Analysis of Algorithms: Methods and Examples

CSE 2320 – Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Asymptotic behavior: The behavior of a function as the input approaches infinity.

Running Time for input of size N 2

• Which of these functions is smallest asymptotically?

Running Time for input of size N ³

• Which of these functions is smallest asymptotically? $-$ g(N) seems to grow very slowly after a while.

Running Time for input of size N 4 4

- Which of these functions is smallest asymptotically?
	- However, the picture is not conclusive (need to see what happens for larger N).

Running Time for input of size N 5

- Which of these functions is smallest asymptotically?
	- Proving that $g(N) = O(f(N))$ would provide a conclusive answer.

Running Time for input of size N ⁶

Using Limits

- if lim $N\rightarrow\infty$ $g(N)$ $f(N)$ is a constant, then $g(N) = O(f(N)).$
	- "Constant" includes zero, but does NOT include infinity.
- if lim $N\rightarrow\infty$ $f(N)$ $g(N)$ $=$ ∞ then $g(N) = O(f(N)).$
- if lim $\overline{N\rightarrow\infty} g(N)$ $f(N)$ is a constant, then $g(N) = \Omega(f(N)).$
	- Again, "constant" includes zero, but not infinity.
- if lim $N\rightarrow\infty$ $f(N)$ $g(N)$ is a **non-zero** constant, then $g(N) = \Theta(f(N)).$
	- In this definition, both zero and infinity are excluded.

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
	- constants
	- behavior for small values of N.
- How do we see that?

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
	- constants
	- behavior for small values of N.
- How do we see that?
	- In the previous formulas, it is sufficient that the limit is equal to a constant. **The value of the constant does not matter.**
	- In the previous formulas, only **the limit at infinity** matters. This means that we can ignore behavior up to any finite value, if we need to.

Using Limits: An Example

• Show that
$$
\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(???)
$$
.

Using Limits: An Example

• Show that
$$
\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).
$$

• Let
$$
g(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}
$$

• Let
$$
f(n) = n^2
$$
.

$$
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} \frac{1}{n^2} \right)
$$

$$
= \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^5 + n^3 + 3n^2} \right) = \frac{1}{5}_{11}
$$

Using Limits: An Example

• Show that
$$
\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).
$$

• Let
$$
g(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}
$$

• Let
$$
f(n) = n^2
$$
.

- In the previous slide, we showed that \lim $n\rightarrow\infty$ $g(n)$ $f(n)$ = 1 5
- Therefore, $g(n) = \Theta(f(n))$.

Big-Oh Transitivity

- If $g(N) = O(f(N))$ and $f(N) = O(h(N))$, then $q(N) = O(h(N)).$
- How can we prove that?

Big-Oh Transitivity

- If $g(N) = O(f(N))$ and $f(N) = O(h(N))$, then $q(N) = O(h(N)).$
- How can we prove that? Using the definition of the big-Oh notation.
- $g(N) < c_0 f(N)$ for all $N > N_0$.
- $f(N) < c_1 h(N)$ for all $N > N_1$.
- Set:

$$
- c_2 = c_0 * c_1
$$

- N₂ = max(N₀, N₁)

• Then, $g(N) < c_2 h(N)$ for all $N > N_2$.

Big-Oh Hierarchy

- 1 = $O(log(N))$
- $log(N) = O(N)$
- $N = O(N^2)$
- If $c \geq d \geq 0$, then $N^d = O(N^c)$.
	- Higher-order polynomials always get larger than lowerorder polynomials, eventually.
- For any d , if $c > 1$, $N^d = O(c^N)$.
	- Exponential functions always get larger than polynomial functions, eventually.
- You can use these facts in your assignments.
- You can apply transitivity to derive other facts, e.g., that $log(N) = O(N^2)$.

Using Substitutions

• If lim $x\rightarrow\infty$ $h(x) = \infty$, then:

$$
g(x) = O(f(x)) \Rightarrow g(h(x)) = O(f(h(x))).
$$

- How do we use that?
- For example, prove that $log(\sqrt{N}) = O(\sqrt{N}).$

Using Substitutions

• If $\lim h(x) = \infty$, then: $x\rightarrow\infty$

$$
g(x) = O(f(x)) \Rightarrow g(h(x)) = O(f(h(x))).
$$

- How do we use that?
- For example, prove that $\log(\sqrt{N}) = O(\sqrt{N}).$
- Use $h(x) = \sqrt{N}$. We get:

$$
\log(N) = O(N) \Rightarrow \log(\sqrt{N}) = O(\sqrt{N})
$$

Summations

- Summations are formulas of the sort: $\sum_{k=0}^{n} f(k)$ $k=0$
- Computing the values of summations can be handy when trying to solve recurrences.
- Oftentimes, establishing upper bounds is sufficient, since we use big-Oh notation.
- If $f(k) \ge 0$, then: $\sum_{k=0}^{n} f(k) \le \sum_{k=0}^{\infty} f(k)$ $k=0$
- Sometimes, summing to infinity give a more simple formula.

