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Basic Types 

• Types like integers, real numbers, characters. In C: 

– int 

– float 

– char 

– and variations: short, long, double, … 

• Each basic type takes up a fixed amount of memory. 

– E.g: 32 bits for an int, 32 bits for a float, 8 bits for a char. 

– For C, this may vary, but the above values are common. 

• Fixed memory implies limits in range, precision. 

– Integers above and below certain values are not allowed. 

– Real numbers cannot be specified with infinite precision. 
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Sets and Sequences 

• A set is a very basic mathematical notion. 

• Since this is not a math class, we can loosely say that 
a set is a collection of objects. 

– Some of these objects may be sets themselves. 

• Sequences are ordered sets. 

• In sequences, it makes sense to talk of: 

– first element, second element, last element. 

– previous element, next element. 

• In sets, order does not matter. 
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Sets and Sequences in Programs 

• It is hard to imagine large, non-trivial programs that 
do not involve sets or sequences. 

• Examples where sets/sequences are involved: 

– Anything involving text: 
• Text is a sequence of characters. 

– Any database, that contains a set of records: 
• Customers. 

• Financial transactions. 

• Inventory. 

• Students. 

• Meteorological observations. 

• … 

– Any program involving putting items in order (sorting). 
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Representing Sets and Sequences 

• Representing sets and sequences is a common and 
very important task in software design. 

• Our next topic is to study the most popular choices 
for representing sequences. 

– Arrays. 

– Lists. 

– Strings. 

• Arrays and lists can store arbitrary types of objects. 

• Strings are custom-made to store characters. 

• Each choice has its own trade-offs, that we need to 
understand. 
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Common Operations 

• A data structure representing a sequence must support 
specific operations: 

– Initialize the sequence. 

– Delete the sequence. 

– Insert an item at some position. 

– Delete the item at some position. 

– Replace the item at some position. 

– Access (look up) the item at some position. 

• The position (for insert, delete, replace, access) can be:  

– the beginning of the sequence, 

– or the end of the sequence, 

– or any other position. 
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Arrays 

• In this course, it is assumed that you all are proficient 
at using arrays in C.  

• IMPORTANT: the material in textbook chapter 3.2 is 
assumed to be known: 

– How to create an array. 

– How to access elements in an array. 

– Using malloc and free to allocate and de-allocate memory. 

• Here, our focus is to understand the properties of 
array operations: 

– Time complexity. 

– Space complexity. 

– Other issues/limitations. 
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Array Initialization 

• How is an array initialized in C? 
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Array Initialization 

• How is an array initialized in C? 

• If the size of the array is known when we write the code: 
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Array Initialization 

• How is an array initialized in C? 

• If the size of the array is known when we write the code: 
 

int array_name[ARRAY_SIZE] 
 

(where ARRAY_SIZE is a compile-time constant) 
 

• If the size of the array is not known when we write the code: 
 
 

10 

static allocation 



Array Initialization 

• How is an array initialized in C? 

• If the size of the array is known when we write the code: 
 

int array_name[ARRAY_SIZE] 
 

(where ARRAY_SIZE is a compile-time constant) 
 

• If the size of the array is not known when we write the code: 
 

int * array_name = malloc(ARRAY_SIZE * sizeof(int)) 
 

(where ARRAY_SIZE is a compile-time constant) 

 

• Any issues/limitations with array initialization? 
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Array Initialization 

• Major issue: the size of the array MUST BE KNOWN 
when the array is created.  

• Is that always possible? 
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Array Initialization 

• Major issue: the size of the array MUST BE KNOWN 
when the array is created.  

• Is that always possible? 

– No, though it does happen some times. 

• What do we do if the size is not known in advance? 

– What did the textbook do for the examples in Union-Find, 
Binary Search, and Selection Sort? 
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Array Initialization 

• Major issue: the size of the array MUST BE KNOWN 
when the array is created.  

• Is that always possible? 

– No, though it does happen some times. 

• What do we do if the size is not known in advance? 

– What did the textbook do for the examples in Union-Find, 
Binary Search, and Selection Sort? 

– Allocate a size that (hopefully) is large enough. 

• Problems with that: 
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Array Initialization 

• Major issue: the size of the array MUST BE KNOWN 
when the array is created.  

• Is that always possible? 

– No, though it does happen some times. 

• What do we do if the size is not known in advance? 

