Analysis of Algorithms: Methods and Examples

CSE 2320 – Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

• Asymptotic behavior: The behavior of a function as the input approaches infinity.

Running Time for input of size N

• Which of these functions is smallest asymptotically?

Running Time for input of size N

- Which of these functions is smallest asymptotically?
 - -g(N) seems to grow very slowly after a while.

Running Time for input of size N

- Which of these functions is smallest asymptotically?
 - However, the picture is not conclusive (need to see what happens for larger N).

Running Time for input of size N

- Which of these functions is smallest asymptotically?
 - Proving that g(N) = O(f(N)) would provide a conclusive answer.

Running Time for input of size N

Using Limits

- if $\lim_{N\to\infty} \frac{g(N)}{f(N)}$ is a constant, then g(N) = O(f(N)).
 - "Constant" includes zero, but does NOT include infinity.
- if $\lim_{N\to\infty}\frac{f(N)}{g(N)} = \infty$ then g(N) = O(f(N)).
- if $\lim_{N \to \infty} \frac{f(N)}{g(N)}$ is a constant, then $g(N) = \Omega(f(N))$.
 - Again, "constant" includes zero, but not infinity.
- if $\lim_{N\to\infty} \frac{f(N)}{g(N)}$ is a **non-zero** constant, then $g(N) = \Theta(f(N))$.
 - In this definition, both zero and infinity are excluded.

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
 - constants
 - behavior for small values of N.
- How do we see that?

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
 - constants
 - behavior for small values of N.
- How do we see that?
 - In the previous formulas, it is sufficient that the limit is equal to a constant. The value of the constant does not matter.
 - In the previous formulas, only the limit at infinity matters.
 This means that we can ignore behavior up to any finite value, if we need to.

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(???).$$

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).$$

- Let $g(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}$
- Let $f(n) = n^2$.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} \frac{1}{n^2} \right)$$
$$= \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^5 + n^3 + 3n^2} \right) = \frac{1}{5}_{11}$$

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).$$

• Let
$$g(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}$$

• Let
$$f(n) = n^2$$
.

- In the previous slide, we showed that $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \frac{1}{5}$
- Therefore, $g(n) = \Theta(f(n))$.

Big-Oh Transitivity

- If g(N) = O(f(N)) and f(N) = O(h(N)), then g(N) = O(h(N)).
- How can we prove that?

Big-Oh Transitivity

- If g(N) = O(f(N)) and f(N) = O(h(N)), then g(N) = O(h(N)).
- How can we prove that? Using the definition of the big-Oh notation.
- $g(N) < c_0 f(N)$ for all $N > N_0$.
- $f(N) < c_1 h(N)$ for all $N > N_1$.
- Set:

$$- c_2 = c_0 * c_1 - N_2 = max(N_0, N_1)$$

• Then, $g(N) < c_2 h(N)$ for all $N > N_2$.

Big-Oh Hierarchy

- 1 = $O(\log(N))$
- $\log(N) = O(N)$
- $N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.
 - Higher-order polynomials always get larger than lowerorder polynomials, eventually.
- For any d, if c > 1, $N^d = O(c^N)$.
 - Exponential functions always get larger than polynomial functions, eventually.
- You can use these facts in your assignments.
- You can apply transitivity to derive other facts, e.g., that $log(N) = O(N^2)$.

Using Substitutions

• If $\lim_{x \to \infty} h(x) = \infty$, then:

$$g(x) = O(f(x)) \Rightarrow g(h(x)) = O(f(h(x))).$$

- How do we use that?
- For example, prove that $log(\sqrt{N}) = O(\sqrt{N})$.

Using Substitutions

• If $\lim_{x\to\infty} h(x) = \infty$, then:

$$g(x) = O(f(x)) \Rightarrow g(h(x)) = O(f(h(x))).$$

- How do we use that?
- For example, prove that $log(\sqrt{N}) = O(\sqrt{N})$.
- Use $h(x) = \sqrt{N}$. We get:

$$\log(N) = O(N) \Rightarrow \log(\sqrt{N}) = O(\sqrt{N})$$

Summations

- Summations are formulas of the sort: $\sum_{k=0}^{n} f(k)$
- Computing the values of summations can be handy when trying to solve recurrences.
- Oftentimes, establishing upper bounds is sufficient, since we use big-Oh notation.

• If
$$f(k) \ge 0$$
, then: $\sum_{k=0}^{n} f(k) \le \sum_{k=0}^{\infty} f(k)$

• Sometimes, summing to infinity give a more simple formula.

