
Analysis of Algorithms:
Methods and Examples

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Why Asymptotic Behavior Matters

• Asymptotic behavior: The behavior of a function as
the input approaches infinity.

2 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h(N)

Why Asymptotic Behavior Matters

• Which of these functions is smallest asymptotically?

3 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h(N)

Why Asymptotic Behavior Matters

• Which of these functions is smallest asymptotically?

– g(N) seems to grow very slowly after a while.

4 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h(N)

Why Asymptotic Behavior Matters

• Which of these functions is smallest asymptotically?

– However, the picture is not conclusive (need to see what
happens for larger N).

5 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h(N)

Why Asymptotic Behavior Matters

• Which of these functions is smallest asymptotically?

– Proving that 𝑔(𝑁) = 𝑂(𝑓(𝑁)) would provide a
conclusive answer.

6 Running Time for input of size N

N
: S

iz
e

o
f

d
at

a

f(N)

g(N)

c*f(N)

h(N)

Using Limits

• if lim
𝑁→∞

𝑔(𝑁)

𝑓(𝑁)
 is a constant, then g(N) = O(f(N)).

– "Constant" includes zero, but does NOT include infinity.

• if lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
= ∞ then g(N) = O(f(N)).

• if lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
 is a constant, then g(N) = Ω(f(N)).

– Again, "constant" includes zero, but not infinity.

• if lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
 is a non-zero constant, then g(N) = Θ(f(N)).

– In this definition, both zero and infinity are excluded.

7

Using Limits - Comments

• The previous formulas relating limits to big-Oh
notation show once again that big-Oh notation
ignores:

– constants

– behavior for small values of N.

• How do we see that?

8

Using Limits - Comments

• The previous formulas relating limits to big-Oh
notation show once again that big-Oh notation
ignores:

– constants

– behavior for small values of N.

• How do we see that?

– In the previous formulas, it is sufficient that the limit is
equal to a constant. The value of the constant does not
matter.

– In the previous formulas, only the limit at infinity matters.
This means that we can ignore behavior up to any finite
value, if we need to.

9

Using Limits: An Example

• Show that
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(???).

10

Using Limits: An Example

• Show that
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(𝑛2).

• Let g 𝑛 =
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3

• Let 𝑓(𝑛) = 𝑛2.

lim
𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
= lim
𝑛→∞

𝑛5+ 3𝑛4 + 2𝑛3 + 𝑛2 + 𝑛 + 12

5𝑛3+ 𝑛 + 3

1

𝑛2

 = lim
𝑛→∞

𝑛5+ 3𝑛4 + 2𝑛3 + 𝑛2 + 𝑛 + 12

5𝑛5 + 𝑛3+ 3𝑛2
=
1

5

11

Using Limits: An Example

• Show that
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(𝑛2).

• Let g 𝑛 =
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3

• Let 𝑓(𝑛) = 𝑛2.

• In the previous slide, we showed that lim
𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
=
1

5

• Therefore, 𝑔(𝑛) = Θ(𝑓(𝑛)).
 12

Big-Oh Transitivity

• If 𝑔 𝑁 = 𝑂 𝑓 𝑁 and 𝑓 𝑁 = 𝑂(ℎ 𝑁), then

𝑔 𝑁 = 𝑂(ℎ 𝑁).

• How can we prove that?

13

Big-Oh Transitivity

• If 𝑔 𝑁 = 𝑂 𝑓 𝑁 and 𝑓 𝑁 = 𝑂(ℎ 𝑁), then

𝑔 𝑁 = 𝑂(ℎ 𝑁).

• How can we prove that? Using the definition of the
big-Oh notation.

• g(N) < c0 f(N) for all N > N0.

• f(N) < c1 h(N) for all N > N1.

• Set:

– c2 = c0 * c1

– N2 = max(N0, N1)

• Then, g(N) < c2 h(N) for all N > N2.

 14

Big-Oh Hierarchy

• 1 = 𝑂(log (𝑁))

• log (𝑁) = 𝑂(𝑁)

• 𝑁 = 𝑂 𝑁2

• If 𝑐 ≥ 𝑑 ≥ 0, then 𝑁𝑑 = 𝑂(𝑁𝑐).

– Higher-order polynomials always get larger than lower-
order polynomials, eventually.