– What did the textbook do for the examples in Union-Find, 
Binary Search, and Selection Sort? 

– Allocate a size that (hopefully) is large enough. 

• Problems with allocating a "large enough" size: 

– Sometimes the size may not be large enough anyway. 

– Sometimes it can be a huge waste of memory. 
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Array Initialization and Deletion 

• Time complexity of array initialization: constant time. 

 

• How about array deletion? How is that done in C? 

• If the array was statically allocated: 

• If the array was dynamically allocated: 

• Either way, the time complexity is: . 
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Array Initialization and Deletion 

• Time complexity of array initialization: constant time. 

 

• How about array deletion? How is that done in C? 

• If the array was statically allocated: we do nothing. 

• If the array was dynamically allocated: we call free. 

• Either way, the time complexity is: O(1). 
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Arrays: Inserting an Item 

• "Inserting an item" for arrays can mean two different 
things. 

• When the array is first created, it contains no items. 

• The first meaning of "inserting an item" is simply to 
store a value at a position that previously contained 
no value. 

• What is the time complexity of that? 
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Arrays: Inserting an Item 

• "Inserting an item" for arrays can mean two different 
things. 

• When the array is first created, it contains no items. 

• The first meaning of "inserting an item" is simply to 
store a value at a position that previously contained 
no value. 

• What is the time complexity of that? O(1). 
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Arrays: Inserting an Item 

• The second meaning of "inserting an item", which is 
the meaning we use in this course, is to insert a value 
at a position between other existing values. 

• An example: 

– suppose we have an array of size 1,000,000. 

– suppose we have already stored value at the first 800,000 
positions. 

– We want to store a new value at position 12,345, 
WITHOUT replacing the current value there, or any other 
value. 

• We need to move a lot of values one position to the 
right, to make room. 
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Arrays: Inserting an Item 

for (i = 800000; i >= 12345; i--) 

   a[i] = a[i-1]; 

a[12345] = new_value; 

 

• Why are we going backwards? 

21 



Arrays: Inserting an Item 

for (i = 800000; i >= 12345; i--) 

   a[i] = a[i-1]; 

a[12345] = new_value; 

 

• Why are we going backwards? 

– To make sure we are not writing over values that we 
cannot recover. 

• If the array size is N, what is the worst-case time 
complexity of this type of insertion? 
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Arrays: Inserting an Item 

for (i = 800000; i >= 12345; i--) 

   a[i] = a[i-1]; 

a[12345] = new_value; 

 

• Why are we going backwards? 

– To make sure we are not writing over values that we 
cannot recover. 

• If the array size is N, what is the worst-case time 
complexity of this type of insertion? 

– O(N).  
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Arrays: Deleting an Item 

• Again, we have an array of size 1,000,000. 

– We have already stored value at the first 800,000 
positions. 

– We want to delete the value at position 12,345. 

– How do we do that? 
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Arrays: Deleting an Item 

• Again, we have an array of size 1,000,000. 

– We have already stored value at the first 800,000 
positions. 

– We want to delete the value at position 12,345. 

– How do we do that? 
 

for (i = 12345; i < 800000; i++) 

   a[i] = a[i+1]; 

 

• If the array size is N, what is the worst-case time 
complexity of deletion? 
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Arrays: Deleting an Item 

• Again, we have an array of size 1,000,000. 

– We have already stored value at the first 800,000 
positions. 

– We want to delete the value at position 12,345. 

– How do we do that? 
 

for (i = 12345; i < 800000; i++) 

   a[i] = a[i+1]; 

 

• If the array size is N, what is the worst-case time 
complexity of deletion? 

– O(N).  
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Arrays: Replacing and Accessing 

• How do we replace the value at position 12,345 with 
a new value? 
 
a[12345] = new_value; 

 

• How do we access the value at position 12,345? 

 
  int b = a[12345]; 

 

• Time complexity for both: O(1). 
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Arrays: Summary 

• Initialization: O(1) time, but must specify the size, 
which is a limitation. 

• Deletion of the array: O(1) time, easy. 

• Insertion: O(N) worst case time. 

• Deletion of a single element: O(N) worst case time. 

• Replacing a value: O(1) time. 

• Looking up a value: O(1) time. 

• Conclusions:  

– Arrays are great for looking up values and replacing values. 

– Initialization requires specifying a size, which is limiting. 

– Insertion and deletion are slow. 
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Linked Lists 

• Many of you may have used lists, as they are built-in 
in many programming languages. 

