100).

– We cannot say that N2 = Θ(N100).

71

Big-Oh vs. Theta (Θ) Notation

• The Big-Oh notation indicates a worst-case bound.

• However, oftentimes (almost all the time) we say
g(N) = O(f(N)) when we could say that g(N) = Θ(f(N)).

• This is not wrong, it is simply not as strict as it could
be. Still, in practice we use Big-Oh notation much
more frequently than we use Θ notation.

– This is somewhat similar to saying x <=3 when we actually
know that x = 3.

72

Big-Oh vs. Theta (Θ) Notation

• Why do we use so often Big-Oh instead of Θ? Partly
habit, and partly because we care so much about worst
cases.

– E.g., saying that the running time is O(N log N) establishes
that the running time is not worse than O(N log N).

• Also, for some problems, coming up with an algorithm
that solves the problem in Θ(f(N)) only means that the
problem is solvable in O(f(N)). Why?

73

Big-Oh vs. Theta (Θ) Notation

• Why do we use so often Big-Oh instead of Θ? Partly
habit, and partly because we care so much about worst
cases.

– E.g., saying that the running time is O(N log N) establishes
that the running time is not worse than O(N log N).

• Also, for some problems, coming up with an algorithm
that solves the problem in Θ(f(N)) only means that the
problem is solvable in O(f(N)). Why?

– Because the algorithm we came up with may not be optimal.

– Unless we prove that our algorithm is optimal, it is
mathematically possible that a better algorithm exists, with
lower running time.

74

Using Limits

• if lim
𝑛→∞

𝑔(𝑁)

𝑓(𝑁)
 is a constant, then g(N) = O(f(N)).

– "Constant" includes zero, but does NOT include infinity.

• if lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
= ∞ then g(N) = O(f(N)).

• if lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
 is a constant, then g(N) = Ω(f(N)).

– Again, "constant" includes zero, but not infinity.

• if lim
𝑛→∞

𝑓(𝑁)

𝑔(𝑁)
 is a non-zero constant, then g(N) = Θ(f(N)).

– In this definition, both zero and infinity are excluded.

75

Using Limits - Comments

• The previous formulas relating limits to big-Oh
notation show once again that big-Oh notation
ignores:

– constants

– behavior for small values of N.

• How do we see that?

– In the previous formulas, it is sufficient that the limit is
equal to a constant. The value of the constant does not
matter.

– In the previous formulas, only the limit at infinity matters.
This means that we can ignore behavior up to any finite
value, if we need to.

76

Basic Recurrences

• How do we compute the running time of an
algorithm in Big-Oh notation?

• Sometimes it is easy, sometimes it is hard.

• We will learn a few simple tricks that work in many
cases that we will encounter this semester.

77

Case 1: Check All Items, Eliminate One

• In this case, the algorithm proceeds in a sequence of
similar steps, where:

– each step loops through all items in the input, and
eliminates one item.

• Any examples of such an algorithm?

78

Case 1: Check All Items, Eliminate One

• In this case, the algorithm proceeds in a sequence of
similar steps, where:

– each step loops through all items in the input, and
eliminates one item.

• Any examples of such an algorithm?

– Selection Sort.

79

Case 1: Check All Items, Eliminate One

• Let g(N) be an approximate estimate of the running
time, measured in time units of our convenience.

– In this case, we choose as time unit the time that it takes
to examine one item.

– Obviously, this is a simplification, since there are other
things that such an algorithm will do, in addition to just
examining one item.

– That is one of the plusses of using Big-Oh notation. We can
ignore parts of the algorithm that take a relatively small
time to run, and focus on the part that dominates running
time.

80

Case 1: Check All Items, Eliminate One

• Let g(N) be the running time.

• Then, g(N) = ???

81

Case 1: Check All Items, Eliminate One

• Let g(N) be the running time.

• Then, g(N) = g(N-1) + N. Why?

– Because we need to examine all items (N units of time),
and then we need to run the algorithm on N-1 items.

• g(N) = g(N-1) + N

 = g(N-2) + (N-1) + N

 = g(N-3) + (N-2) + (N-1) + N

 ...

 = 1 + 2 + 3 + ... + (N-1) + N

 = N(N + 1) / 2

 = O(N2)

• Conclusion: The algorithm takes quadratic time. 82

Case 2: Halve the Problem in
Constant Time

• In this case, each step of the algorithm consists of:

– performing a constant number of operations, and then
reducing the size of the input by half.

• Any example of such an algorithm?

83

Case 2: Halve the Problem in
Constant Time

• In this case, each step of the algorithm consists of:

– performing a constant number of operations, and then
reducing the size of the input by half.

• Any example of such an algorithm?

– Binary Search.