Geometric Series

- A geometric series is a sequence C_k of numbers, such that C_k = D * C_{k-1}, where D is a constant.
- How can we express C_1 in terms of C_0 ? - $C_1 = D * C_0$
- How can we express C_2 in terms of C_0 ?

 $-C_2 = D * C_1 = D^2 * C_0$

- How can we express C_k in terms of C_0 ? - $C_k = D^k * C_0$
- So, to define a geometric series, we just need two parameters: D and C₀.

Summation of Geometric Series

- This is supposed to be a review of material you have seen in Math courses:
- Suppose that 0 < x < 1:

• Finite summations:
$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

• Infinite summations:
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

• Important to note: $\sum_{k=0}^{n} x^k \leq \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ Therefore, $\sum_{k=0}^{n} x^k = O(1)$. Why?

Summation of Geometric Series

- This is supposed to be a review of material you have seen in Math courses:
- Suppose that 0 < x < 1:

• Finite summations:
$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

• Infinite summations:
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

• Important to note: $\sum_{k=0}^{n} x^k \leq \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ Therefore, $\sum_{k=0}^{n} x^k = O(1)$. Why? - Because $\frac{1}{1-x}$ is independent of n.

Summation of Geometric Series

Suppose that x > 1: The formula for finite summations is the same, and can be rewritten as:

•
$$\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$$

- This can be a handy formula in solving recurrences:
- For example:

 $1 + 5 + 5^{2} + 5^{3} + \dots + 5^{n} = \frac{5^{n+1} - 1}{5 - 1} = O(5^{n})$

Harmonic Series

- $H_N = \sum_{k=1}^N \frac{1}{k}$
- $\ln(N) \le H_N \le \ln(N) + 1$
- The above formula shows that the harmonic series can be easily approximated by the natural logarithm.
- It follows that $H_N = O(\log(N))$. Why?
- $\ln(N) = \log_e N = \frac{\log_2 N}{\log_2 e} = \frac{1}{\log_2 e} \log_2 N = O(\log(N))$
- $H_N = O(\ln(n)) = O(\log(N))$

Approximation by Integrals

• Suppose that f(x) is a monotonically increasing function:

- This means that $x \le y \Rightarrow f(x) \le f(y)$.

- Then, we can approximate summation $\sum_{k=m}^{n} f(k)$ using integral $\int_{m}^{n+1} f(x) dx$.
- Why? Because $f(k) \leq \int_{k}^{k+1} f(x) dx$.
- Why? $\int_{k}^{k+1} f(x) dx$ is the average value of f(x) in the interval [k, k + 1].
- For every x in the interval $[k, k + 1], x \ge k$. Since f(x) is increasing, if $x \ge k$ then $f(x) \ge f(k)$.

- Suppose that we have an algorithm that at each step:
 - takes $O(N^2)$ time to go over N items.
 - eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
 - takes $O(N^2)$ time to go over N items.
 - eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

•
$$g(N) = g(N-1) + N^2$$

 $= g(N-2) + (N-1)2 + N^2$
 $= g(N-3) + (N-2)2 + (N-1)2 + N^2$
...
 $= 1^2 + 2^2 + ... + N^2$
 $= \sum_{k=1}^{N} k^2$. How do we approximate that?

- We approximate $\sum_{k=1}^{N} k^2$ using an integral:
- Clearly, $f(x) = x^2$ is a monotonically increasing function.

• So,
$$\sum_{k=1}^{N} k^2 \le \int_1^{N+1} x^2 dx = \frac{(N+1)^3 - 1^3}{3}$$

= $\frac{N^3 + 2N^2 + 2N + 1 - 1}{3} = \Theta(N^3)$

- Suppose that we have an algorithm that at each step:
 - takes O(log(N)) time to go over N items.
 - eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
 - takes O(log(N)) time to go over N items.
 - eliminates one item and then calls itself with the remaining data.
- How do we write this recurrence?

•
$$g(N) = g(N-1) + \log(N)$$

 $= g(N-2) + \log(N-1) + \log(N)$
 $= g(N-3) + \log(N-2) + \log(N-1) + \log(N)$
...
 $= \log(1) + \log(2) + ... + \log(N)$

 $=\sum_{k=1}^{N} log(k)$. How do we compute that?

- We process $\sum_{k=1}^{N} log(k)$ using the fact that: log(a) + log(b) = log(ab)
- $\sum_{k=1}^{N} \log(k) = \log(1) + \log(2) + \dots + \log(N)$ $= \log(N!)$ $\cong \log((\frac{N}{e})^{N})$ $= N \log(\frac{N}{e})$ $= N \log(N) N \log(e) = O(N \log(N))$

- Suppose that we have an algorithm that at each step:
 - takes O(1) time to go over N items.
 - calls itself 3 times on data of size N-1.
 - takes O(1) time to combine the results.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
 - takes O(1) time to go over N items.
 - calls itself 3 times on data of size N-1.
 - takes O(1) time to combine the results.
- How do we write this recurrence?

