Analysis of Algorithms:
Methods and Examples

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Why Asymptotic Behavior Matters

* Asymptotic behavior: The behavior of a function as
the input approaches infinity.

h(N)
c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Why Asymptotic Behavior Matters

* Which of these functions is smallest asymptotically?

h(N)
c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Why Asymptotic Behavior Matters

* Which of these functions is smallest asymptotically?
— g(N) seems to grow very slowly after a while.

h(N)
c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Why Asymptotic Behavior Matters

* Which of these functions is smallest asymptotically?

— However, the picture is not conclusive (need to see what

happens for larger N). h(N)

c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Why Asymptotic Behavior Matters

* Which of these functions is smallest asymptotically?

— Proving that g(N) = O(f(N)) would provide a

conclusive answer.
| h(N)

c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Using Limits

if i g(N)
|N1_)r£10()

— "Constant" includes zero, but does NOT include infinity.

is a constant, then g(N) = O(f(N)).

FN) _ _
if A}l_)rglo i oo then g(N) = O(f(N)).
if lim —= () is a constant, then g(N) = Q(f(N)).
N-o0 g(N) ’

— Again, "constant" includes zero, but not infinity.

f(N)
if li
! Nl—glog(N)

— In this definition, both zero and infinity are excluded.

is a non-zero constant, then g(N) = ©(f(N)).

Using Limits - Comments

* The previous formulas relating limits to big-Oh

notation show once again that big-Oh notation
ignores:

— constants
— behavior for small values of N.

e How do we see that?

Using Limits - Comments

* The previous formulas relating limits to big-Oh
notation show once again that big-Oh notation
ignores:

— constants
— behavior for small values of N.

e How do we see that?

— In the previous formulas, it is sufficient that the limit is
equal to a constant. The value of the constant does not
matter.

— In the previous formulas, only the limit at infinity matters.
This means that we can ignore behavior up to any finite
value, if we need to.

Using Limits: An Example

5 4 3 2
n’+3In"+2n°+n“+n+12
* Show that 3 = 0(7?77).
S5n°+n+3

Using Limits: An Example

n’+3n*+2n3+n’+n+12 5
* Show that 3 = Q(n).
Sn°+n+3
ot (n) _ n’+3n*+2n+nf+n+12
[) e —
5 5n3+n+3

. et f(n) = nZ

n+3nt*+2n3+n24+n+12 1

i Y
nooo F (1) nllf?o< 513 + 1 + 3 n
| <n5+3n4+2n3+n2+n+12)
= 11m

5n° + n3 + 3n?

|

1

5

Using Limits: An Example

n’+3n*+2n3+n’+n+12

= O(n?).

Show that 2
5n°+n+3
ot (n) _ n’+3n*+2n+nf+n+12
e —
5 5n3+n+3
et f(n) = n

In the previous slide, we showed that lim

Therefore, g(n) = O(f(n)).

n—0o

g _ 1

fn) 5

Big-Oh Transitivity

* If g(N) = O(f(N)) and f(N) = 0(h(N)), then
g(N) = O(h(N)).

* How can we prove that?

Big-Oh Transitivity

If g(N) = O(f(N)) and f(N) = O(h(N)), then
g(N) = O(h(N)).

How can we prove that? Using the definition of the
big-Oh notation.

g(N) <c,f(N) forallN>N,.
f(N)<c,h(N) forallN>N,.
Set:
— C=Cy "¢y
— N, =max(N,, N,)
Then, g(N) <c, h(N) forall N> N.,,.

Big-Oh Hierarchy

1 = O(log(N))

log(N) = O(N)

N = O(N?)

Ifc> d =0,then N4 = O(N°).

— Higher-order polynomials always get larger than lower-
order polynomials, eventually.

Foranyd,ifc > 1, N¢ = 0(cV).

— Exponential functions always get larger than polynomial
functions, eventually.

You can use these facts in your assignments.

You can apply transitivity to derive other facts, e.g.,
that log(N) = O(N?).

Using Substitutions

e If lim h(x) = oo, then:

X—00

g(x) = 0(f(x)) = g(h(x)) = 0(f (h(x))).

* How do we use that?
* For example, prove that log(\/ﬁ) = O(+/N).

