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Why Asymptotic Behavior Matters 

• Asymptotic behavior: The behavior of a function as 
the input approaches infinity. 

2 Running Time for input of size N 
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Why Asymptotic Behavior Matters 

• Which of these functions is smallest asymptotically? 
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Why Asymptotic Behavior Matters 

• Which of these functions is smallest asymptotically? 

– g(N) seems to grow very slowly after a while. 

4 Running Time for input of size N 
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Why Asymptotic Behavior Matters 

• Which of these functions is smallest asymptotically? 

– However, the picture is not conclusive (need to see what 
happens for larger N). 

5 Running Time for input of size N 
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Why Asymptotic Behavior Matters 

• Which of these functions is smallest asymptotically? 

– Proving that 𝑔(𝑁)  =  𝑂(𝑓(𝑁)) would provide a 
conclusive answer. 

6 Running Time for input of size N 
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Using Limits 

• if  lim
𝑁→∞

𝑔(𝑁)

𝑓(𝑁)
  is a constant, then g(N) = O(f(N)). 

– "Constant" includes zero, but does NOT include infinity. 
 

• if  lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
=  ∞  then g(N) = O(f(N)). 

 

• if  lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
  is a constant, then g(N) = Ω(f(N)). 

– Again, "constant" includes zero, but not infinity. 
 

• if  lim
𝑁→∞

𝑓(𝑁)

𝑔(𝑁)
  is a non-zero constant, then g(N) = Θ(f(N)). 

– In this definition, both zero and infinity are excluded. 
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Using Limits - Comments 

• The previous formulas relating limits to big-Oh 
notation show once again that big-Oh notation 
ignores: 

– constants 

– behavior for small values of N. 

• How do we see that? 
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Using Limits - Comments 

• The previous formulas relating limits to big-Oh 
notation show once again that big-Oh notation 
ignores: 

– constants 

– behavior for small values of N. 

• How do we see that? 

– In the previous formulas, it is sufficient that the limit is 
equal to a constant. The value of the constant does not 
matter. 

– In the previous formulas, only the limit at infinity matters. 
This means that we can ignore behavior up to any finite 
value, if we need to. 
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Using Limits: An Example 

• Show that 
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(???). 
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Using Limits: An Example 

• Show that 
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(𝑛2). 

 

• Let g 𝑛 =
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
 

• Let 𝑓(𝑛)  =  𝑛2. 
 

lim
𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
= lim
𝑛→∞

𝑛5+ 3𝑛4 + 2𝑛3 + 𝑛2 + 𝑛 + 12

5𝑛3+ 𝑛 + 3
 
1

𝑛2
 

                   = lim
𝑛→∞

𝑛5+ 3𝑛4 + 2𝑛3 + 𝑛2 + 𝑛 + 12

5𝑛5 + 𝑛3+ 3𝑛2
= 
1

5
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Using Limits: An Example 

• Show that 
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
= Θ(𝑛2). 

 

• Let g 𝑛 =
𝑛5+3𝑛4+2𝑛3+𝑛2+𝑛+12

5𝑛3+𝑛+3
 

• Let 𝑓(𝑛)  =  𝑛2. 
 

• In the previous slide, we showed that lim
𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
= 
1

5
 

• Therefore, 𝑔(𝑛)  =  Θ(𝑓(𝑛)). 
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Big-Oh Transitivity 

• If 𝑔 𝑁 = 𝑂 𝑓 𝑁  and 𝑓 𝑁 = 𝑂(ℎ 𝑁 ), then  

𝑔 𝑁 = 𝑂(ℎ 𝑁 ). 

• How can we prove that?  
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Big-Oh Transitivity 

• If 𝑔 𝑁 = 𝑂 𝑓 𝑁  and 𝑓 𝑁 = 𝑂(ℎ 𝑁 ), then  

𝑔 𝑁 = 𝑂(ℎ 𝑁 ). 

• How can we prove that? Using the definition of the 
big-Oh notation. 

• g(N) < c0 f(N)    for all N > N0. 

• f(N) < c1 h(N)    for all N > N1. 

• Set: 

–  c2 = c0 * c1 

– N2 = max(N0, N1) 

• Then, g(N) < c2 h(N)    for all N > N2. 
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Big-Oh Hierarchy 

• 1 =  𝑂(log (𝑁)) 

• log (𝑁)  =  𝑂(𝑁) 

• 𝑁 =  𝑂 𝑁2  

• If 𝑐 ≥  𝑑 ≥ 0, then 𝑁𝑑 =  𝑂(𝑁𝑐). 