– Java, Python, C++, … 

• They are not built in C. 

• Either way, this is the point in your computer science 
education where you learn to implement lists 
yourselves. 
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Contrast to Arrays 

• An array is a contiguous chunk of memory. 

– That is what makes it easy, and fast, to access and replace 
values at specific positions. 

– That is also what causes the need to specify a size at 
initialization, which can be a problem. 

– That is also what causes insertion and deletion to be slow. 

• Linked lists (as we will see in the next few slides) 
have mostly opposite properties: 

– No need to specify a size at initialization. 

– Insertion and deletion can be fast (though it depends on 
the information we provide to these functions). 

– Finding and replacing values at specific positions is slow. 
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The Notion of a Link 

• When we create a list, we do not need to specify a size 
in advance. 

– No memory is initially allocated. 

• When we insert an item, we allocate just enough 
memory to hold that item. 

– This allows lists to use memory very efficiently: 
• No wasting memory by allocating more than we need. 

• Lists can grow as large as they need (up to RAM size). 

• Result: list items are not stored in contiguous memory.  

– So, how do we keep track of where each item is stored? 

– Answer: each item knows where the next item is stored. 

– In other words, each item is a link to the next item. 
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Links 

typedef struct node * link; 

struct node {Item item; link next;  }; 

 

• Note: the Item type can be defined using a typedef. It 
can be an int, float, char, or any other imaginable type. 

• A linked list is a set of links. 

– This definition is simple, but very important. 
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Representing a List 

• How do we represent a list in code? 

• Initial choice: all we need is the first link. So, lists 
have the same type as links. 

– I don't like that choice, but we must first see how it works. 

• How do we access the rest of the links? 
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Representing a List 

• How do we represent a list in code? 

• Initial choice: all we need is the first link. So, lists 
have the same type as links. 

– I don't like that choice, but we must first see how it works. 

• How do we access the rest of the links? 

– Step by step, from one link to the next. 

• How do we know we have reached the end of the 
list? 
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Representing a List 

• How do we represent a list in code? 

• Initial choice: all we need is the first link. So, lists 
have the same type as links. 

– I don't like that choice, but we must first see how it works. 

• How do we access the rest of the links? 

– Step by step, from one link to the next. 

• How do we know we have reached the end of the 
list? 

– Here we need a convention. 

– The convention we will follow: the last link points to NULL. 
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A First Program 

#include <stdlib.h> 

#include <stdio.h> 

 

typedef struct node * link; 

struct node  {int item; link next;  }; 

 

main() 

{   

   link the_list = malloc(sizeof(struct node)); 

   the_list->item = 573; 

   the_list->next = NULL; 

} 
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A First Program 

• What does the program in the previous slide do? 

– Not much. It just creates a list with a single item, with 
value 573. 

• Still, this program illustrates some basic steps in 
creating a list: 

– There is no difference in the code between the list itself 
and the first link in the list. 

– To denote that there is only one link, the next variable of 
that link is set to NULL.  

• Next: let's add a couple more links manually. 
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#include <stdlib.h> 

#include <stdio.h> 
 

typedef struct node * link; 

struct node  {int item; link next;  }; 
 

link newLink(int value) 

{  link result = malloc(sizeof(struct node)); 

   result->item = value; 

   result->next = NULL; 

} 
 

main() 

{  link the_list = newLink(573); 

   the_list->next = newLink(100); 

   the_list->next->next = newLink(200); 

} 38 

A Second Program 



A Second Program 

• What does the program in the previous slide do? 

• It creates a list of three items: 573, 100, 200. 

• We also now have a function new_link for creating a 
new link. 

– Important: by default, new_link sets the next variable of 
the result to NULL. 

• How does the list look like when we add value 573? 

 

573 

item 

the_list NULL 

next 

struct node 



A Second Program 

• What does the program in the previous slide do? 

• It creates a list of three items: 573, 100, 200. 

• We also now have a function new_link for creating a 
new link. 

– Important: by default, new_link sets the next variable of 
the result to NULL. 

• How does the list look like when we add value 100? 
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item 

NULL 

next 
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A Second Program 

• What does the program in the previous slide do? 

• It creates a list of three items: 573, 100, 200. 

• We also now have a function new_link for creating a 
new link. 

– Important: by default, new_link sets the next variable of 
the result to NULL. 