• For any 𝑑, if 𝑐 > 1, 𝑁𝑑 = 𝑂 𝑐𝑁 .

– Exponential functions always get larger than polynomial
functions, eventually.

• You can use these facts in your assignments.

• You can apply transitivity to derive other facts, e.g.,
that log (𝑁) = 𝑂(𝑁2). 15

Using Substitutions

• If lim
𝑥→∞
ℎ(𝑥) = ∞, then:

𝑔 𝑥 = 𝑂 𝑓 𝑥 ⇒ 𝑔 ℎ(𝑥) = 𝑂(𝑓 ℎ(𝑥)).

• How do we use that?

• For example, prove that log 𝑁 = 𝑂(𝑁).

16

Using Substitutions

• If lim
𝑥→∞
ℎ(𝑥) = ∞, then:

𝑔 𝑥 = 𝑂 𝑓 𝑥 ⇒ 𝑔 ℎ(𝑥) = 𝑂(𝑓 ℎ(𝑥)).

• How do we use that?

• For example, prove that log 𝑁 = 𝑂(𝑁).

• Use h x = 𝑁. We get:

log N = O N ⇒ log 𝑁 = 𝑂 𝑁

 17

Summations

• Summations are formulas of the sort: 𝑓(𝑘)𝑛
𝑘=0

• Computing the values of summations can be handy
when trying to solve recurrences.

• Oftentimes, establishing upper bounds is sufficient,
since we use big-Oh notation.

• If 𝑓 𝑘 ≥ 0 , then: 𝑓 𝑘 ≤𝑛
𝑘=0 𝑓 𝑘∞

𝑘=0

• Sometimes, summing to infinity give a more simple
formula.

 18

Geometric Series

• A geometric series is a sequence Ck of numbers, such
that Ck = D * Ck-1 , where D is a constant.

• How can we express C1 in terms of C0?

– C1 = D * C0

• How can we express C2 in terms of C0?

– C2 = D * C1 = D2 * C0

• How can we express Ck in terms of C0?

– Ck = Dk * C0

• So, to define a geometric series, we just need two
parameters: D and C0.

19

Summation of Geometric Series

• This is supposed to be a review of material you have seen in
Math courses:

• Suppose that 𝟎 < 𝒙 < 𝟏:

• Finite summations: 𝑥𝑘𝑛
𝑘=0 =

1 − 𝑥𝑛+1

1 − 𝑥

• Infinite summations: 𝑥𝑘∞
𝑘=0 =

1

1 − 𝑥

• Important to note: 𝑥𝑘𝑛
𝑘=0 ≤ 𝑥𝑘∞

𝑘=0 =
1

1 − 𝑥

Therefore, 𝑥𝑘𝑛
𝑘=0 = 𝑂 1 . Why?

20

Summation of Geometric Series

• This is supposed to be a review of material you have seen in
Math courses:

• Suppose that 𝟎 < 𝒙 < 𝟏:

• Finite summations: 𝑥𝑘𝑛
𝑘=0 =

1 − 𝑥𝑛+1

1 − 𝑥

• Infinite summations: 𝑥𝑘∞
𝑘=0 =

1

1 − 𝑥

• Important to note: 𝑥𝑘𝑛
𝑘=0 ≤ 𝑥𝑘∞

𝑘=0 =
1

1 − 𝑥

Therefore, 𝑥𝑘𝑛
𝑘=0 = 𝑂 1 . Why?

– Because
1

1 − 𝑥
 is independent of n.

21

Summation of Geometric Series

• Suppose that 𝑥 > 1: The formula for finite summations is the
same, and can be rewritten as:

• 𝑥𝑘𝑛
𝑘=0 =

𝑥𝑛+1−1

𝑥−1

• This can be a handy formula in solving recurrences:

• For example:

1 + 5 + 52 + 53

+ … + 5𝑛 =

5𝑛+1 − 1

5 − 1
= 𝑂(5𝑛)

22

Harmonic Series

• 𝐻𝑁 =
1

𝑘
𝑁
𝑘=1

• ln 𝑁 ≤ 𝐻𝑁 ≤ ln 𝑁 + 1

• The above formula shows that the harmonic series can
be easily approximated by the natural logarithm.

• It follows that 𝐻𝑁 = 𝑂 log 𝑁 . Why?