Using Substitutions

e If lim h(x) = oo, then:

X—00

g(x) = 0(f(x)) = g(h(x)) = 0(f (h(x))).

e How do we use that?

* For example, prove that log(\/ﬁ) = O(+/N).
e Use h(x) = VN. We get:

log(N) = O(N) = log(\/ﬁ) = O(W)

Summations

Summations are formulas of the sort: 27]}=0 f(k)

Computing the values of summations can be handy
when trying to solve recurrences.

Oftentimes, establishing upper bounds is sufficient,
since we use big-Oh notation.

If f(k) =0, then: ZZ:O f(k) < Zlioz() f(k)

Sometimes, summing to infinity give a more simple
formula.

Geometric Series

A geometric series is a sequence C, of numbers, such
that C, =D * C, ,, where D is a constant.

How can we express C, in terms of C,?
—-C,=D*C,

How can we express C, in terms of C,?

— C,=D*C,=D?*(,

How can we express C, in terms of C,,?

— C,=Dk*(,

So, to define a geometric series, we just need two
parameters: D and C,,.

Summation of Geometric Series

This is supposed to be a review of material you have seen in
Math courses:

Supposethat 0 < x < 1:

1 — xn+1
- : n k —
Finite summatlons:2k=0 X" = "
— X
. | o Lk _ _ 1
Infinite summatlons:2k=ox i
— X
1
Important to note:)i _o X% < Yoo XF = —

Therefore, Y=o X® = 0(1). Why?

Summation of Geometric Series

This is supposed to be a review of material you have seen in
Math courses:

Supposethat 0 < x < 1:

1 — xn+1
- : n k —
Finite summatlons:2k=0 X" = "
— X
. | o Lk _ _ 1
Infinite summatlons:2k=ox i
— X
1
Important to note:)i _o X% < Yoo XF = —

Therefore, Y=o X® = 0(1). Why?

— Because is independent of n.

1-x

Summation of Geometric Series

e Suppose that x > 1: The formula for finite summations is the
same, and can be rewritten as:

xn+1_1

[n xk:
k=0 x—1

* This can be a handy formula in solving recurrences:

* For example:
5n+1 _

1
1+ 5+ 5 + 5+ ..+ 5 =———=0(5)

Harmonic Series

; _yy 1
* In(N) <Hy<In(N)+1

e The above formula shows that the harmonic series can
be easily approximated by the natural logarithm.

* |t follows that Hy = 0(log(N)) Why?
* In(N) =log, N = o2 N log, N = 0(log(N))

log, e log e

+ Hy = 0(In(n)) = 0(log(N))

Approximation by Integrals

Suppose that f(x) is a monotonically increasing
function:

— Thismeansthatx <y = f(x) < f(y).
Then, we can approximate summation Y.;'_... f (k)
using integral fn+1f(x)dx.

m
Why? Because f (k) < L{kﬂf(x)dx.

Why? fkk+1f(x)dx is the average value of f(x) in
the interval |k, k + 1].

For every x in the interval |k, k + 1], x = k.Since
f(x)isincreasing, if x = kthen f(x) = f(k).

Solving Recurrences: Example 1

e Suppose that we have an algorithm that at each step:
— takes O(N?) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

* How do we write this recurrence?

Solving Recurrences: Example 1

e Suppose that we have an algorithm that at each step:
— takes O(N?) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

e How do we write this recurrence?

* g(N) = g(N—1) + N°
= g(N—2) + (N—1)2 + N~
=gN—-3)+ (N—2)2 + (N—1)2 + N-?

= 12 + 22 + .. + N2

= Z’,ﬁ’zl k4. How do we approximate that?

Solving Recurrences: Example 1

* We approximate Y n_4 k2 using an integral:

* Clearly, f(x) = x?is a monotonically increasing
function.

N+1 N+1)3 -13
s SNk < [N ady = D

__ N°+2N°+2N+1-1

_ 3 = O(N?)

Solving Recurrences: Example 2

e Suppose that we have an algorithm that at each step:
— takes O(log(N)) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

* How do we write this recurrence?

Solving Recurrences: Example 2

e Suppose that we have an algorithm that at each step:
— takes O(log(N)) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

* How do we write this recurrence?
* g(N) = g(N —1) +log(N)
= g(N —2)+log(N —1) +log(N)
= g(N —3) +log(N —2) +log(N —1) + log(N)

= log(1) + log(2) + ... + log(N)

= Yr=1log(k). How do we compute that?