• How does the list look like when we add value 200? 
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573 

item 

the_list 

next 

struct node 

100 

item next 

struct node 

200 

item 

NULL 

next 

struct node 



Printing the List 

void print_list(link my_list) 

{ 

   int counter = 0; 

   link i; 

   for (i = my_list; i != NULL; i = i->next) 

   { 

      printf("item %d: %d\n", counter, i->item); 

      counter++; 

   } 

} 

 

• The highlighted line in red is the CLASSIC way to go through all 
elements of the list. This is used EXTREMELY OFTEN. 
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Finding the Length of the List 

int list_length(link my_list) 

{ 

   int counter = 0; 

   link i; 

   for (i = my_list; i != NULL; i = i->next) 

   { 

      counter++; 

   } 

   return counter; 

} 

 

• The highlighted line in red is the CLASSIC way to go through all 
elements of the list. This is used EXTREMELY OFTEN. 

• This kind of loop through the elements of a list is called 
traversal of the list. 
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Deleting an Item 

• Suppose that we want to delete the middle node. 
What do we need to do? 

• Simple approach:  

the_list->next = the_list->next->next;  
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item 

the_list 

next 

struct node 

100 

item next 

struct node 

200 

item 

NULL 

next 

struct node 

573 

item 

Outcome:     the_list 

next 

200 

item 

NULL 

next 



Deleting an Item 

• Any problem with this approach?  

the_list->next = the_list->next->next;  
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item 

the_list 

next 

struct node 

100 

item next 

struct node 

200 

item 

NULL 

next 

struct node 

573 

item 

Outcome:     the_list 

next 

200 

item 

NULL 

next 



Deleting an Item 

• Any problem with this approach? MEMORY LEAK 

the_list->next = the_list->next->next;  
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the_list 
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100 

item next 

struct node 

200 

item 

NULL 

next 

struct node 

573 

item 

Outcome:     the_list 

next 
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NULL 

next 



Deleting an Item 

• Fixing the memory leak: 
 

link temp = the_list->next; 

the_list->next = the_list->next->next; 

free(temp); 
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item 

the_list 

next 

struct node 

100 

item next 

struct node 

200 

item 

NULL 

next 

struct node 

573 

item 
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Deleting an Item from the Start 
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Deleting an Item from the Start 

• This will work. Any issues? 

   
 

link temp = the_list; 

the_list = the_list->next; 

free(temp); 
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Deleting an Item from the Start 

• This will work. Any issues? It is not that elegant. 
– We need to change the value of variable the_list.  

 

link temp = the_list; 

the_list = the_list->next; 

free(temp); 
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Inserting an Item 

• Suppose we want to insert value 30 between 100 and 200. 
How do we do that? 
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Inserting an Item 

• Suppose we want to insert value 30 between 100 and 200. 
How do we do that? 

 

 link new_link = malloc(sizeof(struct node)); 

 new_link->item = 30; 

 new_link->next = the_list->next; 

 the_list->next = new_link; 
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Inserting an Item to the Start 

• Suppose we want to insert value 30 at the start of the list: 
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Inserting an Item to the Start 

• Suppose we want to insert value 30 at the start of the list: 

  
   

 

 link new_link = malloc(sizeof(struct node)); 

 new_link->item = 30; 

 new_link->next = the_list; 

 the_list = new_link; 

54 

30 

item 

the_list 

next 

100 

item next 

200 

item 

NULL 

next 

100 

item 

the_list 

next 

200 

item 

NULL 

next 



Inserting an Item to the Start 

• Suppose we want to insert value 30 at the start of the list: 

• Any issues with this code? Again, it is inelegant. 
– As in deleting from the start, we need to change variable the_list. 

 

 link new_link = malloc(sizeof(struct node)); 

 new_link->item = 30; 

 new_link->next = the_list; 

 the_list = new_link; 
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An Example: Reading Integers 
#include <stdlib.h> 

#include <stdio.h> 
 

typedef struct node * link; 

struct node  {int item; link next;  }; 
 

main() 

{  link the_list = NULL, current_link = NULL; 

   while(1) 

   {  int number; 

      printf("please enter an integer: "); 

      if (scanf("%d", &number) != 1) break; 

      link next_item = malloc(sizeof(struct node)); 

      next_item->item = number; next_item->next = NULL; 

      if (the_list == NULL) the_list = next_item; 

      else current_link->next = next_item; 

      current_link = next_item; 

   } 

} 
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Lists: What We Have Done So Far 

• Defined a linked list as a set of links. 

