
Abstract Data Types and Stacks

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Abstract vs. Specific Data Types

• Specific data types: lists, arrays, strings.

– Types for which we can refer to a SPECIFIC implementation.

• Abstract data types: sequences, trees, forests, graphs.

• Where have we used forests in this course?

• What is the difference between an abstract data type
such as sequences, and a specific data type such as
lists and arrays?

2

Abstract vs. Specific Data Types

• Specific data types: lists, arrays, strings.

– Types for which we can refer to a SPECIFIC implementation.

• Abstract data types: sequences, trees, forests, graphs.

• Where have we used forests in this course?

– In the Union-Find problem (forests are sets of trees).

• What is the difference between an abstract data type
such as sequences, and a specific data type such as
lists and arrays?

– An abstract data type can be implemented in multiple
ways.

– Each of these ways can offer different trade-offs in
performance, that may be desirable in different cases. 3

Regarding Lists

• Are lists a "specific" data type or an "abstract" data
type?

4

Regarding Lists

• Are lists a "specific" data type or an "abstract" data
type?

• If we refer to a specific implementation of lists, then
we refer to a "specific" data type.

• If we are not referring to a "specific"
implementation, then there is a certain level of
abstraction.

– Different choices lead to different performance:

– Single links or double links?

– Pointer to first element only, or also to last element?

5

Examples of Abstraction

• What are some examples of abstract data types, for
which we have seen multiple specific
implementations?

6

Examples of Abstraction

• Union-Find:

– Representing sets, performing unions and performing finds
can be done in different ways, with very different
performance characteristics.

• Sequences:

– They can be represented as arrays or lists.

• Graphs:

– We saw two implementations (adjacency matrices and
adjacency lists) that provide the same functionality, but
are different in terms of time and space complexity.

– Alternative implementations also exist, that have their
own pros and cons.

7

Why Use Abstract Data Types

• Using abstract data types allows us to focus on high-
level algorithm design, and not on low-level details of
specific data types.

– The data types should fit the algorithm, not the other way
around.

• Designing an algorithm using abstract data types, we
oftentimes get multiple algorithms for the price of one.

– The high-level algorithm can be implemented in multiple
ways, depending on our choice of specific data types.

• Each choice may give different performance trade-offs.

– Choosing a specific data type may yield better space
complexity but worse time complexity.

8

Why Use Abstract Data Types

• Example (that we will see later in the course): search
algorithms.

– Used for navigation, game playing, problem solving…

• Several search algorithms, with vastly different
properties, can be described with the same algorithm.

• The only thing that changes is one data type choice:
what type of queue to use.

9

Generalized Queues

• A generalized queue is an abstract data type that
stores a set of objects.

– Let's use Item to denote the data type of each object.

• The fundamental operations that such a queue must
support are:

void insert(Queue q, Item x): adds object x to set q.

Item delete(Queue q): choose an object x, remove
that object from q, and return it to the calling
function.

10

Generalized Queues

• Basic operations:

– void insert(Queue q, Item x)

– Item delete(Queue q)

• The meaning of insert is clear in all cases: we want to
add an item to an existing set.

• However, we note that delete does NOT take as an
argument the item we want to delete, so the function
itself must choose.

11

Generalized Queues - Delete

• How can delete choose which item to delete?

– Choose the item that was inserted last.

– Choose the item that was inserted first.

– Choose a random item.

– If each item contains a key field: remove the item whose
key is the smallest.

• You may be surprised as you find out, in this course,
how important this issue is.

• We will spend significant time studying solutions
corresponding to different choices.

12

The Pushdown Stack

• The pushdown stack behaves like the desk of a busy
(and disorganized) professor.

– Work piles up in a stack.

– Whenever the processor has time, he picks up whatever is
on top and deals with it.

• We call this model a LIFO (last-in, first-out) queue.

– The object that leaves the stack is always the object that
was inserted last (among all objects still in the stack).

• Most of the times, instead of saying "pushdown
stack" we simply say "stack".