•
$$g(N) = 3g(N-1) + 1$$

= $3^2g(N-2) + 3 + 1$
= $3^3g(N-3) + 3^2 + 3 + 1$

...

No

$$= 3^{N-1}g(1) + 3^{N-2} + 3^{N-3} + 3^{N-4} + \dots + 1$$

te: g(1) is just a constant finite summation

- Suppose that we have an algorithm that at each step:
 - takes O(1) time to go over N items.
 - calls itself 3 times on data of size N-1.
 - takes O(1) time to combine the results.
- How do we write this recurrence?

•
$$g(N) = 3g(N-1) + 1$$

= $3^2g(N-2) + 3 + 1$
= $3^3g(N-3) + 3^2 + 3 + 1$

...

$$= 3^{N-1}g(1) + 3^{N-2} + 3^{N-3} + 3^{N-4} + \dots + 1$$
$$= 0(3^N) + 0(3^N) = 0(3^N)$$

- Suppose that we have an algorithm that at each step:
 - calls itself N times on data of size N/2.
 - takes O(1) time to combine the results.
- How do we write this recurrence?

- Suppose that we have an algorithm that at each step:
 - calls itself N times on data of size N/2.
 - takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = \log N$.

•
$$g(2^n) = 2^n g(2^{n-1}) + 1$$

 $= 2^n 2^{n-1} g(N-2) + 2^n + 1$
 $= 2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
 $= \left(\prod_{k=n-2}^n 2^n\right) g(N-3) + 1 + \sum_{k=n-1}^n \prod_{i=k}^n 2^n$

- Suppose that we have an algorithm that at each step:
 - calls itself N times on data of size N/2.
 - takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = \log N$.

•
$$g(2^n) = 2^n g(2^{n-1}) + 1$$

 $= 2^n 2^{n-1} g(N-2) + 2^n + 1$
 $= 2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
 $= \left(\prod_{k=n-3}^n 2^n\right) g(N-4) + 1 + \sum_{k=n-2}^n \prod_{i=k}^n 2^n$

- Suppose that we have an algorithm that at each step:
 - calls itself N times on data of size N/2.
 - takes O(1) time to combine the results.
- How do we write this recurrence? Let $n = \log N$.

•
$$g(2^n) = 2^n g(2^{n-1}) + 1$$

 $= 2^n 2^{n-1} g(N-2) + 2^n + 1$
 $= 2^n 2^{n-1} 2^{n-2} g(N-3) + 2^n 2^{n-1} + 2^n + 1$
 $= \left(\prod_{k=2}^n 2^n\right) g(1) + 1 + \sum_{k=3}^n \prod_{i=k}^n 2^n$

$$\left(\prod_{k=2}^{n} 2^{n}\right) = 2^{n} 2^{n-1} 2^{n-2} \dots 2^{2} 2^{1}$$

= $2^{(n+n-1+n-2+\dots+1)}$
= $2^{\frac{n(n+1)}{2}}$
= $(2^{n})^{\frac{n+1}{2}}$
= $N^{\frac{\log(N)+1}{2}}$ Substituting N for 2^{n}
= $0(N^{\frac{\log(N)}{2}})$

• Let $X = (\prod_{k=2}^{n} 2^{n})$ (which we have just computed).

$$\sum_{k=3}^{n} \prod_{i=k}^{n} 2^{n} < X + \frac{X}{2} + \frac{X}{4} + \dots \Rightarrow$$

 $\sum_{k=3}^{n} \prod_{i=k}^{n} 2^{n} < 2X \Rightarrow$ (taking previous slide into account)

$$\sum_{k=3}^{n} \prod_{i=k}^{n} 2^{n} = O(N^{\frac{\log(N)}{2}})$$

20

• Based on the previous two slides, we can conclude that the solution of: g(N) = Ng(N/2) + 1 is that:

$$g(N) = O(N^{\frac{\log(N)}{2}})$$

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer:

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer: no!
- Why? sin(*N*) fluctuates forever between -1 and 1.
- As a result, sin(N) N² fluctuates forever between negative and positive values.
- Therefore, for every possible $c_0 > 0$ and N_0 , we can always find an $N > N_0$ such that:

 $N > c_0 \sin(N) N^2$