• Each link contains enough room to store a value, and 
to also store the address of the next link. 

– Why does each link need to point to the next link? Because 
otherwise we would not have any way to find the next link. 

• Convention: the last link points to NULL. 

• Insertions and deletions are handled by updating the 
link before the point of insertion or deletion. 

• The variable for the list itself is set equal to the first 
link. 

– This is workable, but hacky and leads to inelegant code. 
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Lists: Next Steps 

• Change our convention for representing the list itself. 

– Decouple the list itself from the first link of the list. 

• Provide a set of functions performing standard list 
operations. 

– Initialize a list. 

– Destroy a list. 

– Insert a link. 

– Delete a link. 
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Representing a List 

• First choice: a list is equal to the first link of the list. 

• This is hacky. Conceptually, a variable representing a 
list should not have to change because we insert or 
delete a link at the beginning. 

• The book proposes the "dummy link" solution, which 
I also don't like as much: 

– The first link of a list is always a dummy link, and thus it 
never has to change. 

• The code in the book uses this solution. 

• In class we will use another solution: lists and links 
are different data types. 
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The New List Representation 

typedef struct struct_list * list; 

struct struct_list 

{  link first;  }; 

 

list newList(): ??? 
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The New List Representation 

typedef struct struct_list * list; 

struct struct_list 

{  link first;  }; 

 

list newList() 

{ 

   list result = malloc(sizeof(*result)); 

   result->first = NULL; 

   return result; 

} 
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Destroying a List 

• How do we destroy a list? 
 
void destroyList(list the_list): ??? 
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Destroying a List 

void destroyList(list the_list) 

{ 

   link i = the_list->first; 

   while(1) 

   {   

      if (i == NULL) break; 

      link next = i->next; 

      free(i); 

      i = next; 

   } 

   free(the_list); 

} 
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Inserting a Link 

• How do insert a link? 
 

  void insertLink(list my_list, link prev, link new_link) 
 

• Assumptions: 
– We want to insert the new link right after link prev. 

– Link prev is provided as an argument. 
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Inserting a Link 

void insertLink(list my_list, link prev, link new_link) 

{ 

   if (prev == NULL) 

   { 

      new_link->next = my_list->first; 

      my_list->first = new_link; 

   } 

   else 

   { 

      new_link->next = prev->next; 

      prev->next = new_link; 

   } 

} 
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Inserting a Link 

• What is the time complexity of  insertLink?  
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Inserting a Link 

• What is the time complexity of  insertLink? O(1). 
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Inserting a Link 

 void insertLink(list my_list, link prev, link new_link) 

 

• Assumptions: 
– We want to insert the new link right after link prev. 

– Link prev is provided as an argument. 

• What other functions for inserting a link may be useful? 
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Inserting a Link 

 void insertLink(list my_list, link prev, link new_link) 

 

• Assumptions: 
– We want to insert the new link right after link prev. 

– Link prev is provided as an argument. 

• What other functions for inserting a link may be useful? 

– Specifying the position, instead of the previous link. 

– Specifying just a value for the new link, instead of the new link 
itself. 
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Deleting a Link 

• How do we delete a link? 
 

               void deleteNext(list my_list, link x)  
 

• Assumptions: 
– The link x that we specify as an argument is NOT the link that 

we want to delete, but the link BEFOFE the one we want to 
delete. Why? 

– If we know the previous link, we can easily access the link we 
need to delete. 

– The previous link needs to be updated to point to the next item. 
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Deleting a Link 

void deleteNext(list my_list, link x) 

{ 

   link temp = x->next; 

   x->next = temp->next; 

   free(temp); 

} 
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Deleting a Link 

• What is the time complexity of  deleteLink? 

• What are the limitations of this version of deleting a 
link? 

  

• What other versions of deleting a link would be 
useful? 
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Deleting a Link 

• What is the time complexity of  deleteLink? O(1). 

• What are the limitations of this version of deleting a 
link? 

– We cannot delete the first link of the list. 

• What other versions of deleting a link would be 
useful? 

– Passing as an argument the node itself that we want to 
delete. 