– By default, a "stack" is a pushdown stack.

 13

Push and Pop

• The pushdown stack supports insert and delete as
follows:

– insert push: This is what we call the insert operation
when we talk about pushdown stacks. It puts an item "on
top of the stack".

– delete pop: This is what we call the delete operation
when we talk about pushdown stacks. It removes the item
that was on top of the stack (the last item to be pushed,
among all items still on the stack).

14

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
15

15

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
16

15

20

Examples of Push and Pop

• push(15)

• push(20)

• pop() – returns 20

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
17

15

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
18

15

30

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
19

15

30

 7

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
20

15

30

 7

25

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop() – returns 25

• push(12)

• pop()

• pop()
21

15

30

 7

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop()
22

15

30

 7

12

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop() – returns 12

• pop()
23

15

30

 7

Examples of Push and Pop

• push(15)

• push(20)

• pop()

• push(30)

• push(7)

• push(25)

• pop()

• push(12)

• pop()

• pop() – returns 7
24

15

30

Implementation Details: Later

• We temporarily postpone discussing how stacks are
implemented.

• We will first talk about how stacks can be used.

• Why? This is a good exercise for getting used to
separating these two issues:

– How a data type is implemented.

– How a data type is used.

• Knowing that stacks support push and pop is
sufficient to allow us to design programs using
stacks.

25

Uses of Stacks

• Modeling a busy professor's desk is NOT the killer
app for stacks.

• Examples of important stack applications:

26

Uses of Stacks

• Modeling a busy professor's desk is NOT the killer
app for stacks.

• Examples of important stack applications:

– Function execution in computer programs: when a
function is called, it enters the calling stack. The function
that leaves the calling stack is always the last one that
entered (among functions still in the stack).

– Interpretation and evaluation of symbolic expressions:
stacks are used to evaluate things like (5+2)*(12-3), or to
parse C code (as a first step in the compilation process).

– Search methods. Search is a fundamental algorithmic
topic, with applications in navigation, game playing,
problem solving… We will see more later in the course.

27

Stacks and Calculators

• Consider this expression:

– 5 * (((9 + 8) * (4 * 6)) + 7)

• This calculation involves saving intermediate results.

• First we calculate (9 + 8).

• We save 17 (push it to a stack).

• Then we calculate (4 * 6) and save 24 (push to a
stack).

• Then we pop 17 and 24, multiply them, save the
result.

• And so on…

28

Infix and Postfix Notation

• The standard notation we use for writing
mathematical expressions is called infix notation.

• Why? Because the operators are between the
operands.

• There are two alternative notations:

– prefix notation: the operator comes before the operands.

– postfix notation: the operator comes after the operands.

• Example:

– infix: 5 * (((9 + 8) * (4 * 6)) + 7)

– prefix: (* 5 (+ (* (+ 9 8) (* 4 6)) 7))

– postfix: 5 9 8 + 4 6 * * 7 + *
29

Postfix Notation

• Example:

– infix: 5 * (((9 + 8) * (4 * 6)) + 7)

– postfix: 5 9 8 + 4 6 * * 7 + *

• Postfix notation does not need any parentheses.

• It is pretty easy to write code to evaluate postfix
expressions (we will).

30

Processing a Symbolic Expression

• How do we process an expression such as:

– 5 * (((9 + 8) * (4 * 6)) + 7)

– postfix: 5 9 8 + 4 6 * * 7 + *

• One approach is textbook Program 4.2.

– Only few lines of code, but dense and hard to read.

• Second approach: think of the input as a stream of
tokens.

• A token is a logical unit of input, such as:

– A number

– An operator

– A parenthesis.
31

Tokens

• A token is a logical unit of input, such as:

– A number

– An operator

– A parenthesis.

• What are the tokens in:

– 51 * (((19 + 8) * (4 - 6)) + 7)

• Answer: 51, *, (, (, (, 19, +, 8,), *, (, 4, -, 6,),), +, 7,)

– 19 tokens.

