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Recursion 

• Recursion is a fundamental concept in computer science. 

• Recursive algorithms: algorithms that solve a problem by 
solving one or more smaller instances of the same problem. 

• Recursive functions: functions that call themselves. 

• Recursive data types: data types that are defined using 
references to themselves. 

• Example? 
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Recursion 

• Recursion is a fundamental concept in computer science. 

• Recursive algorithms: algorithms that solve a problem by 
solving one or more smaller instances of the same problem. 

• Recursive functions: functions that call themselves. 

• Recursive data types: data types that are defined using 
references to themselves. 

• Example? Nodes in the implementation of linked lists. 

• In all recursive concepts, there is one or more base cases. No 
recursive concept can be understood without understanding 
its base cases. 

• What is the base case for nodes? 
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Recursion 

• Recursion is a fundamental concept in computer science. 

• Recursive algorithms: algorithms that solve a problem by 
solving one or more smaller instances of the same problem. 

• Recursive functions: functions that call themselves. 

• Recursive data types: data types that are defined using 
references to themselves. 

• Example? Nodes in the implementation of linked lists. 

• In all recursive concepts, there is one or more base cases. No 
recursive concept can be understood without understanding 
its base cases. 

• What is the base case for nodes? 
– A node pointing to NULL. 
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Recursive Algorithms 

• Recursive algorithms: algorithms that solve a problem by 
solving one or more smaller instances of the same problem. 

• A recursive algorithm can always be implemented both using 
recursive functions, and without recursive functions. 

• Example of a recursive function: 
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Recursive Algorithms 

• Recursive algorithms: algorithms that solve a problem by 
solving one or more smaller instances of the same problem. 

• A recursive algorithm can always be implemented both using 
recursive functions, and without recursive functions. 

• Example of a recursive function: the factorial. 
– How is factorial(3) evaluated? 
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Recursive  Definition: 
 
int factorial(int N) 
{ 
    if (N == 0) return 1; 
    return N*factorial(N-1); 
}  

Non-Recursive Definition : 
 
int factorial(int N) 
{ 
   int result = 1; 
   int i; 
   for (i = 2; i <= N; i++) result *= i; 
   return result; 
}  



Analyzing a Recursive Program 

• Analyzing a recursive program 
involves answering two questions: 

– Does the program always terminate? 

– Does the program always compute 
the right result? 

• Both questions are answered by 
induction. 

• Example: does the factorial 
function on the right always 
compute the right result? 

• Proof: by induction. 
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Recursive  Definition: 
 
int factorial(int N) 
{ 
    if (N == 0) return 1; 
    return N*factorial(N-1); 
}  



Analyzing a Recursive Program 

• Proof: by induction. 

• Step 1: (the base case) 
– For N = 0, factorial(0) returns 1, which is 

correct. 

• Step 2: (using the inductive 
hypothesis)  
– Suppose that factorial(N) returns the right 

result for N = K, where K is an integer >= 0. 

– Then, for N = K+1, factorial(N) returns: 
 N * factorial(K) = N * K! = N * (N-1)! = N!. 

– Thus, for N = K+1, factorial(N) also returns 
the correct result. 

• Thus, by induction, factorial(N) 
computes the correct result for all N. 

8 

Recursive  Definition: 
 
int factorial(int N) 
{ 
    if (N == 0) return 1; 
    return N*factorial(N-1); 
}  

Where precisely 
was the inductive 
hypothesis used? 
 
In substituting K! 
for factorial(K). 
 



Guidelines for Designing Recursive 
Functions 

• We should design recursive functions so that it is 
easy to convince ourselves that they are correct. 

– Strictly speaking, the only way to convince ourselves is a 
mathematical proof. 

– Loosely speaking, we should follow some guidelines to 
make our life easier. 

• So, it is a good idea for our recursive functions to 
follow these rules: 

– They must explicitly solve one or more base cases. 

– Each recursive call must involve smaller values of the 
arguments, or smaller sizes of the problem. 
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Example Violation of the 
Guidelines 

int puzzle(int N) 

{ 

  if (N == 1) return 1; 

  if (N % 2 == 0) 

       return puzzle(N/2); 

  else return puzzle(3*N+1); 

}  
 

• How does this function violate the guidelines we just stated? 
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Example Violation of the 
Guidelines 

int puzzle(int N) 

{ 

  if (N == 1) return 1; 

  if (N % 2 == 0) 

       return puzzle(N/2); 

  else return puzzle(3*N+1); 

}  
 

• How does this function violate the guidelines we just stated? 

• The function does NOT always call itself with smaller values.  

• Consequence: it is hard to prove if this function always 
terminates. 

• No one has actually been able to prove or disprove that!!! 
11 

How is puzzle(3)  
evaluated? 



Euclid's Algorithm 

int gcd(int m, int n) 

{ 

  if (n == 0) return m; 

  return gcd(n, m % n); 

} 

 

• One of the most ancient algorithms. 

• Computes the greatest common divisor of two numbers. 

• It is based on the property that if T divides X and Y, then T also 
divides X mod Y. 

• How is gcd(96, 36) evaluated? 
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Euclid's Algorithm 

int gcd(int m, int n) 

{ 

  if (n == 0) return m; 

  return gcd(n, m % n); 

} 

 

• One of the most ancient algorithms. 

• Computes the greatest common divisor of two numbers. 

• It is based on the property that if T divides X and Y, then T also 
divides X mod Y. 

• How is gcd(96, 36) evaluated? 

• gcd(96, 36) = gcd(36, 24) = gcd(24, 12) = gcd(12, 0) = 12. 
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Evaluating Prefix Expressions 

• Prefix expressions: they place each operand BEFORE its two 
arguments. 