Solving Recurrences: Example 2

* We process 211¥=1 log (k) using the fact that:
log(a) + log(b) = log(ab)

« YN_log(k) =log(1) +1log(2) + ... +log(N)
= log(N!)

= log((5)")
=N ﬁ_og(g)
= Nlog(N) - Nlog(e) = O(N log(N))

Solving Recurrences: Example 3

e Suppose that we have an algorithm that at each step:
— takes O(1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O(1) time to combine the results.

* How do we write this recurrence?

Solving Recurrences: Example 3

e Suppose that we have an algorithm that at each step:
— takes O(1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O(1) time to combine the results.

* How do we write this recurrence?

* gIN) =3g(N—-1)+1
=3%2g(N—-2)+3+1
=33g(N—-3)+32+3+1

=£g(1) +37 3T 3T 4

Note: g(1) is just a constant finite summation

Solving Recurrences: Example 3

e Suppose that we have an algorithm that at each step:
— takes O(1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O(1) time to combine the results.

* How do we write this recurrence?

* gIN) =3g(N—-1)+1
=3%2g(N—-2)+3+1
=33g(N—-3)+32+3+1

=3V tg() +3¥ 2+ 3V 43V + . 11
=0(3") +0(3¥) =0(@3")

Solving Recurrences: Example 4

e Suppose that we have an algorithm that at each step:
— calls itself N times on data of size N/2.
— takes O(1) time to combine the results.

* How do we write this recurrence?

Solving Recurrences: Example 4

e Suppose that we have an algorithm that at each step:
— calls itself N times on data of size N/2.
— takes O(1) time to combine the results.

* How do we write this recurrence? Let n = log N.
- g(2m) =2"g(2") +1

=2"2"1g(N—-2)+ 2"+ 1

=2m 2" 2neg(N —3) + 2" 2" 4+ 2" + 1

n n

= (kﬂzzn> g =3+1+ > | [2r

=n-— k=n-1 i=k

Solving Recurrences: Example 4

e Suppose that we have an algorithm that at each step:
— calls itself N times on data of size N/2.
— takes O(1) time to combine the results.

* How do we write this recurrence? Let n = log N.
- g(2m) =2"g(2") +1

=2"2"1g(N—-2)+ 2"+ 1

=2m 2" 2neg(N —3) + 2" 2" 4+ 2" + 1

n n

= (kﬂgzn> gIN —4) +1+ [|2

=n-— k=n-2 i=k

Solving Recurrences: Example 4

e Suppose that we have an algorithm that at each step:
— calls itself N times on data of size N/2.
— takes O(1) time to combine the results.

* How do we write this recurrence? Let n = log N.
- g(2m) =2"g(2") +1

=2"2"1g(N—-2)+ 2"+ 1

=2m 2" 2neg(N —3) + 2" 2" 4+ 2" + 1

(l_[2"> g(1) +1+ ;gzn

=2

Solving Recurrences: Example 4

n
(1_[2") = 2npn-ipn-2 2221

k=2
— 2(n+n—1+n-2+-+1)

n(n+1)

:2 2

n1
= (2") 2 _ Substituting N for 2™

log(N)+1 &
= N 2

log(N)
=0(N 2z)

Solving Recurrences: Example 4

e LetX = ([I¢=,2™) (which we have just computed).

n

> [z ers fade s

71:=3 H?:k 2™ < 2X = (taking previous slide into account)

n

ZHZ" o)

Solving Recurrences: Example 4

* Based on the previous two slides, we can conclude
that the solution of: g(N) = Ng(N/2) + 1 isthat:

log(N)
g(N)=0(N 2)

Big-Oh Notation: Example Problem

e IsN = 0(sin(N) N%)?
* Answer:

Big-Oh Notation: Example Problem

Is N = O(sin(N) N4)?
Answer: no!
Why? sin(N) fluctuates forever between -1 and 1.

As a result, sin(N) N# fluctuates forever between
negative and positive values.

Therefore, for every possible ¢, > 0 and N, we can
always find an N > N, such that:

N > cysin(N)N*?