– Higher-order polynomials always get larger than lower-
order polynomials, eventually. 

• For any 𝑑, if 𝑐 >  1, 𝑁𝑑 =  𝑂 𝑐𝑁 . 

– Exponential functions always get larger than polynomial 
functions, eventually. 

• You can use these facts in your assignments. 

• You can apply transitivity to derive other facts, e.g., 
that log (𝑁)  =  𝑂(𝑁2). 15 



Using Substitutions 

• If lim
𝑥→∞
ℎ(𝑥) =  ∞, then: 

 

𝑔 𝑥 =  𝑂 𝑓 𝑥 ⇒ 𝑔 ℎ(𝑥) = 𝑂(𝑓 ℎ(𝑥) ). 

 

• How do we use that? 

• For example, prove that log 𝑁 = 𝑂( 𝑁). 
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Using Substitutions 

• If lim
𝑥→∞
ℎ(𝑥) =  ∞, then: 

 

𝑔 𝑥 =  𝑂 𝑓 𝑥 ⇒ 𝑔 ℎ(𝑥) = 𝑂(𝑓 ℎ(𝑥) ). 

 

• How do we use that? 

• For example, prove that log 𝑁 = 𝑂( 𝑁). 

• Use h x =  𝑁. We get: 
 

log N = O N ⇒ log 𝑁 = 𝑂 𝑁  
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Summations 

• Summations are formulas of the sort:   𝑓(𝑘)𝑛
𝑘=0  

 

• Computing the values of summations can be handy 
when trying to solve recurrences. 

• Oftentimes, establishing upper bounds is sufficient, 
since we use big-Oh notation. 

• If 𝑓 𝑘 ≥ 0 , then:   𝑓 𝑘 ≤𝑛
𝑘=0  𝑓 𝑘∞

𝑘=0  
 

• Sometimes, summing to infinity give a more simple 
formula. 
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Geometric Series 

• A geometric series is a sequence Ck of numbers, such 
that Ck = D * Ck-1 , where D is a constant. 

• How can we express C1 in terms of C0? 

– C1 = D * C0 

• How can we express C2 in terms of C0? 

– C2 = D * C1 = D2 * C0 

• How can we express Ck in terms of C0? 

– Ck = Dk * C0 

• So, to define a geometric series, we just need two 
parameters: D and C0. 
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Summation of Geometric Series 

• This is supposed to be a review of material you have seen in 
Math courses: 

• Suppose that 𝟎 <  𝒙 < 𝟏: 

• Finite summations:  𝑥𝑘𝑛
𝑘=0 =

1 − 𝑥𝑛+1

1 − 𝑥
 

 

• Infinite summations:  𝑥𝑘∞
𝑘=0 =

1

1 − 𝑥
 

 

• Important to note:  𝑥𝑘𝑛
𝑘=0 ≤  𝑥𝑘∞

𝑘=0 =
1

1 − 𝑥
   

Therefore,   𝑥𝑘𝑛
𝑘=0 = 𝑂 1 . Why?  
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Summation of Geometric Series 

• This is supposed to be a review of material you have seen in 
Math courses: 

• Suppose that 𝟎 <  𝒙 < 𝟏: 

• Finite summations:  𝑥𝑘𝑛
𝑘=0 =

1 − 𝑥𝑛+1

1 − 𝑥
 

 

• Infinite summations:  𝑥𝑘∞
𝑘=0 =

1

1 − 𝑥
 

 

• Important to note:  𝑥𝑘𝑛
𝑘=0 ≤  𝑥𝑘∞

𝑘=0 =
1

1 − 𝑥
   

Therefore,   𝑥𝑘𝑛
𝑘=0 = 𝑂 1 . Why?  

– Because 
1

1 − 𝑥
 is independent of n. 
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Summation of Geometric Series 

• Suppose that 𝑥 > 1: The formula for finite summations is the 
same, and can be rewritten as: 

•  𝑥𝑘𝑛
𝑘=0 =

𝑥𝑛+1−1

𝑥−1
 

 

• This can be a handy formula in solving recurrences: 

• For example: 

1 +  5 +  52 +  53
 
+ … +  5𝑛 =

5𝑛+1 − 1

5 − 1
= 𝑂(5𝑛)  
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Harmonic Series 

• 𝐻𝑁 =  
1

𝑘
𝑁
𝑘=1  

 

• ln 𝑁 ≤ 𝐻𝑁 ≤ ln 𝑁 + 1  
 

• The above formula shows that the harmonic series can 
be easily approximated by the natural logarithm. 