• Example: * + 7 * * 4 6 + 8 9 5 
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Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  wait   wait 
• 7 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  wait  wait 
• *  wait  wait 
• 4 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  wait  wait 
• *  4  wait 
• 6 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  wait  wait 
• *  4  6 = 24 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  24  wait 
• +  wait  wait 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  24  wait 
• +  wait  wait 
• 8 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  24  wait 
• +  8  wait 
• 9 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  24  wait 
• +  8  9 = 17 
 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  wait 
• *  24  17 = 408 
 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  wait   wait 
• +  7  408 = 415 
 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  415   wait 
• 5 
 
  
 
 



Evaluating Prefix Expressions 

• Code for evaluating prefix expressions: 
 

char *a; int i; 

int eval() 

{  

   int x = 0; 

   while (a[i] == ' ') i++; 

  if (a[i] == '+') 

     { i++; return eval() + eval(); } 

  if (a[i] == '*') 

      { i++; return eval() * eval(); } 

   while ((a[i] >= '0') && (a[i] <= '9'))  

      x = 10*x + (a[i++]-'0');  

   return x; 

} 
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Example: * + 7 * * 4 6 + 8 9 5: 
• *  415   5   = 2075 
  
 
 



Recursive Vs. Non-Recursive 
Implementations 

• In some cases, recursive functions are much easier to read. 

• The make crystal clear the mathematical structure of the 
algorithm. 

• To process recursive data types, such as nodes, oftentimes it is 
easy to write recursive functions. 

• Example: int count(link x)  
– count how many links there are between x and the end of the list. 

– Recursive solution?    

– Base case? Recursive function? 
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Recursive Vs. Non-Recursive 
Implementations 

• In some cases, recursive functions are much easier to read. 

• The make crystal clear the mathematical structure of the 
algorithm. 

• To process recursive data types, such as nodes, oftentimes it is 
easy to write recursive functions. 

• Example: int count(link x)  
– count how many links there are between x and the end of the list. 

– Recursive solution?   count(x) = 1 + count(x->next) 

– Base case: x = NULL.  Recursive function:  

int count(link x) 

{ if (x == NULL) return 0;  

   return 1 + count(x->next);  

}  
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Recursive Vs. Non-Recursive 
Implementations 

• In some cases, recursive functions are much easier to read. 
– They make crystal clear the mathematical structure of the algorithm. 

• To process recursive data types, such as nodes, oftentimes it is 
easy to write recursive functions. 

• However, any recursive function can also be written in a non-
recursive way. 

• Oftentimes recursive functions run slower. Why? 
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Recursive Vs. Non-Recursive 
Implementations 

• In some cases, recursive functions are much easier to read. 
– They make crystal clear the mathematical structure of the algorithm. 

• To process recursive data types, such as nodes, oftentimes it is 
easy to write recursive functions. 

• However, any recursive function can also be written in a non-
recursive way. 

• Oftentimes recursive functions run slower. Why? 
– Recursive functions generate many function calls. 

– The CPU has to pay a price (perform a certain number of operations) 
for each function call. 

• Non-recursive implementations are oftentimes somewhat 
uglier (and more buggy, harder to debug) but more efficient. 
– Compromise: make first version recursive, second non-recursive. 31 



Fibonacci Numbers 

• Fibonacci(0) = 0 

• Fibonacci(1) = 1 

• If N >= 2:  

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)  

• How can we write a function that computes Fibonacci 
numbers? 
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Fibonacci Numbers 

• Fibonacci(0) = 0 

• Fibonacci(1) = 1 

• If N >= 2:  

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)  

• Consider this function: what is its running time? 
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int Fibonacci(int i) 
{  
   if (i < 1) return 0; 
   if (i == 1) return 1; 
   return F(i-1) + F(i-2); 
} 



Fibonacci Numbers 

• Fibonacci(0) = 0 

• Fibonacci(1) = 1 

• If N >= 2:  

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)  

• Consider this function: what is its running time? 
– g(N) = g(N-1) + g(N-2) + constant 

– g(N) = O(Fibonacci(N))  = O(1.618N) 

– We cannot even compute Fibonacci(40) 
in a reasonable amount of time. 
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int Fibonacci(int i) 
{  
   if (i < 1) return 0; 
   if (i == 1) return 1; 
   return F(i-1) + F(i-2); 
} 



Fibonacci Numbers 

• Fibonacci(0) = 0 

• Fibonacci(1) = 1 

• If N >= 2:  

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)  

• Alternative: remember values we have already computed. 

 

 

 

 

35 

exponential version: 
 

int Fibonacci(int i) 
{  
   if (i < 1) return 0; 
   if (i == 1) return 1; 
   return F(i-1) + F(i-2); 
} 

linear version: 
 

int Fibonacci(int i) 
{  
   int * F = malloc(sizeof(int) * (i+1)); 
   F[0] = 0;    F[1] = 1; 
   int j; 
   for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2]; 
   return F[i]; 
} 



Bottom-up Dynamic Programming 

• The technique we have just used is called bottom-up 
dynamic programming. 

• It is widely applicable, in a large variety of problems. 
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Bottom-up Dynamic Programming 

• Requirements for using dynamic programming:  

– The answer to our problem P can be easily obtained from 
answers to smaller problems. 

– We can order problems in a sequence (P0, P1, P2, ..., PK) of 
reasonable size, so that: 

• Pk is our original problem P. 

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are 
easy to solve (they are base cases). 

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1. 

• If these requirements are met, we solve problem P as follows: 

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P. 

– For i = 0 to K, solve PK. 

– Return solution for PK. 
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Bottom-up Dynamic Programming 

• Requirements for using dynamic programming:  

– The answer to our problem P can be easily obtained from 
answers to smaller problems. 

– We can order problems in a sequence (P0, P1, P2, ..., PK) of 
reasonable size, so that: 

• Pk is our original problem P. 

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are 
easy to solve (they are base cases). 

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1. 

• If these requirements are met, we solve problem P as follows: 

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P. 

– For i = 0 to K, solve PK. 

– Return solution for PK. 
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How can we relate all this  
terminology to the problem of 
 computing Fibonacci numbers? 