– How can that be implemented? 
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Reversing a List 

void reverse(list the_list) 

{  

   link current = the_list->first; 

   link previous = NULL; 

   while (current != NULL) 

   {  

      link temp = current->next;  

      current->next = previous;  

      previous = current;  

      current = temp;  

   }     

   the_list->first = previous; 

} 
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Example: Insertion Sort 

• Unlike our implementation for Selection Sort, here 
we do not modify the original list of numbers, we 
just creates a new list for the result. 

• For each number X in the original list:  

– Go through the result list, until we find the first item Y that 
is bigger than M. 

– Insert X right before that item Y. 
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Insertion Sort Implementation 
list insertionSort(list numbers) 

{ 

   list result = newList(); 

   link s; 

   for (s = numbers->first; s!= NULL; s = s->next) 

   { 

      int value = s->item; 

      link current = 0; 

      link next = result->first; 

      while((next != NULL) && (value > next->item)) 

      { 

         current = next; 

         next = next->next; 

      } 

      insertLink(result, current, newLink(value)); 

   } 

   return result; 

} 
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Doubly-Linked Lists 

• In our implementation, every link points to the next one. 

• We could also have every link point to the previous one. 

• Lists where each link points both to the previous and to 
the next element are called doubly-linked lists. 

• The list itself, in addition to keeping track of the first 
element, could also keep track of the last element. 

• Advantages: 

– To delete a link, we just need that link. 

– It is as easy to go backwards as it is to go forward. 

• Disadvantages: 

– More memory per link (one extra pointer). 
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Summary: Lists vs. Arrays 

• N: length of array or list. 

• The table shows time of worst cases. 

• Other pros/cons:  

– When we create an array we must fix its size. 

– Lists can grow and shrink as needed. 
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Operation Arrays Lists 

Access position i O(1) O(i) 

Modify position i O(1) O(i) 

Delete at position i O(N) O(1) 

Insert at position i O(N) O(1) 



Abstracting the Interface 

• When designing a new data type, it is important to 
hide the details of the implementation from the 
programmers who will use this data type (including 
ourselves). 

• Why? So that, if we later decide to change the 
implementation of the data type, no other code 
needs to change besides the implementation. 

• In C, this is doable, but somewhat clumsy. 

• C++ and Java were designed to make this task easy. 

– By allowing for member functions. 

– By differentiating between private and public members. 
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List Interface 

• The following files on the course website implement 
an abstract list interface: 

– list_interface.h 

– list_interface.c 

• Other code that wants to use lists can only see what 
is declared at list_interface.h. 

– The actual implementation of lists and nodes is hidden. 

• The implementation in list_interface.c can change, 
without needing to change any other code. 

– For example, we can switch between our approach of lists 
and nodes as separate data types, and the textbook's 
approach of using a dummy first node. 80 



Circular Lists 

• What is a circular list? It is a list where some link 
points to a previous link. 

• Example: 
 
 
 

 

• When would a circular list be useful? 
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Circular Lists 

• What is a circular list? It is a list where some link 
points to a previous link. 

• Example: 
 
 
 

 

• When would a circular list be useful? 

– In representing items that can naturally be arranged in a 
circular order. 

– Examples: months of the year, days of the week, seasons, 
players in a board game, round-robin assignments, … 82 
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The Josephus-Style Election 

• This is a toy example of using circular lists. 

• N people want to elect a leader. 

– They choose a number M. 

– They arrange themselves in a circular manner. 

– Starting from some person, they count M people, and they 
eliminate the M-th person. That person falls out of the 
circle.  

– Start counting again, starting from the person right after 
the one who got eliminated, and eliminate the M-th 
person again. 

– Repeat till one person is left.  

• The last person left is chosen as the leader. 
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Implementing Josephus-Style Election 

• If we assign numbers 1 to N to the N people, and we start 
counting from person 1, then the result is a function of N and 
M. 

• This process of going around in a circle and eliminating every 
M-th item can be handled very naturally using a circular list. 

• Solution: see josephus.c file, posted on course website. 

• Note: our abstract interface was built for NULL-terminated 
lists, not circular lists. 

• Still, with one change and one hack (marked on the code), it 
supports circular lists, at least for the purposes of the 
Josephus problem. 
– Change: in deleteNext, handle the case where we delete the first link.  