• ln 𝑁 = log𝑒 𝑁 =
log2 𝑁

log2 𝑒
=
1

log2 𝑒
 log2𝑁 = 𝑂(log 𝑁)

• 𝐻𝑁 = 𝑂 ln 𝑛 = 𝑂(log 𝑁)

23

Approximation by Integrals

• Suppose that f(x) is a monotonically increasing
function:

– This means that 𝑥 ≤ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦).

• Then, we can approximate summation 𝑓(𝑘)𝑛
𝑘=𝑚

using integral 𝑓 𝑥 𝑑𝑥
𝑛+1

𝑚
.

• Why? Because 𝑓(𝑘) ≤ 𝑓 𝑥 𝑑𝑥
𝑘+1

𝑘
.

• Why? 𝑓 𝑥 𝑑𝑥
𝑘+1

𝑘
 is the average value of 𝑓(𝑥) in

the interval [𝑘, 𝑘 + 1].

• For every 𝑥 in the interval [𝑘, 𝑘 + 1], 𝑥 ≥ 𝑘.Since
𝑓(𝑥) is increasing, if 𝑥 ≥ 𝑘 then 𝑓 𝑥 ≥ 𝑓(𝑘).

24

Solving Recurrences: Example 1

• Suppose that we have an algorithm that at each step:

– takes O(N2) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?

25

Solving Recurrences: Example 1

• Suppose that we have an algorithm that at each step:

– takes O(N2) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?

• 𝑔(𝑁) = 𝑔(𝑁 − 1) + 𝑁2
 = 𝑔(𝑁 − 2) + (𝑁 − 1)2 + 𝑁2

 = 𝑔(𝑁 − 3) + (𝑁 − 2)2 + (𝑁 − 1)2 + 𝑁2

 …

 = 12 + 22

+ … + 𝑁2

 = 𝑘2𝑁
𝑘=1 . How do we approximate that?

26

Solving Recurrences: Example 1

• We approximate 𝒌𝟐𝑵
𝒌=𝟏 using an integral:

• Clearly, 𝑓(𝑥) = 𝑥2 is a monotonically increasing
function.

• So, 𝑘2𝑁
𝑘=1 ≤ 𝑥2𝑑𝑥

𝑁+1

1
=
𝑁+1 3 −13

3

 =
𝛮3+2𝛮2+2𝛮+1 −1

3
= 𝛩(𝑁3)

27

Solving Recurrences: Example 2

• Suppose that we have an algorithm that at each step:

– takes O(log(N)) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?

28

Solving Recurrences: Example 2

• Suppose that we have an algorithm that at each step:

– takes O(log(N)) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?
• 𝑔(𝑁) = 𝑔(𝑁 − 1) + log (𝑁)

 = 𝑔(𝑁 − 2) + log (𝑁 − 1) + log (𝑁)

 = 𝑔(𝑁 − 3) + log (𝑁 − 2) + log (𝑁 − 1) + log (𝑁)

 …

 = log (1) + log (2) + … + log (𝑁)

 = 𝑙𝑜𝑔(𝑘)𝑁
𝑘=1 . How do we compute that? 29

Solving Recurrences: Example 2

• We process 𝒍𝒐𝒈(𝒌) 𝑵
𝒌=𝟏 using the fact that:

 log (𝑎) + log (𝑏) = log (𝑎𝑏)

• log(k) N
k=1 = log 1 + log 2 + … + log N

 = log (𝑁!)

 ≌ log ((
𝑁

𝑒
)𝑁)

 = 𝑁 log (
𝑁

𝑒
)

 = 𝑁 log 𝑁 – 𝑁 log 𝑒 = 𝑂(𝑁 log 𝑁)

30

Solving Recurrences: Example 3

• Suppose that we have an algorithm that at each step:

– takes O(1) time to go over N items.

– calls itself 3 times on data of size N-1.

– takes O(1) time to combine the results.

• How do we write this recurrence?

31

Solving Recurrences: Example 3

• Suppose that we have an algorithm that at each step:

– takes O(1) time to go over N items.

– calls itself 3 times on data of size N-1.

– takes O(1) time to combine the results.