Dynamic Programming for Fibonacci 

• Requirements for using dynamic programming:  

– The answer to our problem P can be easily obtained from 
answers to smaller problems.  Yes!  Fib(N) = Fib(N-1) + Fib(N-2) 

– We can order problems in a sequence (P0, P1, P2, ..., PK) of 
reasonable size, so that: 

• Pk is our original problem P. 

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are 
easy to solve (they are base cases). 

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1. 

– Yes! 

• Pi is the problem of computing Fibonacci(i). 

• PN is our problem, since we want to compute Fibonacci(N). 

• P0, P1 are base cases. 

• For i >= 2, Fib(i) is easy to solve given Fib(0), Fib(1), …, Fib(i-1). 
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• If these requirements are met, we solve problem P as follows: 

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P. 

– For i = 0 to K, solve PK. 

– Return solution for PK. 

• That is exactly what this 
function does. 

40 

Dynamic Programming for Fibonacci 

linear version: 
 

int Fibonacci(int i) 
{  
   int * F = malloc(sizeof(int) * (i+1)); 
   F[0] = 0;     
   F[1] = 1; 
   int j; 
   for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2]; 
   return F[i]; 
} 



Bottom-Up vs. Top Down 

• When the conditions that we stated previously are satisfied, 
we can use dynamic programming. 

• There are two versions of dynamic programming. 
– Bottom-up. 

– Top-down. 

• We have already seen how bottom-up works.  
– It solves problems in sequence, from smaller to bigger. 

• Top-down dynamic programming takes the opposite 
approach:  
– Start from the larger problem, solve smaller problems as needed. 

– For any problem that we solve, store the solution, so we never have to 
compute the same solution twice. 

• This approach is also called memoization. 
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Top-Down Dynamic Programming 

• Maintain an array where solutions to problems can 
be saved. 

• To solve a problem P: 

– See if the solution has already been been stored in the 
array. 

• If so, just return the solution. 

• Otherwise: 

– Issue recursive calls to solve whatever smaller problems 
we need to solve. 

– Using those solutions obtain the solution to problem P. 

– Store the solution in the solutions array. 

– Return the solution. 
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Top-Down Solution for Fibonacci 

• Textbook solution: 
 

int F(int i) 

{  

   int t; 

   if (knownF[i] != unknown) return knownF[i]; 

   if (i == 0) t = 0; 

   if (i == 1) t = 1; 

   if (i > 1) t = F(i-1) + F(i-2); 

   return knownF[i] = t;  

} 

 

• This is a partial solution. Initialization of known is not shown. 
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Top-Down Solution for Fibonacci 

• General strategy: 

• Create a top-level function that: 
– Creates memory for the array of solutions. 

– Initializes the array by marking that all solutions are currently 
"unknown". 

– Calls a helper function, that takes the same arguments, plus the 
solutions array. 

• The helper function: 
– If the solution it wants is already computed, returns the solution. 

– If we have a base case, computes the result directly. 

– Otherwise: computes the result using recursive calls. 

– Stores the result in the solutions array. 

– Returns the result. 

• How do we write these two functions for Fibonacci? 
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Top-Level Function 

int Fibonacci(int number) 

{ 

   // Creating memory for the array of solutions. 

   int * solutions = malloc(sizeof(int) * (number +1)); 

   int index; 

    

   // Marking the solutions to all cases as "unknown". 

   // We use the convention that -1 stands for "unknown". 

   for (index = 0; index <= number; index++)  solutions[index] = -1; 

    

   int result = FibHelper(number, solutions); 

   free(solutions); 

   return result; 

} 
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Helper Function 

int FibHelper(int N, int * solutions) 

{ 

   // if problem already solved, return stored solution. 

   if (solutions[N] != -1) return solutions[number]; 

   int result; 
 

   if (N == 0) result = 0;    // base case 

   else if (N == 1) result = 1;    // base case 

 

   // recursive case 

   else result = FibHelper(N-1, solutions) + FibHelper(N-2, solutions); 
   

   solutions[number] = result;      // memoization 

   return result; 

} 
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The Knapsack Problem 

• The Fibonacci numbers are just a toy example for dynamic 
programming, as they can be computed with a simple for loop. 

• The classic problem for introducing dynamic programming is 
the knapsack problem. 
– A thief breaks in at the store. 

– The thief can only carry out of the store items with a total weight of W. 

– There are N types of items at the store. Each type Ti has a value Vi and 
a weight Wi. 

– What is the maximum total value items that the thief can carry out? 

– What items should the thief carry out to obtain this maximum value? 

• We will make two important assumptions:  
– That the store has unlimited quantities of each item type. 

– That the weight of each item is an integer >= 1. 
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Example 

item type: A B C D E 

weight: 3 4 7 8 9  

value  4 5 10 11 13 

 

• For example, suppose that the table above describes the 
types of items available at the store. 

• Suppose that the thief can carry out a maximum weight of 17. 

• What are possible combinations of items that the thief can 
carry out? 
– Five A's: weight = 15, value = 20. 

– Two A's, a B, and a C: weight =  17, value = 23. 

– A D and an E: weight = 17, value = 24. 

• The question is, what is the best combination? 
48 



Solving the Knapsack Problem 

item type: A B C D E 

weight: 3 4 7 8 9  

value  4 5 10 11 13 

 

• For example, suppose that the table above describes the 
types of items available at the store. 

• The question is, what is the best combination? 

• Can you propose any algorithm (even horribly slow) for 
finding the best combination? 
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Solving the Knapsack Problem 

item type: A B C D E 

weight: 3 4 7 8 9  

value  4 5 10 11 13 
 

• One approach: consider all possible sets of items. 

• Would that work? 
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Solving the Knapsack Problem 

item type: A B C D E 

weight: 3 4 7 8 9  

value  4 5 10 11 13 
 

• One approach: consider all possible sets of items. 

• Would that work? NO!!! 
– We have unlimited quantities of each item. 