– Hack: make the list NULL-terminated before we destroy it. 
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Circular Lists: Interesting Problems 

• There are several interesting problems with circular lists: 

– Detect if a list is circular. 
• Have in mind that some initial items may not be part of the cycle: 

 

 

 

 
 

– Detect if a list is circular in O(N) time (N is the number of 
unique nodes). (This is a good interview question) 

– Modifying our abstract list interface to fully support circular 
lists.  
• Currently, at least these functions would not support it: listLength,  

printList, destroyList, reverse. 
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Destructive Functions 

void insertLink(list my_list, link prev, link new_link); 

void deleteNext(list my_list, link x); 

void reverse(list the_list); 

 

• We call a function destructive if it modifies one or more of its input 
arguments. 

• Several of the list functions we have seen are destructive (see 
examples above). 

• We use destructive functions frequently, because they have 
attractive properties in terms of time and space requirements. 

• However, when using destructive functions we must be aware of 
certain issues. 
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Issues with Destructive Functions 

• The input argument that is modified may be accessible by 
many parts of the code. 

• A common source of bugs is to modify such an input 
argument, and then assume (in another part of the code) that 
it has not been modified. 

• Using a destructive function requires the programmer to be 
aware of all possible ramifications. 
– This can be very complicated, in a large program. 

• On the other hand, using non-destructive functions makes our 
life much more simple. 

• Then, why do we use destructive functions? 
– Because some times they are far more efficient than other 

alternatives. 
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Shallow and Deep Copies 

• We say that B is (at some particular moment) a 
shallow copy of A if: 

– B, at that moment, contains the same information as A. 

– It is possible for changes in A to change B as well, or … 

– it is possible for changes in B to change A as well. 

• We say that B is (at some particular moment) a deep 
copy of A if: 

– B, at that moment, contains the same information as A. 

– If A changes later, B is not affected. 

– If B changes later, A is not affected. 
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Example: List Deep Copy 

list listDeepCopy(list input) 

{ 

   list result = newList(); 

   link in = listFirst(input); 

   link previous = NULL; 

   while (in != NULL) 

   { 

      link out = newLink(linkItem(in)); 

      insertLink(result, previous, out); 

      previous = out; 

      in = linkNext(in);       

   } 

   return result; 

} 
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Writing Non-Destructive Functions 

• If we want to convert a destructive function to a non-
destructive function, a common strategy is: 

– Identify the input arguments that the destructive function 
changes. 

– In the non-destructive version, make deep copies of those 
input arguments, and make changes to those deep copies. 

– Possibly return some of those modified deep copies, so 
they can be used by callers of the function. 
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Example: Destructive mergeLists 

• Write a function that: 

– takes two arguments, a list target, and a list source. 

– adds all contents of source to target, effectively merging 
source to target. 

• Note: at the end of the function, target has been 
changed, to be the result of merging the initial 
contents of target with the contents of source. 

 

void mergeListsDestructive(list target, list source) 
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Example: Destructive mergeLists 

void mergeListsDestructive(list target, list source) 

{ 

   link previous = NULL; 

   link c; 

    

   /* find the last link of target*/    

   for (c = target->first; c != NULL; c = c->next) 

   { 

      previous = c; 

   } 

    

   /* now, previous is the last link of target */ 

   setNext(previous, listFirst(source)); 

} 
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Example: Non-Destructive 
mergeLists 

• Write a function that: 

– takes two arguments, a list input1, and a list input2. 

– returns a new list, that contains all contents of input1 and 
all contents of input2. 

– does not change the input arguments. 
 

list mergeLists(list input1, list input2) 
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Example: Non-Destructive 
mergeLists 

list mergeLists(list input1, list input2) 

{ 

   list result = listDeepCopy(input1); 

   list temp2 = listDeepCopy(input2); 

   mergeListsDestructive(result, temp2); 

   free(temp2); 

   return result; 

} 
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Non-Destructive Insertions? 

void insertLink(list list1, link prev, link link1) 
 

• How can we make a non-destructive version of 
insertLink? 

  
  
  

• What would be the time complexity of the non-
destructive version? 

 

• Why is the destructive version more popular? 

95 



Non-Destructive Insertions? 

void insertLink(list list1, link prev, link link1) 
 

• How can we make a non-destructive version of 
insertLink? 

– Make a deep copy of the list 

– Insert the new link to the deep copy. 

– Return the deep copy (that now includes the new link). 

• What would be the time complexity of the non-
destructive version? 

– O(N), where N is the length of the list. 

• Why is the destructive version more popular? 

– It takes O(1) time, and also does not duplicate memory. 
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