Geometric Series

- A geometric series is a sequence C_k of numbers, such that $C_k = D * C_{k-1}$, where D is a constant.
- How can we express C_1 in terms of C_0 ? $-C_1 = D * C_0$
- How can we express C_2 in terms of C_0 ?

 $-C_2 = D * C_1 = D^2 * C_0$

- How can we express C_k in terms of C_0 ? $-C_k = D^k * C_0$
- So, to define a geometric series, we just need two parameters: D and C_0 .

Summation of Geometric Series

- This is supposed to be a review of material you have seen in Math courses:
- Suppose that $0 < x < 1$:

• Finite summations:
$$
\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}
$$

• Infinite summations:
$$
\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}
$$

• Important to note: $\sum_{k=0}^{n} x^k \leq \sum_{k=0}^{\infty} x^k =$ 1 $1 - x$ Therefore, $\sum_{k=0}^{n} x^k = O(1)$. Why?

Summation of Geometric Series

- This is supposed to be a review of material you have seen in Math courses:
- Suppose that $0 < x < 1$:

• Finite summations:
$$
\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}
$$

• Infinite summations:
$$
\sum_{k=0}^{\infty} \chi^k = \frac{1}{1 - x}
$$

• Important to note: $\sum_{k=0}^{n} x^k \leq \sum_{k=0}^{\infty} x^k =$ 1 $1 - x$ Therefore, $\sum_{k=0}^{n} x^k = O(1)$. Why? $-$ Because $\frac{1}{1}$

 $1 - x$ is independent of n.

Summation of Geometric Series

• Suppose that $x > 1$: The formula for finite summations is the same, and can be rewritten as:

•
$$
\sum_{k=0}^{n} x^{k} = \frac{x^{n+1}-1}{x-1}
$$

- This can be a handy formula in solving recurrences:
- For example:

 $1 + 5 + 5^2 + 5^3 + \dots + 5^n =$ $5^{n+1} - 1$ $5 - 1$ $= O(5^n)$

Harmonic Series

- $H_N = \sum$ 1 \boldsymbol{k} \overline{N} $k=1$
- $\ln(N) \leq H_N \leq \ln(N) + 1$
- The above formula shows that the harmonic series can be easily approximated by the natural logarithm.
- It follows that $H_N = O(\log(N))$. Why?
- $ln(N) = log_e N$ = $log₂ N$ $\log_2 e$ = 1 $\log_2 e$ $\log_2 N = O(\log(N))$
- $H_N = O(\ln(n)) = O(\log(N))$

Approximation by Integrals

• Suppose that $f(x)$ is a monotonically increasing function:

– This means that $x \le y \Rightarrow f(x) \le f(y)$.

- Then, we can approximate summation $\sum_{k=m}^{n} f(k)$ $k = m$ using integral $\int_{m}^{n+1} f(x) dx$ \overline{m} .
- Why? Because $f(k) \leq \int_{k}^{k+1} f(x) dx$ \boldsymbol{k} .
- Why? $\int_{k}^{k+1} f(x) dx$ \boldsymbol{k} is the average value of $f(x)$ in the interval $[k, k + 1]$.
- For every x in the interval $[k, k + 1]$, $x \geq k$. Since $f(x)$ is increasing, if $x \geq k$ then $f(x) \geq f(k)$.

- Suppose that we have an algorithm that at each step:
	- $-$ takes $O(N^2)$ time to go over N items.
	- eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
	- $-$ takes $O(N^2)$ time to go over N items.
	- eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

•
$$
g(N) = g(N-1) + N^2
$$

\n
$$
= g(N-2) + (N-1)2 + N^2
$$
\n
$$
= g(N-3) + (N-2)2 + (N-1)2 + N^2
$$
\n...
\n
$$
= 1^2 + 2^2 + ... + N^2
$$
\n
$$
= \sum_{k=1}^{N} k^2
$$
 How do we approximate that?

- We approximate $\sum_{k=1}^{N} k^2$ using an integral:
- Clearly, $f(x) = x^2$ is a monotonically increasing function.

• So,
$$
\sum_{k=1}^{N} k^2 \le \int_1^{N+1} x^2 dx = \frac{(N+1)^3 - 1^3}{3}
$$

= $\frac{N^3 + 2N^2 + 2N + 1 - 1}{3} = \Theta(N^3)$

- Suppose that we have an algorithm that at each step:
	- $-$ takes $O(log(N))$ time to go over N items.
	- eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
	- $-$ takes $O(log(N))$ time to go over N items.
	- eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

•
$$
g(N) = g(N-1) + \log(N)
$$

$$
= g(N-2) + \log(N-1) + \log(N)
$$

= g(N-3) + \log(N-2) + \log(N-1) + \log(N)
...