– Therefore the number of all possible set of items is infinite, so it takes 
infinite time to consider them. 

• An algorithm that takes infinite time IS NOT THE SAME THING 
as an algorithm that is horribly slow. 
– Horribly slow algorithms eventually terminate, so mathematically 

they are valid solutions. 

– Algorithms that take infinite time never terminate, so they are 
mathematically not valid solutions. 
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Solving the Knapsack Problem 

• To use dynamic programming, we need to identify whether 
solving our problem can be done easily if we have already 
sold smaller problems. 

• What would be a smaller problem?  
– Our original problem is: find the set of items with weight <= W that 

has the most value. 
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Solving the Knapsack Problem 

• To use dynamic programming, we need to identify whether 
solving our problem can be done easily if we have already 
sold smaller problems. 

• What would be a smaller problem?  
– Our original problem is: find the set of items with weight <= W that 

has the most value. 

• A smaller problem is: find the set of items with weight <= W' 
that has the most value, where W' < W. 

• If we have solved the problem for all W' < W, how can we use 
those solutions to solve the problem for W? 
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Solving the Knapsack Problem 

• Our original problem is: find the set of items with weight <= W 
that has the most value. 

• A smaller problem is: find the set of items with weight <= W' 
that has the most value, where W' < W. 

• If we have solved the problem for all W' < W, how can we use 
those solutions to solve the problem for W? 

 

int knap(int W, int * weights, int * values): 

{ 

   max_value = 0; 

   For each type of item i: 

      value = values[i] + knap(W - weights[i]); 

      if (value > max_value) max_value = value. 

} 54 

solution to smaller problem 



How Does This Work? 

• We want to compute: 
knap(17). 

• knap(17) can be 
computed from which 
values? 
 

• val_A = ??? 

• val_B = ??? 

• val_C = ??? 

• val_D = ??? 

• val_E = ??? 
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int knap(int W, int * weights, int * values): 

{ 

    max_value = 0; 

    For each type of item i: 

        value = values[i] + knap(W - weights[i]); 

        if (value > max_value)  

            max_value = value; 

} 

item type: A   B   C   D   E 

weight: 3   4   7   8   9  

value  4   5   10  11  13 



How Does This Work? 

• We want to compute: 
knap(17). 

• knap(17) will be the 
maximum of these five 
values: 
 

• val_A = 3 + knap(14) 

• val_B = 4 + knap(13) 

• val_C = 7 + knap(10) 

• val_D = 8 + knap(9) 

• val_E = 9 + knap(8) 
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int knap(int W, int * weights, int * values): 

{ 

    max_value = 0; 

    For each type of item i: 

        value = values[i] + knap(W - weights[i]); 

        if (value > max_value)  

            max_value = value; 

} 

item type: A   B   C   D   E 

weight: 3   4   7   8   9  

value  4   5   10  11  13 



Recursive Solution for Knapsack 

57 

pseudocode:  

 

int knap(int W, int * weights, int * values): 

{ 

    max_value = 0; 

    For each type of item i: 

        value = values[i] + knap(W - weights[i], weights, values); 

        if (value > max_value)  

            max_value = value; 

    return max_value; 

} 

What is missing from this  
pseudocode if we want a  
complete solution? 



Recursive Solution for Knapsack 
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pseudocode:  

 

int knap(int W, int * weights, int * values): 

{ 

    max_value = 0; 

    For each type of item i: 

        value = values[i] + knap(W - weights[i], weights, values); 

        if (value > max_value)  

            max_value = value; 

    return max_value; 

} 

What is missing from this  
pseudocode if we want a  
complete solution? 

The base case: 
knap(0) = 0 



Recursive Solution for Knapsack 
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struct Items 

{ 

   int number; 

   char ** types; 

   int * weights;  

   int * values; 

}; 

int knapsack(int max_weight, struct Items items) 

{ 

   if (max_weight <= 0) return 0; 

   int max_value = 0; 

   int i; 

   for (i = 0; i < items.number; i++) 

   { 

      int rem = max_weight - items.weights[i]; 

      int value = items.values[i] + knapsack(rem, items); 

      if (value > max_value) max_value = value; 

   } 

   return max_value;    

} 



Recursive Solution for Knapsack 

60 

int knapsack(int max_weight, struct Items items) 

{ 

   if (max_weight <= 0) return 0; 

   int max_value = 0; 

   int i; 

   for (i = 0; i < items.number; i++) 

   { 

      int rem = max_weight - items.weights[i]; 

      int value = items.values[i] + knapsack(rem, items); 

      if (value > max_value) max_value = value; 

   } 

   return max_value;    

} 

running time? 



Recursive Solution for Knapsack 
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running time? 
 

very slow 
(exponential) 
 

How can we 
make it faster? 

int knapsack(int max_weight, struct Items items) 

{ 

   if (max_weight <= 0) return 0; 

   int max_value = 0; 

   int i; 

   for (i = 0; i < items.number; i++) 

   { 

      int rem = max_weight - items.weights[i]; 

      int value = items.values[i] + knapsack(rem, items); 

      if (value > max_value) max_value = value; 

   } 

   return max_value;    

} 



Bottom-Up Dynamic Programming 
for the Knapsack Problem 

• Requirements for using dynamic programming:  
– The answer to our problem P can be easily obtained from answers to smaller 

problems. 

– We can order problems in a sequence (P0, P1, P2, ..., PK) of reasonable size, so 
that: 

• Pk is our original problem P. 

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are easy 
to solve (they are base cases). 

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1. 

• If these requirements are met, we solve problem P as follows: 

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P. 

– For i = 0 to K, solve PK. 

– Return solution for PK. 
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How can we relate all this terminology  
to the Knapsack Problem? 
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Bottom-Up Dynamic Programming 
for the Knapsack Problem 

• Requirements for using dynamic programming:  
– The answer to our problem P can be easily obtained from answers to smaller 

problems.  Yes!  Knapsack(W) uses answers for W-1, W-2, …, W-max_weight. 