32

Tokens

• A token is a logical unit of input, such as:

– A number

– An operator

– A parenthesis.

• We need a data type for a token.

• We need to write functions that can read data (from
a string or from a file) one token at a time.

– See files tokens.h and tokens.c on the course website.

• Using tokens: it is a bit harder to get started with the
code (compared to Programs 4.2 and 4.3), but much
easier to extend the code to more complicated tasks.

33

Processing Postfix: Pseudocode

• input: a stream of tokens in infix order.

– What do we mean by stream?

34

Processing Postfix: Pseudocode

• input: a stream of tokens in infix order.

– What do we mean by stream?

– A stream is any source of data from which we can read
data one unit at a time.

– Examples of streams: a file, a string, a network connection.

35

Processing Postfix: Pseudocode

• input: a stream of tokens in infix order.

• output: the result of the calculation (a number).

• while(input remains to be processed)

36

Processing Postfix: Pseudocode

• input: a stream of tokens in infix order.

• output: the result of the calculation (a number).

• while(input remains to be processed)

– T = next token (number or operator) from the input

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = ???

37

Processing Postfix: Pseudocode

• input: a stream of tokens in infix order.

• output: the result of the calculation (a number).

• while(input remains to be processed)

– T = next token (number or operator) from the input

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

 38

• Example: we will see how to use this pseudocode to
evaluate this postfix expression:

– 5 9 8 + 4 6 * * 7 + *

• In infix, the equivalent expression is:

– 5 * (((9 + 8) * (4 * 6)) + 7)

39

Example: Postfix Notation Evaluation

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

40

• T = 5

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

41

• T = 9

9

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

42

• T = 8

9

8

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

43

• T = +

• A = 8

• B = 9

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

44

• T = +

• A = 8

• B = 9

• C = 17

5

17

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

45

• T = 4

5

17

4

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

46

• T = 6

5

17

4

6

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

47

• T = *

• A = 6

• B = 4

5

17

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

48

• T = *

• A = 6

• B = 4

• C = 24

5

17

24

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

49

• T = *

• A = 24

• B = 17

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

50

• T = *

• A = 24

• B = 17

• C = 408

5

408

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

51

• T = 7

5

408

7

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

52

• T = +

• A = 7

• B = 408

5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

53

• T = +

• A = 7

• B = 408

• C = 415

5

415

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

54

• T = *

• A = 415

• B = 5

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

55

• T = *

• A = 415

• B = 5

• C = 2075

2075

Example: Postfix Notation Evaluation

• Input: 5 9 8 + 4 6 * * 7 + *

• while(input remains to be processed)

– T = next token

– If T is a number, push(stack, T).

– If T is an operator:
• A = pop(stack)

• B = pop(stack)

• C = apply operator T on A and B.

• push(stack, C)

• final_result = pop(stack)

56

• T = *

• A = 415

• B = 5

• C = 2075

final_result = 2075

Converting Infix to Postfix

• Another example of using stacks is converting infix
notation to postfix notation.

• We already saw how to evaluate postfix expressions.

• By converting infix to postfix, we will be able to
evaluate infix expressions as well.

• input: a stream of tokens in infix order.

• output: a list of tokens in postfix order.

57

Converting Infix to Postfix

• input: a stream of tokens in infix order.

– Assumption 1: the input is fully parenthesized. That is,
every operation (that contains an operator and its two
operands) is enclosed in parentheses.
• 3 + 5 NOT ALLOWED.

• (3 + 5) ALLOWED.

– Assumption 2: Each operator has two operands.
• (2 + 4 + 5) NOT ALLOWED.

• (2 + (4 + 5)) ALLOWED.

– Writing code that does not need these assumptions is
great (but optional) practice for you.

• output: a list of tokens in postfix order.

58

Converting Infix to Postfix

• input: a stream of tokens in infix order.

• output: a list of tokens in postfix order.