- $=$ log(1) + log(2) + ... + log(N)
- $= \sum_{k=1}^{N} log(k)$ $_{k=1}^N log(k)$. How do we compute that? $_{29}$

- We process $\sum_{\bm{k}=\bm{1}}^N \bm{log}(\bm{k})$ using the fact that: $\log(a) + \log(b) = \log(ab)$
- $\sum_{k=1}^{N} \log(k) = \log(1) + \log(2) + ... + \log(N)$ $=$ $log(N!)$ \cong log((\overline{N} \boldsymbol{e} ${)}^{N}$ $= N \log($ \overline{N} \boldsymbol{e}) $= N \log(N) - N \log(e) = O(N \log(N))$

- Suppose that we have an algorithm that at each step:
	- $-$ takes O(1) time to go over N items.
	- calls itself 3 times on data of size N-1.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
	- $-$ takes O(1) time to go over N items.
	- calls itself 3 times on data of size N-1.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence?

•
$$
g(N) = 3g(N - 1) + 1
$$

\n
$$
= 3^{2}g(N - 2) + 3 + 1
$$
\n
$$
= 3^{3}g(N - 3) + 3^{2} + 3 + 1
$$
\n...
\n
$$
= 3^{N-1}g(1) + 3^{N-2} + 3^{N-3} + 3^{N-4} + \dots + 1
$$

Note: $q(1)$ **is just a constant finite summation** 32

- Suppose that we have an algorithm that at each step:
	- $-$ takes O(1) time to go over N items.
	- calls itself 3 times on data of size N-1.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence?

•
$$
g(N) = 3g(N - 1) + 1
$$

\n
$$
= 3^{2}g(N - 2) + 3 + 1
$$
\n
$$
= 3^{3}g(N - 3) + 3^{2} + 3 + 1
$$
\n...
\n
$$
= 3^{N-1}g(1) + 3^{N-2} + 3^{N-3} + 3^{N-4} + \dots + 1
$$

$$
= O(3^N) + O(3^N) = O(3^N)
$$

- Suppose that we have an algorithm that at each step:
	- calls itself N times on data of size N/2.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
	- calls itself N times on data of size N/2.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = log N$.

$$
g(2^n) = 2^n g(2^{n-1}) + 1
$$

= $2^n 2^{n-1} g(N-2) + 2^n + 1$
= $2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
= $\left(\prod_{k=n-2}^n 2^n\right) g(N-3) + 1 + \sum_{k=n-1}^n \prod_{i=k}^n 2^n$

- Suppose that we have an algorithm that at each step:
	- calls itself N times on data of size N/2.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = log N$.

$$
g(2^n) = 2^n g(2^{n-1}) + 1
$$

= $2^n 2^{n-1} g(N-2) + 2^n + 1$
= $2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
= $\left(\prod_{k=n-3}^n 2^n\right) g(N-4) + 1 + \sum_{k=n-2}^n \prod_{i=k}^n 2^n$

- Suppose that we have an algorithm that at each step:
	- calls itself N times on data of size N/2.
	- $-$ takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = log N$.

$$
g(2^n) = 2^n g(2^{n-1}) + 1
$$

= $2^n 2^{n-1} g(N-2) + 2^n + 1$
= $2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
= $\left(\prod_{k=2}^n 2^n\right) g(1) + 1 + \sum_{k=3}^n \prod_{i=k}^n 2^n$

$$
\left(\prod_{k=2}^{n} 2^{n}\right) = 2^{n}2^{n-1}2^{n-2} \dots 2^{2}2^{1}
$$

= 2^(n+n-1+n-2+\dots+1)
= 2 ^{$\frac{n(n+1)}{2}$}
= <sup>(2ⁿ) ^{$\frac{n+1}{2}$}
= ^{$\sqrt{\frac{\log(N)+1}{2}}$}
= ^{$\sqrt{\frac{\log(N)}{2}}$}
= ⁰($N^{\frac{\log(N)}{2}}$)</sup>

• Let $X = (\prod_{k=2}^{n} 2^{n})$ $_{k=2}^{n}$ 2 n) (which we have just computed).

$$
\sum_{k=3}^{n} \prod_{i=k}^{n} 2^{n} < X + \frac{X}{2} + \frac{X}{4} + \dots \Rightarrow
$$

 $\sum_{k=3}^{n} \prod_{i=k}^{n} 2^n$ $i = k$ $\frac{n}{k=3} \prod_{i=k}^n 2^n < 2X \Rightarrow \,$ (taking previous slide into account)

$$
\sum_{k=3}^{n} \prod_{i=k}^{n} 2^n = O(N^{\frac{\log(N)}{2}})
$$

 \overline{a}

• Based on the previous two slides, we can conclude that the solution of: $q(N) = Nq(N/2) + 1$ is that:

$$
g(N) = O(N^{\frac{\log(N)}{2}})
$$

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer:

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer: no!
- Why? $sin(N)$ fluctuates forever between -1 and 1.
- As a result, $sin(N) N^2$ fluctuates forever between negative and positive values.
- Therefore, for every possible $c_0 > 0$ and N_0 , we can always find an $N > N_0$ such that:

 $N > c_0 \sin(N)N^2$