– We can order problems in a sequence (P0, P1, P2, ..., PK) of reasonable size, so 
that: 

• Pk is our original problem P. 

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are easy 
to solve (they are base cases). 

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1. 

– Yes! 

• Pi is the problem of computing Knapsack(i). 

• PW is our original problem, since we want to compute Knapsack (W). 

• P0, P1 are base cases. 

• For i >= 2, Knapsack(i) is easy to solve given Knapsack (0), Knapsack(1), 
…, Knapsack(i-1). 



Bottom-Up Solution 

int knapsack(int max_weight, Items items) 

• Create array of solutions. 

• Base case: solutions[0] = 0. 

• For each weight in {1, 2, ..., max_weight} 

– max_value = 0. 

– For each item in items: 
• remainder = weight - item.weight. 

• if (remainder < 0) continue; 

• value = item.value + solutions[remainder]. 

• If (value > max_value) max_value = value. 

– solutions[weight] = max_value. 

• Return solutions[max_weight]. 
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Top-Down Solution 

Top-level function (almost identical to helper function for 
Fibonacci top-down solution): 

 

int knapsack(int max_weight, Items items) 

• Create array of solutions. 

• Initialize all values in solutions to "unknown". 

• result = helper_function(max_weight, items, solutions) 

• Free up the array of solutions. 

• Return result. 

65 



Top-Down Solution: Helper Function 

int helper_function(int weight, Items items, int * solutions) 

• // Check if this problem has already been solved. 

• if (solutions[weight] != "unknown") return solutions[weight]. 

• If (weight == 0) result = 0.     // Base case 

• Else: 
– result = 0. 

– For each item in items: 

• remainder = weight - item.weight. 

• if (remainder < 0) continue; 

• value = item.value + helper_function(remainder, items, solutions). 

• If (value > result) result = value. 

• solutions[weight] = result.        // Memoization 

• Return result. 66 



Performance Comparison 

• Recursive version:  (knapsack_recursive.c) 

– Runs reasonably fast for max_weight <= 60. 

– Starts getting noticeably slower after that. 

– For max_weight = 70 I gave up waiting. 

• Bottom-up version: (knapsack_bottom_up.c) 

– Tried up to max_weight = 100 million. 

– No problems, very fast. 

– Took 4 seconds for max_weight = 100 million. 

• Top-down version: (knapsack_top_down.c) 

– Very fast, but crashes around max_weight = 97,000. 

– The system cannot handle that many recursive function 
calls. 
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Limitation of All Three Solutions 

• Each of the solutions returns a number. 

• Is a single number all we want to answer our original 
problem? 
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Limitation of All Three Solutions 

• Each of the solutions returns a number. 

• Is a single number all we want to answer our original 
problem? 

– No. Our original problem was to find the best set of items. 

– It is nice to know the best possible value we can achieve. 

– But, we also want to know the actual set of items that 
achieves that value. 

• This will be left as a homework for you. 
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Weighted Interval Scheduling (WIS) 

• Suppose you are a plumber. 

• You are offered N jobs. 

• Each job has the following attributes: 

– start: the start time of the job. 

– finish: the finish time of the job. 

– value: the amount of money you get paid for that job. 

• What is the best set of jobs you can take up? 

– You want to make the most money possible. 

• Why can't you just take up all the jobs? 
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Weighted Interval Scheduling (WIS) 

• Suppose you are a plumber. 

• You are offered N jobs. 

• Each job has the following attributes: 

– start: the start time of the job. 

– finish: the finish time of the job. 

– value: the amount of money you get paid for that job. 

• What is the best set of jobs you can take up? 

– You want to make the most money possible. 

• Why can't you just take up all the jobs? 

• Because you cannot take up two jobs that are 
overlapping. 
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Example WIS Input 

• We assume, for simplicity, that 
jobs have been sorted in ascending 
order of the finish time. 
– We have not learned yet good 

methods for sorting that we can use. 

• If we take job A, we cannot take 
any other job that starts BEFORE 
job A finishes. 

• Can we do both job 0 and job 1? 
 

• Can we do both job 0 and job 2? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Example WIS Input 

• We assume, for simplicity, that 
jobs have been sorted in ascending 
order of the finish time. 
– We have not learned yet good 

methods for sorting that we can use. 

• If we take job A, we cannot take 
any other job that starts BEFORE 
job A finishes. 

• Can we do both job 0 and job 1? 
– Yes. 

• Can we do both job 0 and job 2? 
– No (they overlap). 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Example WIS Input 

• A possible set of jobs we could 
take: 0, 1, 5, 10, 13. 

• What is the value?  
– 3 + 5.5 + 4.5 + 6 + 6 = 25. 

• Can you propose any algorithm 
(even horribly slow) for finding 
the best set of jobs? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Example WIS Input 

• Simplest algorithm for finding the 
best subset of jobs:  
– Consider all possible subsets of jobs. 

–  Ignore subsets with overlapping 
jobs. 

– Find the subset with the best total 
value. 

• Time complexity? If we have N 
jobs, what is the total number of 
subsets of jobs? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Example WIS Input 

• Simplest algorithm for finding the 
best subset of jobs:  
– Consider all possible subsets of jobs. 

–  Ignore subsets with overlapping 
jobs. 

– Find the subset with the best total 
value. 

• Time complexity? If we have N 
jobs, what is the total number of 
subsets of jobs? 
– Total number of subsets: 2N. 

– Exponential time complexity. 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Solving WIS With Dynamic 
Programming 

• To use dynamic programming, we 
must relate the solution to our 
problem to solutions to smaller 
problems. 

• For example, consider job 14.  

• What kind of problems that 
exclude job 14 would be relevant 
in solving the original problem, 
that includes job 14? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Solving WIS With Dynamic 
Programming 

• We can easily solve the problem for 
jobs 0-14, given solutions to these 
two smaller problems: 

• Problem 1: best set using jobs 0-13. 
– When job 14 is available, the best set 

using jobs 0-13 is still an option to us, 
although not necessarily the best one. 