• while(the input stream is not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:
• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator, push(op_stack, T).

– If T is a number, insertAtEnd(result, T)

59

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =

• op_stack = [] empty stack

• result = [] (empty list) 60

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = (

• op_stack = [] empty stack

• result = [] (empty list) 61

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = 5

• op_stack = [] empty stack

• result = [5] 62

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = *

• op_stack = [*]

• result = [5] 63

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = (

• op_stack = [*]

• result = [5] 64

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = (

• op_stack = [*]

• result = [5] 65

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = (

• op_stack = [*]

• result = [5] 66

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = 9

• op_stack = [*]

• result = [5 9] 67

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = +

• op_stack = [* +]

• result = [5 9] 68

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = 8

• op_stack = [* +]

• result = [5 9 8] 69

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = [*]

• result = [5 9 8 +] 70

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = *

• op_stack = [* *]

• result = [5 9 8 +] 71

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = (

• op_stack = [* *]

• result = [5 9 8 +] 72

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = 4

• op_stack = [* *]

• result = [5 9 8 + 4] 73

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = *

• op_stack = [* * *]

• result = [5 9 8 + 4] 74

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = [* * *]

• result = [5 9 8 + 4 6] 75

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = [* *]

• result = [5 9 8 + 4 6 *] 76

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = [*]

• result = [5 9 8 + 4 6 * *] 77

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = +

• op_stack = [* +]

• result = [5 9 8 + 4 6 * *] 78

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T = 7

• op_stack = [* +]

• result = [5 9 8 + 4 6 * * 7] 79

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = [*]

• result = [5 9 8 + 4 6 * * 7 +] 80

Example: Infix to Postfix

• Input: (5 * (((9 + 8) * (4 * 6)) + 7))

• while(input stream not empty)

– T = next token

– If T is left parenthesis, ignore.

– If T is right parenthesis:

• op = pop(op_stack)

• insertAtEnd(result, op)

– If T is an operator: push(op_stack, T).

– If T is a number: insertAtEnd(result, T)

• T =)

• op_stack = []

• result = [5 9 8 + 4 6 * * 7 + *] 81

The Stack Interface
(Textbook Version)

• The textbook defines a stack interface that supports four
specific functions:

• void STACKinit(int max_size):
– Initialize the stack. Argument max_size declares the maximum

possible size for the stack.

• int STACKempty():
– Returns 1 if the stack is empty, 0 otherwise.

• void STACKpush(Item item):
– Pushes the item on top of the stack.

• Item STACKpop():
– Removes from the stack the item that was on top, and returns that

item.

82

Problems With Textbook Interface?

83

Problems With Textbook Interface?

• These functions do not refer to any specific stack
object.

• What is the consequence of that?

84

Problems With Textbook Interface?

• These functions do not refer to any specific stack
object.

• What is the consequence of that?

• This interface can only support a single stack. If we
need to use simultaneously two or more stacks, we
need to extend the interface.

85

Problems With Textbook Interface?

• Suppose that we fix the first problem, and we can
have multiple stacks.

• Can we have a stack A that contains integers, and a
stack B that contains strings?

86

Problems With Textbook Interface?

• Suppose that we fix the first problem, and we can
have multiple stacks.

• Can we have a stack A that contains integers, and a
stack B that contains strings?

• No. Each stack contains values of type Item.

• While Item can be set (using typedef) to any type we
want, all stacks in the code must contain values of
that one type.

• We have the exact same problem with lists.

• Let's see how to solve this problem, for both lists and
stacks.

87

Links Revisited

• void *:

88

old definition

struct node
{
 Item item;
 link next;
};
typedef struct node * link;

new definition

struct node
{
 void * item;
 link next;
};
typedef struct node * link;

Links Revisited

• void *: this is a special type in C.

– It means pointer to anything.