• It follows that 𝐻𝑁 = 𝑂 log 𝑁 . Why? 

• ln 𝑁 = log𝑒 𝑁 =  
log2 𝑁

log2 𝑒
=
1

log2 𝑒
 log2𝑁 = 𝑂(log 𝑁 ) 

• 𝐻𝑁 = 𝑂 ln 𝑛 = 𝑂(log 𝑁 ) 
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Approximation by Integrals 

• Suppose that f(x) is a monotonically increasing 
function: 

– This means that 𝑥 ≤ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦). 

• Then, we can approximate summation  𝑓(𝑘)𝑛
𝑘=𝑚  

using integral  𝑓 𝑥 𝑑𝑥
𝑛+1

𝑚
. 

• Why? Because 𝑓(𝑘) ≤  𝑓 𝑥 𝑑𝑥
𝑘+1

𝑘
.  

• Why?  𝑓 𝑥 𝑑𝑥
𝑘+1

𝑘
 is the average value of 𝑓(𝑥) in 

the interval [𝑘, 𝑘 + 1].  

• For every 𝑥 in the interval [𝑘, 𝑘 + 1], 𝑥 ≥  𝑘.Since 
𝑓(𝑥) is increasing, if 𝑥 ≥  𝑘 then 𝑓 𝑥 ≥  𝑓(𝑘). 
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Solving Recurrences: Example 1 

• Suppose that we have an algorithm that at each step: 

–  takes O(N2) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 
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Solving Recurrences: Example 1 

• Suppose that we have an algorithm that at each step: 

–  takes O(N2) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 

• 𝑔(𝑁)  =  𝑔(𝑁 − 1) +  𝑁2 
            =  𝑔(𝑁 − 2)  + (𝑁 − 1)2 +  𝑁2 

               =  𝑔(𝑁 − 3)  + (𝑁 − 2)2 + (𝑁 − 1)2 +   𝑁2 

                 … 

                 =  12 +  22
 
+ … +  𝑁2

 
 

       =  𝑘2𝑁
𝑘=1 .   How do we approximate that? 
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Solving Recurrences: Example 1 

• We approximate  𝒌𝟐𝑵
𝒌=𝟏  using an integral: 

 

• Clearly, 𝑓(𝑥)  =  𝑥2 is a monotonically increasing 
function. 

• So,  𝑘2𝑁
𝑘=1 ≤  𝑥2𝑑𝑥

𝑁+1

1
= 
𝑁+1 3 −13

3
 

                         =
𝛮3+2𝛮2+2𝛮+1 −1

3
=  𝛩(𝑁3) 
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Solving Recurrences: Example 2 

• Suppose that we have an algorithm that at each step: 

–  takes O(log(N)) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 
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Solving Recurrences: Example 2 

• Suppose that we have an algorithm that at each step: 

–  takes O(log(N)) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 
• 𝑔(𝑁)  =  𝑔(𝑁 − 1) + log (𝑁) 

                 =  𝑔(𝑁 − 2) + log (𝑁 − 1) + log (𝑁) 

                 =  𝑔(𝑁 − 3) + log (𝑁 − 2) + log (𝑁 − 1) +  log (𝑁) 

                 … 

                 =  log (1)  +  log (2)  + … +  log (𝑁) 

       =  𝑙𝑜𝑔(𝑘)𝑁
𝑘=1 .   How do we compute that? 29 



Solving Recurrences: Example 2 

• We process  𝒍𝒐𝒈(𝒌) 𝑵
𝒌=𝟏 using the fact that: 

 log (𝑎)  +  log (𝑏)  =  log (𝑎𝑏) 

 

•  log(k) N
k=1 = log 1 + log 2  + … + log N  

                            =  log (𝑁!) 

                            ≌  log ((
𝑁

𝑒
)𝑁) 

                            = 𝑁 log (
𝑁

𝑒
)  

                            = 𝑁 log 𝑁 –  𝑁 log 𝑒 = 𝑂(𝑁 log 𝑁 ) 
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Solving Recurrences: Example 3 

• Suppose that we have an algorithm that at each step: 

–  takes O(1) time to go over N items. 

– calls itself 3 times on data of size N-1. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? 
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Solving Recurrences: Example 3 

• Suppose that we have an algorithm that at each step: 

–  takes O(1) time to go over N items. 

– calls itself 3 times on data of size N-1. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? 
• 𝑔(𝑁)  = 3𝑔(𝑁 − 1) + 1 

                 = 32𝑔 𝑁 − 2 + 3 + 1 

                 = 33𝑔 𝑁 − 3 + 32+ 3 + 1 

                 … 

                 = 3𝑁−1𝑔 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1 

       32 Note: 𝑔(1) is just a constant finite summation 



Solving Recurrences: Example 3 

• Suppose that we have an algorithm that at each step: 

–  takes O(1) time to go over N items. 