• Problem 2: best set using jobs 0-10. 
– Why is this problem relevant? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Solving WIS With Dynamic 
Programming 

• We can easily solve the problem for 
jobs 0-14, given solutions to these 
two smaller problems: 

• Problem 1: best set using jobs 0-13. 
– When job 14 is available, the best set 

using jobs 0-13 is still an option to us, 
although not necessarily the best one. 

• Problem 2: best set using jobs 0-10. 
– Why is this problem relevant? 

– Because job 10 is the last job before job 
14 that does NOT overlap with job 14. 

– Thus, job 14 can be ADDED to the 
solution for jobs 0-10. 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Solving WIS With Dynamic 
Programming 

• We can easily solve the problem for 
jobs 0-14, given solutions to these 
two smaller problems: 

• Problem 1: best set using jobs 0-13. 

• Problem 2: best set using jobs 0-10. 

• The solution for jobs 0-14 is simply 
the best of these two options: 
– Best set using jobs 0-13. 

– Best set using jobs 0-10, plus job 14. 

• How can we write this solution in 
pseudocode? 
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0 1  4.5 3 
1 5.3  6.1 5.5 
2 3 7.2 2 
3 6 8 10 
4 0.5 10 7 
5 7 12.5 4.5 
6 8.2 13 3 
7 9 15.3 7 
8 10.5 16 2 
9 9 17.5 9 
10 13 19 6 
11 16 20.5 8 
12 17 23 12 
13 20.2 24.1 6 
14 19 25 10 

job ID    start         finish    value 
 



Solving WIS With Dynamic 
Programming 

• Step 1: to make our life 
easier, we will insert a zero 
job at the beginning. The 
zero job: 
– Starts at time zero 

– Finishes at time zero. 

– Has zero value.  

• Step 2: we need to 
preprocess jobs, so that for 
each job i we compute: 
– last [i] = the index of the last 

job preceding job i that does 
NOT overlap with job i. 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 



Solving WIS With Dynamic 
Programming 

• Step 1: to make our life 
easier, we will insert a zero 
job at the beginning. The 
zero job: 
– Starts at time zero 

– Finishes at time zero. 

– Has zero value.  

• Step 2: we need to 
preprocess jobs, so that for 
each job i we compute: 
– last [i] = the index of the last 

job preceding job i that does 
NOT overlap with job i. 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Solving WIS With Dynamic 
Programming 

float wis(jobs, last) 

• N = number of jobs. 

• Initialize solutions array. 

• solutions[0] = 0. 

• For (i = 1 to N) 
– S1 = solutions[i-1]. 

– L = last[i]. 

– SL = solutions[L]. 

– S2 = SL + jobs[i].value. 

– solutions[i] = max(S1, S2). 

• Return solutions[N]; 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Backtracking 

• As in our solution to the knapsack problem, the pseudocode 
we just saw returns a number: 
– The best total value we can achieve. 

• In addition to the best value, we also want to know the set of 
jobs that achieves that value. 

• This is a general issue in dynamic programming. 

• How can we address it? 
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Backtracking 

• As in our solution to the knapsack problem, the pseudocode 
we just saw returns a number: 
– The best total value we can achieve. 

• In addition to the best value, we also want to know the set of 
jobs that achieves that value. 

• This is a general issue in dynamic programming. 

• There is a general solution, called backtracking. 

• The key idea is:  
– In DP the final solution is always built from smaller solutions. 

– At each smaller problem, we have to choose which (even smaller) 
solutions to use for solving that problem. 

– We must record, for each smaller problem, the choice we made. 

– At the end, we backtrack and recover the individual decisions that led 
to the best solution. 
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Backtracking for the WIS Solution 

86 

• First of all, what should the function return? 



Backtracking for the WIS Solution 
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• First of all, what should the function return? 

– The best value we can achieve. 

– The set of intervals that achieves that value. 

• How can we make the function return both 
these things? 

• The solution that will be preferred throughout 
the course: 

– Define a Result structure containing as many 
member variables as we need to store in the result. 

– Make the function return an object of that structure. 



Backtracking for the WIS Solution 

88 

• First of all, what should the function return? 

– The best value we can achieve. 

– The set of intervals that achieves that value. 

 

struct WIS_result 

{ 

   float value; 

   list set; 

}; 

 

struct WIS_result wis(struct Intervals intervals) 

 



Backtracking Solution 

Result wis(jobs, last) 

• N = number of jobs. 

• solutions[0] = 0. 

• For (i = 1 to N) 
– L = last[i]. 

– SL = solutions[L]. 

– S1 = solutions[i-1]. 

– S2 = SL + jobs[i].value. 

– solutions[i] = max(S1, S2). 
 

• How can we keep track of 
the decisions we make? 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Backtracking Solution 

Result wis(jobs, last) 

• N = number of jobs. 

• solutions[0] = 0. 

• For (i = 1 to N) 
– L = last[i]. 

– SL = solutions[L]. 

– S1 = solutions[i-1]. 

– S2 = SL + jobs[i].value. 

– solutions[i] = max(S1, S2). 
 

• How can we keep track of 
the decisions we make? 

• Remember the last job of 
each solution. 90 

0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Backtracking Solution 

Result wis(jobs, last) 

• N = number of jobs. 

• solutions[0] = 0. 

• used[0] = 0. 

• For (i = 1 to N) 
– L = last[i]. 

– SL = solutions[L]. 

– S1 = solutions[i-1]. 

– S2 = SL + jobs[i].value. 

– solutions[i] = max(S1, S2). 

– If S2 > S1  then used[i] = i. 

– Else used[i] = used[i-1]. 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Backtracking Solution 

• // backtracking part 

• list set = new List. 

• counter = used[N]. 