• If item is of type void*, it can be set equal to a
pointer to any object:

– int *, char *, double *, pointers to structures, …
89

old definition

struct node
{
 Item item;
 link next;
};
typedef struct node * link;

new definition

struct node
{
 void * item;
 link next;
};
typedef struct node * link;

Example: Adding an int to a List

90

• To insert integer 7
to a list my_list:

struct node
{ void * item;
 link next;
};

link newLink(void * content)
{ link result = malloc(sizeof(struct node));
 result->item = content;
 result->next = NULL;
}

Example: Adding an int to a List

91

• To insert integer 7
to a list my_list:

– Allocate memory
for a pointer to an
int.

– Set the contents of
the pointer equal
to 7.

– Add to the list a
new link, whose
item is the pointer.

struct node
{ void * item;
 link next;
};

link newLink(void * content)
{ link result = malloc(sizeof(struct node));
 result->item = content;
 result->next = NULL;
}

Example: Adding an int to a List

92

struct node
{ void * item;
 link next;
};

link newLink(void * content)
{ link result = malloc(sizeof(struct node));
 result->item = content;
 result->next = NULL;
}

int * content = malloc(sizeof(int));
*content = 7;
insertAtEnd(my_list, newLink(content));

• To insert integer 7
to a list my_list:

– Allocate memory
for a pointer to an
int.

– Set the contents of
the pointer equal
to 7.

– Add to the list a
new link, whose
item is the pointer.

Example: Adding an int to a List

93

struct node
{ void * item;
 link next;
};

link newLink(void * content)
{ link result = malloc(sizeof(struct node));
 result->item = content;
 result->next = NULL;
}

int * content = malloc(sizeof(int));
*content = 7;
insertAtEnd(my_list, newLink(content));

• Note: instead of
insertAtEnd, we
could have used
any other insertion
function.

Example: Accessing an int in a Link

94

struct node
{ void * item;
 link next;
};

link n = … // put any code here that produces a link.

• To access the value of an int stored in link n:

Example: Accessing an int in a Link

95

struct node
{ void * item;
 link next;
};

link n = … // put any code here that produces a link.

• To access the value of an int stored in link n:

– Call linkItem to get the item stored at n.

– Store the result of linkItem to a variable of type int*
(use casting).

– Dereference that pointer to get the number.

Example: Accessing an int in a Link

96

struct node
{ void * item;
 link next;
};

link n = … // put any code here that produces a link.
int * content = (int *) linkItem(n); // note the casting.
my_number = *content; // pointer dereferencing.

• To access the value of an int stored in link n:

– Call linkItem to get the item stored at n.

– Store the result of linkItem to a variable of type int*
(use casting).

– Dereference that pointer to get the number.

Example: Removing an int from a List

97

struct node
{ void * item;
 link next;
};

void * linkItem(link the_link)
{
 return the_link->item;
}

• To remove a link
containing an int:

Example: Removing an int from a List

98

struct node
{ void * item;
 link next;
};

void * linkItem(link the_link)
{
 return the_link->item;
}

• To remove a link
containing an int:

– Remove the link from
the list.

– Get the pointer that is
stored as the link's item.

– Dereference the pointer
to get the int.

– Free the link (this we
were doing before, too).

– Free the int * pointer
(this we didn't have to
do before).

Example: Removing an int from a List

99

struct node
{ void * item;
 link next;
};

void * linkItem(link the_link)
{
 return the_link->item;
}

link a = deleteAtBeginning(my_list);
int * content = (int *) linkItem(a);
int my_number = *content;
free(a); free(content);

• To remove a link
containing an int:

– Remove the link from
the list.

– Get the pointer that is
stored as the link's item.

– Dereference the pointer
to get the int.

– Free the link (this we
were doing before, too).

– Free the int * pointer
(this we didn't have to
do before).

Example: Removing an int from a List

100

struct node
{ void * item;
 link next;
};

void * linkItem(link the_link)
{
 return the_link->item;
}

link a = deleteAtBeginning(my_list);
int * content = (int *) linkItem(a);
int my_number = *content;
free(a); free(content);

• Note: instead of
deleteAtBeginning we
could have used any
other function that
deletes links from a list.