– calls itself 3 times on data of size N-1. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? 
• 𝑔(𝑁)  = 3𝑔(𝑁 − 1) + 1 

                 = 32𝑔 𝑁 − 2 + 3 + 1 

                 = 33𝑔 𝑁 − 3 + 32+ 3 + 1 

                 … 

                 = 3𝑁−1𝑔 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1 

      = O 3𝑁 + O 3𝑁 = O(3𝑁) 33 



Solving Recurrences: Example 4 

• Suppose that we have an algorithm that at each step: 

– calls itself N times on data of size N/2. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? 
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Solving Recurrences: Example 4 

• Suppose that we have an algorithm that at each step: 

– calls itself N times on data of size N/2. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? Let n = log𝑁. 
• 𝑔(2𝑛)  = 2𝑛𝑔(2𝑛−1) + 1 

                 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1 

                 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛  2𝑛−1+ 2𝑛 + 1 

                 =    2𝑛
𝑛

𝑘=𝑛−2

 𝑔 𝑁 − 3 + 1 +   2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=𝑛−1
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Solving Recurrences: Example 4 

• Suppose that we have an algorithm that at each step: 

– calls itself N times on data of size N/2. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? Let n = log𝑁. 
• 𝑔(2𝑛)  = 2𝑛𝑔(2𝑛−1) + 1 

                 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1 

                 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛  2𝑛−1+ 2𝑛 + 1 

                 =    2𝑛
𝑛

𝑘=𝑛−3

 𝑔 𝑁 − 4 + 1 +   2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=𝑛−2
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Solving Recurrences: Example 4 

• Suppose that we have an algorithm that at each step: 

– calls itself N times on data of size N/2. 

– takes O(1) time to combine the results. 

• How do we write this recurrence? Let n = log𝑁. 
• 𝑔(2𝑛)  = 2𝑛𝑔(2𝑛−1) + 1 

                 = 2𝑛 2𝑛−1𝑔 𝑁 − 2 + 2𝑛 + 1 

                 = 2𝑛 2𝑛−1 2𝑛−2𝑔 𝑁 − 3 + 2𝑛  2𝑛−1+ 2𝑛 + 1 

                 =    2𝑛
𝑛

𝑘=2

 𝑔 1 + 1 +   2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3
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Solving Recurrences: Example 4 

 2𝑛
𝑛

𝑘=2

= 2𝑛2𝑛−12𝑛−2  … 2221 

                   = 2(𝑛+𝑛−1+𝑛−2+⋯+1) 

                   = 2
𝑛(𝑛+1)

2  

                   =  2𝑛
𝑛+1
2  

                   = 𝑁
log (𝑁)+1
2  

                   = 𝑂(𝑁
log 𝑁
2 ) 

38 

Substituting N for 2𝑛 



Solving Recurrences: Example 4 

• Let X =  2𝑛𝑛
𝑘=2  (which we have just computed). 

 

  2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3

< 𝑋 + 
𝑋

2
+
𝑋

4
+ …  ⇒ 

 

  2𝑛𝑛
𝑖=𝑘

𝑛
𝑘=3 < 2𝑋 ⇒  (taking previous slide into account) 

 

  2𝑛
𝑛

𝑖=𝑘

𝑛

𝑘=3

= 𝑂(𝑁
log 𝑁
2 ) 
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Solving Recurrences: Example 4 

• Based on the previous two slides, we can conclude 
that the solution of: 𝑔(𝑁)  = 𝑁𝑔(𝑁/2) + 1 is that: 

 

𝑔 𝑁 = 𝑂(𝑁
log 𝑁
2 ) 
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Big-Oh Notation: Example Problem 

• Is 𝑁 = 𝑂(sin 𝑁 𝑁2)? 

• Answer: 
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Big-Oh Notation: Example Problem 

• Is 𝑁 = 𝑂(sin 𝑁 𝑁2)? 

• Answer: no! 

• Why? sin (𝑁) fluctuates forever between -1 and 1. 

• As a result, sin 𝑁 𝑁2 fluctuates forever between 
negative and positive values. 

• Therefore, for every possible 𝑐0 > 0 and 𝑁0, we can 
always find an 𝑁 > 𝑁0  such that: 
 

𝑁 > 𝑐0sin (𝑁)𝑁
2 
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