• while(counter != 0) 
– job = jobs[counter]. 

– insertAtBeginning(set, job). 

– counter = ??? 
 

• WIS_result result. 

• result.value = solutions[N]. 

• result.set = set. 

• return result. 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Backtracking Solution 

• // backtracking part 

• list set = new List. 

• counter = used[N]. 

• while(counter != 0) 
– job = jobs[counter]. 

– insertAtBeginning(set, job). 

– counter = used[last[counter] ]. 
 

• WIS_result result. 

• result.value = solutions[N]. 

• result.set = set. 

• return result. 
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0 0 0 0 
1 1  4.5 3 
2 5.3  6.1 5.5 
3 3 7.2 2 
4 6 8 10 
5 0.5 10 7 
6 7 12.5 4.5 
7 8.2 13 3 
8 9 15.3 7 
9 10.5 16 2 
10 9 17.5 9 
11 13 19 6 
12 16 20.5 8 
13 17 23 12 
14 20.2 24.1 6 
15 19 25 10 

job ID    start         finish    value 

0 
0 
1 
0 
1 
0 
2 
4 
4 
5 
4 
7 
9 
9 
11 
11  

last 



Matrix Multiplication: Review 

• Suppose that A1 is of size S1 x S2, and A2 is of size S2 x 
S3. 

• What is the time complexity of computing A1 * A2? 

• What is the size of the result?  
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Matrix Multiplication: Review 

• Suppose that A1 is of size S1 x S2, and A2 is of size S2 x 
S3. 

• What is the time complexity of computing A1 * A2? 

• What is the size of the result? S1 x S3. 

• Each number in the result is computed in O(S2) time 
by: 

– multiplying S2 pairs of numbers. 

– adding S2 numbers. 

• Overall time complexity: O(S1 * S2 * S3). 
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Optimal Ordering for Matrix 
Multiplication 

• Suppose that we need to do a sequence of matrix 
multiplications: 

– result = A1 * A2 * A3 * ... * AK 

• The number of rows for Ai must equal the number of 
columns for Ai+1. 

• What is the time complexity for performing this 
sequence of multiplications? 
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Optimal Ordering for Matrix 
Multiplication 

• Suppose that we need to do a sequence of matrix 
multiplications: 

– result = A1 * A2 * A3 * ... * AK 

• The number of rows for Ai must equal the number of 
columns for Ai+1. 

• What is the time complexity for performing this 
sequence of multiplications? 

• The answer is: it depends on the order in which we 
perform the multiplications. 
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An Example 

• Suppose:  
– A1 is17x2. 

– A2 is 2x35. 

– A3 is 35x4. 

• (A1 * A2) * A3: 
 
 
 

• A1 * (A2 * A3): 
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An Example 

• Suppose:  
– A1 is17x2. 

– A2 is 2x35. 

– A3 is 35x4. 

• (A1 * A2) * A3: 
– 17*2*35 = 1190 multiplications and additions to compute A1 * A2. 

– 17*35*4 = 2380 multiplications and additions to compute multiplying 
the result of (A1 * A2) with A3. 

– Total: 3570 multiplications and additions. 

• A1 * (A2 * A3): 
– 2*35*4 = 280 multiplications and additions to compute A2 * A3. 

– 17*2*4 = 136 multiplications and additions to compute multiplying A1 
with the result of (A2 * A3). 

– Total: 416 multiplications and additions. 
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Adaptation to Dynamic Programming 

• Suppose that we need to do a sequence of matrix 
multiplications: 
– result = A1 * A2 * A3 * ... * AK 

• To figure out if and how we can use dynamic programming, 
we must address the standard two questions we always need 
to address for dynamic programming: 

1. Can we define a set of smaller problems, such that the 
solutions to those problems make it easy to solve the original 
problem?  

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 
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Defining Smaller Problems 

1. Can we define a set of smaller problems, whose solutions make 
it easy to solve the original problem?  
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK 

• Yes! Suppose that, for every i between 1 and K-1 we know: 
– The best order (and best cost) for multiplying matrices A1, ..., Ai. 

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK. 

• Then, for every such i, we obtain a possible solution for our 
original problem: 
– Multiply matrices A1, ..., Ai in the best order. Let C1 be the cost of that. 

– Multiply matrices Ai+1, ..., AK in the best order. Let C2 be the cost of that. 

– Compute (A1 * ... * Ai) * (Ai+1 * ... * AK). Let C3 be the cost of that. 

• C3 = rows of (A1 * ... * Ai) * cols of (A1 * ... * Ai) * cols of (Ai+1 * ... * AK). 
     = rows of A1 * cols of Ai * cols of AK 

– Total cost of this solution = C1 + C2 + C3. 
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Defining Smaller Problems 

1. Can we define a set of smaller problems, whose solutions make 
it easy to solve the original problem?  
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK 

• Yes! Suppose that, for every i between 1 and K-1 we know: 
– The best order (and best cost) for multiplying matrices A1, ..., Ai. 

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK. 

• Then, for every such i, we obtain a possible solution. 

• We just need to compute the cost of each of those solutions, 
and choose the smallest cost. 

• Next question: 

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 
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Defining Smaller Problems 

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 

• To compute answer for A1 * A2 * A3 * ... * AK : 
For i = 1, …, K-1, we had to consider solutions for: 
– A1, ..., Ai. 

– Ai+1, ..., AK. 

• So, what is the set of all problems we must solve? 
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Defining Smaller Problems 

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 

• To compute answer for A1 * A2 * A3 * ... * AK : 
For i = 1, …, K-1, we had to consider solutions for: 
– A1, ..., Ai. 

– Ai+1, ..., AK. 

• So, what is the set of all problems we must solve? 

• For M = 1, ..., K. 
– For N = 1, ..., M. 

• Compute the best ordering for AN * ... * AM. 