Storing Objects of Any Type in a List

• The previous examples can be adapted to
accommodate objects of any other type that we
want to store in a list.

• To store an object X of type T in a link L:
T* P = malloc(sizeof(T));

*P = X;

link L = newLink(X);

• To access an object X of type T stored in a link L:
T* P = linkItem(L);

T value = *P;

101

The New List Interface

• See files lists.h and lists.c posted on the course
website.

• NOTE: the new interface allows us to store objects of
different types even on the same list.

• Also, the new implementation makes it efficient to
insert at the end of the list, which will be useful later
(in FIFO queues).

102

Implementing Stacks

• A stack can be implemented using either lists or
arrays.

• Both implementations are fairly straightforward.

• List-based implementation:

– What is a stack?

– push(stack, item) is implemented how?

– pop(stack) is implemented how?

103

Implementing Stacks

• A stack can be implemented using either lists or
arrays.

• Both implementations are fairly straightforward.

• List-based implementation:

– What is a stack? A stack is essentially a list.

– push(stack, item) inserts that item at the beginning of the
list.

– pop(stack) removes (and returns) the item at the
beginning of the list.

– What is the time complexity of these operations?

104

Implementing Stacks

• A stack can be implemented using either lists or
arrays.

• Both implementations are fairly straightforward.

• List-based implementation:

– What is a stack? A stack is essentially a list.

– push(stack, item) inserts that item at the beginning of the
list.

– pop(stack) removes (and returns) the item at the
beginning of the list.

– Both operations take O(1) time.

• See stacks_lists.c on course website.
105

Implementation Code

• See files posted on course website:

– stacks.h: defines the public interface.

– stacks_lists.c: defines stacks using lists.

– stacks_arrays.c: defines stacks using arrays.

106

The Stack Interface

• See file stacks.h posted on the course website.

??? newStack(???);

??? destroyStack(???);

??? push(Stack stack, void * content);

??? * pop(Stack stack);

??? stackEmpty(Stack stack);

??? popInt(???);

??? pushInt(???);

??? printIntStack(???);

107

The Stack Interface

• See file stacks.h posted on the course website.

Stack newStack();

void destroyStack(Stack stack);

void push(Stack stack, void * content);

void * pop(Stack stack);

int stackEmpty(Stack stack);

int popInt(Stack stack);

void pushInt(Stack stack, int value);

void printIntStack(Stack stack);

108

Defining Stacks

typedef struct stack_struct * Stack;

struct stack_struct

{

 ???;

};

109

Defining Stacks

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

110

Creating a New Stack

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

Stack newStack()

{

 ???

}

111

Creating a New Stack

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

Stack newStack()

{

 Stack result = malloc(sizeof(*result));

 result->items = newList();

 return result;

}
112

Destroying a Stack

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void destroyStack(Stack stack)

{

 ???

}

113

Destroying a Stack

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void destroyStack(Stack stack)

{

 destroyList(stack->items);

 free(stack);

}

114

Pushing an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void push(Stack stack, void * content)

{

 ???

}

115

Pushing an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void push(Stack stack, void * content)

{

 link L = newLink(content);

 insertAtBeginning(stack->items, L);

}

116

Popping an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void * pop(Stack stack)

{

 ???

}

117

Popping an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void * pop(Stack stack)

{

 link top = deleteAtBeginning(stack->items);

 return linkItem(top);

}

118 What is wrong with this definition of pop?

Popping an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void * pop(Stack stack)

{

 link top = deleteAtBeginning(stack->items);

 return linkItem(top);

}

119 What is wrong with this definition of pop? Memory leak!!!

Popping an Item

typedef struct stack_struct * Stack;

struct stack_struct

{

 list items;

};

void * pop(Stack stack)

{

 if (stackEmpty(stack))

 ERROR!!!

 link top = deleteAtBeginning(stack->items);

 void * item = linkItem(top);

 free(top);

 return item;

} 120

Pushing an Int

• This is an example of a convenience function.