• What is a convenient unit of time to use here?

84

Case 2: Halve the Problem in
Constant Time

• In this case, each step of the algorithm consists of:

– performing a constant number of operations, and then
reducing the size of the input by half.

• Any example of such an algorithm?

– Binary Search.

• What is a convenient unit of time to use here?

– The time it takes to do the constant number of operations
to halve the input.

85

• In this case, each step of the algorithm consists of:

– performing a constant number of operations, and then
reducing the size of the input by half.

• g(2n) = ???

86

Case 2: Halve the Problem in
Constant Time

• In this case, each step of the algorithm consists of:

– performing a constant number of operations, and then
reducing the size of the input by half.

• g(2n) = 1 + g(2n-1)

 = 2 + g(2n-2)

 = 3 + g(2n-3)

 ...

 = n + g(20)

 = n + 1.

• O(n) time for N = 2n.

• Substituting n for log N: O(log N) time.
87

Case 2: Halve the Problem in
Constant Time

Case 3: Halve the Input in
Linear Time

• In this case, each step of the algorithm consists of:

– Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

• g(N) = ???

88

Case 3: Halve the Input in
Linear Time

• In this case, each step of the algorithm consists of:

– Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

• g(N) = g(N/2) + N

 = g(N/4) + N/2 + N

 = g(N/8) + N/4 + N/2 + N

 ...

 = 1 + 2 + 4 + ... + N/4 + N/2 + N

 = ???

89

Case 3: Halve the Input in
Linear Time

• In this case, each step of the algorithm consists of:

– Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

• g(N) = g(N/2) + N

 = g(N/4) + N/2 + N

 = g(N/8) + N/4 + N/2 + N

 ...

 = 1 + 2 + 4 + ... + N/4 + N/2 + N

 = about 2N

• O(N) time.

90

Case 3: Halve the Input in
Linear Time

• In this case, each step of the algorithm consists of:

– Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

• g(N) = g(N/2) + N

 = g(N/4) + N/2 + N

 = g(N/8) + N/4 + N/2 + N

 ...

 = about 2N

• What is our unit of time here?

91

Case 3: Halve the Input in
Linear Time

• In this case, each step of the algorithm consists of:

– Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

• g(N) = g(N/2) + N

 = g(N/4) + N/2 + N

 = g(N/8) + N/4 + N/2 + N

 ...

 = about 2N

• What is our unit of time here?

– 1/N * time to do the linear number of operations at
the first step.

92

Case 4: Break Problem Into Two
Halves in Linear Time

• In this case, each step of the algorithm consists of:

– Doing O(N) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(N) operations to combine the two answers.

• g(N) = ???

93

Case 4: Break Problem Into Two
Halves in Linear Time

• In this case, each step of the algorithm consists of:

– Doing O(N) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(N) operations to combine the two answers.

• g(N) = 2g(N/2) + N

 = 4g(N/4) + N + N

 = 8g(N/8) + N + N + N

 ...

 = N log N

• What is our unit of time here?

94

Case 4: Break Problem Into Two
Halves in Linear Time

• In this case, each step of the algorithm consists of:

– Doing O(N) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(N) operations to combine the two answers.

• g(N) = 2g(N/2) + N

 = 4g(N/4) + N + N

 = 8g(N/8) + N + N + N

 ...

 = N log N

• What is our unit of time here?

– 1/N * time to do the O(N) operations at the first step.
95

Case 4: Break Problem Into Two
Halves in Linear Time

• In this case, each step of the algorithm consists of:

– Doing O(N) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(N) operations to combine the two answers.

• Note: we have not seen any examples of this case yet,
but we will see several such examples when we study
sorting algorithms.

96

Case 5: Break Problem Into Two
Halves in Constant Time

• In this case, each step of the algorithm consists of:

– Doing O(1) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(1) operations to combine the two answers.

• g(N) = ???

97

Case 5: Break Problem Into Two
Halves in Constant Time

• In this case, each step of the algorithm consists of:

– Doing O(1) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(1) operations to combine the two answers.

• g(N) = 2g(N/2) + 1

 = 4g(N/4) + 2 + 1

 = 8g(N/8) + 4 + 2 + 1

 ...

 = about N

• What is our unit of time here?

98

Case 5: Break Problem Into Two
Halves in Constant Time

• In this case, each step of the algorithm consists of:

– Doing O(1) operations to split the problem into two halves.

– Calling the algorithm recursively on each half.

– Doing O(1) operations to combine the two answers.

• g(N) = 2g(N/2) + 1

 = 4g(N/4) + 2 + 1

 = 8g(N/8) + 4 + 2 + 1

 ...

 = about N

• What is our unit of time here?

– The time to do the O(1) operations at the first step.
99