• How do we write this recurrence?
• 𝑔(𝑁) = 3𝑔(𝑁 − 1) + 1

 = 32𝑔 𝑁 − 2 + 3 + 1

 = 33𝑔 𝑁 − 3 + 32+ 3 + 1

 …

 = 3𝑁−1𝑔 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1

 32 Note: 𝑔(1) is just a constant finite summation

Solving Recurrences: Example 3

• Suppose that we have an algorithm that at each step:

– takes O(1) time to go over N items.

– calls itself 3 times on data of size N-1.

– takes O(1) time to combine the results.

• How do we write this recurrence?
• 𝑔(𝑁) = 3𝑔(𝑁 − 1) + 1

 = 32𝑔 𝑁 − 2 + 3 + 1

 = 33𝑔 𝑁 − 3 + 32+ 3 + 1

 …

 = 3𝑁−1𝑔 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1

 = O 3𝑁 + O 3𝑁 = O(3𝑁) 33

Solving Recurrences: Example 4

• Suppose that we have an algorithm that at each step:

– calls itself N times on data of size N/2.

– takes O(1) time to combine the results.

• How do we write this recurrence?

34

Solving Recurrences: Example 4

• Suppose that we have an algorithm that at each step:

– calls itself N times on data of size N/2.

– takes O(1) time to combine the results.

• How do we write this recurrence? Let n = log𝑁.
• 𝑔(2𝑛) = 2𝑛𝑔(2𝑛−1) + 1

 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1

 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛 2𝑛−1+ 2𝑛 + 1

 = 2𝑛
𝑛

𝑘=𝑛−2

 𝑔 𝑁 − 3 + 1 + 2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=𝑛−1

35

Solving Recurrences: Example 4

• Suppose that we have an algorithm that at each step:

– calls itself N times on data of size N/2.

– takes O(1) time to combine the results.

• How do we write this recurrence? Let n = log𝑁.
• 𝑔(2𝑛) = 2𝑛𝑔(2𝑛−1) + 1

 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1

 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛 2𝑛−1+ 2𝑛 + 1

 = 2𝑛
𝑛

𝑘=𝑛−3

 𝑔 𝑁 − 4 + 1 + 2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=𝑛−2

36

Solving Recurrences: Example 4

• Suppose that we have an algorithm that at each step:

– calls itself N times on data of size N/2.

– takes O(1) time to combine the results.

• How do we write this recurrence? Let n = log𝑁.
• 𝑔(2𝑛) = 2𝑛𝑔(2𝑛−1) + 1

 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1

 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛 2𝑛−1+ 2𝑛 + 1

 = 2𝑛
𝑛

𝑘=2

 𝑔 1 + 1 + 2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3

37

Solving Recurrences: Example 4

 2𝑛
𝑛

𝑘=2

= 2𝑛2𝑛−12𝑛−2 … 2221

 = 2(𝑛+𝑛−1+𝑛−2+⋯+1)

 = 2
𝑛(𝑛+1)

2

 = 2𝑛
𝑛+1
2

 = 𝑁
log (𝑁)+1
2

 = 𝑂(𝑁
log 𝑁
2)

38

Substituting N for 2𝑛

Solving Recurrences: Example 4

• Let X = 2𝑛𝑛
𝑘=2 (which we have just computed).

 2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3

< 𝑋 +
𝑋

2
+
𝑋

4
+ … ⇒

 2𝑛𝑛
𝑖=𝑘

𝑛
𝑘=3 < 2𝑋 ⇒ (taking previous slide into account)

 2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3

= 𝑂(𝑁
log 𝑁
2)

39

Solving Recurrences: Example 4

• Based on the previous two slides, we can conclude
that the solution of: 𝑔(𝑁) = 𝑁𝑔(𝑁/2) + 1 is that:

𝑔 𝑁 = 𝑂(𝑁
log 𝑁
2)

40

Big-Oh Notation: Example Problem

• Is 𝑁 = 𝑂(sin 𝑁 𝑁2)?

• Answer:

41

Big-Oh Notation: Example Problem

• Is 𝑁 = 𝑂(sin 𝑁 𝑁2)?

• Answer: no!

• Why? sin (𝑁) fluctuates forever between -1 and 1.

• As a result, sin 𝑁 𝑁2 fluctuates forever between
negative and positive values.

• Therefore, for every possible 𝑐0 > 0 and 𝑁0, we can
always find an 𝑁 > 𝑁0 such that:

𝑁 > 𝑐0sin (𝑁)𝑁
2

42