• If we use stacks of ints (or any other type) a lot, it makes
sense to write functions that simplify dealing with such
stacks.

void pushInt(Stack stack, int value)

{

 ???

}

121

Pushing an Int

• This is an example of a convenience function.

• If we use stacks of ints (or any other type) a lot, it makes
sense to write functions that simplify dealing with such
stacks.

void pushInt(Stack stack, int value)

{

 int * content = malloc(sizeof(int));

 *content = value;

 push(stack, content);

}

 122

Popping an Int

• This is another example of a convenience function, that
simplifies dealing with stacks of ints.

• Similar functions can be written as needed, to support
stacks of other types.

int popInt(Stack stack)

{

 ???

}

123

Popping an Int

• This is another example of a convenience function, that
simplifies dealing with stacks of ints.

• Similar functions can be written as needed, to support
stacks of other types.

int popInt(Stack stack)

{

 int * top = (int *) pop(stack);

 return *top;

}

124 What is wrong with this definition of popInt?

Popping an Int

• This is another example of a convenience function, that
simplifies dealing with stacks of ints.

• Similar functions can be written as needed, to support
stacks of other types.

int popInt(Stack stack)

{

 int * top = (int *) pop(stack);

 return *top;

}

125 What is wrong with this definition of popInt? Memory leak!!!

Popping an Int

• This is another example of a convenience function, that
simplifies dealing with stacks of ints.

• Similar functions can be written as needed, to support
stacks of other types.

int popInt(Stack stack)

{

 int * top = (int *) pop(stack);

 int result = *top;

 free(top);

 return result;

} 126

Array-Based Implementation

• A stack can also be implemented using arrays.

• push(stack, item): ???

• pop(stack): ???

127

Array-Based Implementation

• A stack can also be implemented using arrays.

• A stack is essentially an array.

• push(stack, item) inserts that item at the end of the
array.

• pop(stack) removes (and returns) the item at the
end of the array.

• What is the time complexity of these two
operations?

128

Array-Based Implementation

• A stack can also be implemented using arrays.

• A stack is essentially an array.

• push(stack, item) inserts that item at the end of the
array.

• pop(stack) removes (and returns) the item at the
end of the array.

• Both operations take O(1) time.

• See stacks_arrays.c on course website.

129

Defining Stacks Using Arrays

typedef struct stack_struct * Stack;

struct stack_struct

{

 ???

};

130

Defining Stacks Using Arrays

typedef struct stack_struct * Stack;

struct stack_struct

{

 int max_size;

 int top_index;

 void ** items;

};

131

Creating a New Stack

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

Stack newStack(???)

{

 ???

}

132

Creating a New Stack

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

Stack newStack1(int max_size)

{

 Stack result = malloc(sizeof(*result));

 result->items = malloc(max_size * sizeof(void*));

 result->max_size = max_size;

 result->top_index = -1;

 return result;

}
133

Destroying a Stack

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

void destroyStack(Stack stack)

{

 ???

}

134

Destroying a Stack

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

void destroyStack(Stack stack)

{

 int i;

 for (i = 0; i <= stack->top_index; i++)

 free(stack->items[i]);

 free(stack->items);

 free(stack);

}
135

Pushing an Item

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

void push(Stack stack, ???)

{

 ???

}

136

Pushing an Item

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

void push(Stack stack, void * content)

{

 if (stack->top_index == stack->max_size - 1)

 ERROR!!!

 stack->top_index++;

 stack->items[stack->top_index] = content;

}

137

Popping an Item

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

??? pop(Stack stack)

{

 ???

}

138

Popping an Item

struct stack_struct

{ int max_size;

 int top_index;

 void ** items;

};

void * pop(Stack stack)

{

 if (stackEmpty(stack))

 ERROR!!!

 void * item = stack->items[stack->top_index];

 stack->top_index--;

 return item;

}

139