• What this the number of problems we need to solve? Is the 
size reasonable? 
– We must solve Θ(K2) problems. We consider this a reasonable number. 
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Defining Smaller Problems 

• The set of all problems we must solve: 

• For M = 1, ..., K. 
– For N = 1, ..., M. 

• Compute the best ordering for AN * ... * AM. 

• What is the order in which we must solve these problems? 
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Defining Smaller Problems 

• The set of all problems we must solve, in the correct order: 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• N must go from M to 1, NOT the other way around. 

• Why? Because, given M, the larger the N is, the smaller the 
problem is of computing the best ordering for AN * ... * AM. 
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Solving These Problems 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• What are the base cases? 

• N = M. 
– costs[N][M] = 0. 

• N = M - 1. 
– costs[N][M] = rows(AN) * cols(AN) * cols(AM). 

• Solution for the recursive case: 
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Solving These Problems 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• Solution for the recursive case: 
 

• minimum_cost = 0 

• For R = N, ..., M-1: 
– cost1 = costs[N][R] 

– cost2 = costs[R+1][M] 

– cost3 = rows(AN) * cols(AR) * cols(AM) 

– cost = cost1 + cost2 + cost3 

– if (cost < minimum_cost) minimum_cost = cost 

• costs[N][M] = minimum_cost 
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The Edit Distance 

• Suppose A and B are two strings. 

• By applying insertions, deletions, and substitutions, we can 
always convert A to B. 

• Insertion example: we insert an 'r' at position 2, to convert 
"cat" to "cart". 

• Deletion example: we delete the 'r' at position 2, to convert 
"cart" to "cat". 

• Substitution example: we replace the 'o' at position 1 with an 
'i', to convert "dog" to "dig". 

• Note: each insertion/deletion/substitution inserts, deletes, or 
changes only one character, NOT multiple characters. 
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The Edit Distance 

• For example, to convert "chicken" to "ticket": 

• One solution: 

– Substitute 'c' with 't'. 

– Delete 'h'. 

– Replace 'n' with 't'. 

– Total: three operations. 

• Another solution: 

– Delete 'c'. 

– Substitute 'h' with 't'. 

– Replace 'n' with 't'. 

– Total: three operations. 
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The Edit Distance 

• Question: given two strings A and B, what is the smallest 
number of operations we need in order to convert A to B? 

• The answer is called the edit distance between A and B. 

• This distance, and variations, have significant applications in 
various fields, including bioinformatics and pattern 
recognition. 
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Visualizing the Edit Distance 

• Assignment preview: you will have to write code that 
produces such output. 

• Edit distance between "chicken" and "ticket" = ? 
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Visualizing the Edit Distance 

• Assignment preview: you will have to write code that 
produces such output. 

• Edit distance between "chicken" and "ticket" = 3 

c h i c k e n 

t - i c k e t 

x x . . . . x 
 

• Three operations: 

– Substitution: 'c' with 't'. 

– Insertion: 'h'. 

– Substitution: 'n' with 't'. 
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Visualizing the Edit Distance 

• Edit distance between "lazy" and "crazy" = ? 

114 



Visualizing the Edit Distance 

• Edit distance between "lazy" and "crazy" = 2 

l - a z y  

c r a z y 

x x . . . 
 

• Two operations: 

– Substitution: 'l' with 'c'. 

– Insertion: 'r'. 
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Visualizing the Edit Distance 

• Edit distance between "intimidation" and 
"immigration" = ? 
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Visualizing the Edit Distance 

• Edit distance between "intimidation" and 
"immigration" = 5 

i n t i m i d - a t i o n 

i - - m m i g r a t i o n 

. x x x . . x x . . . . . 
 

• Five operations: 

– Deletion: 'n'. 

– Deletion: 't'. 

– Substitution: 'i' with 'm'. 

– Substitution: 'd' with 'g'. 

– Insertion: 'r'. 117 



Computing the Edit Distance 

• Assignment preview: you will have to implement this. 

• What is the edit distance between: 
– GATTACACCGTCTCGGGCATCCATAATGG 

– CATTTATAGGTGAACTTGCGCGTTATGC 

• Unlike previous examples, here the answer is not obvious. 

• The two strings above are (very small) examples of DNA 
sequences, using the four DNA letters: ACGT. 

• In practice, the sequences may have thousands or millions of 
letters. 

• We need an algorithm for computing the edit distance 
between two strings. 
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Computing the Edit Distance 

• To find a dynamic programming solution, we must find a 
sequence of problems such that: 
– Each problem in the sequence can be easily solved given solutions to 

the previous problems. 

– The number of problems in the sequence is not too large (e.g., not 
exponential). 

• Any ideas? 

• Given strings A and B, can you identify smaller problems that 
are related to computing the edit distance between A and B? 
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Computing the Edit Distance 

• Notation: 
– S[i, ..., j] is the substring of S that includes all letters from position i to 

position j. 

– |S| indicates the length of string S. 

• Using this notation: 
– A = A[0, ..., |A|-1] 

– B = B[0, ..., |B|-1] 

• The solution for edit_distance(A, B) depends on the solutions 
to three smaller problems: 
– edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) 

– edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) 

– edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) 
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Computing the Edit Distance 

• The solution for edit_distance(A, B) depends on the solutions 
to three smaller problems: 

• Problem 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) 
– Edit distance from A to B, excluding the last letter of B. 

– We can insert the last letter of B to that solution. 

• Example: 
– A = "intimidation".      |A| = 12. 

– B = "immigration".      |B| = 11. 

• edit_distance(A[0, ..., 11], B[0, ..., 9]) = 6 

i n t i m i d - a t i o n 

i - - m m i g r a t i o - 
 

• From this, we obtain a solution with cost 7. 
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Computing the Edit Distance 

• Problem 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) 
– Edit distance from A to B, excluding the last letter of A. 

– We can insert the last letter of A to that solution. 

• Example: 
– A = "intimidation".      |A| = 12. 

– B = "immigration".      |B| = 11. 

• edit_distance(A[0, ..., 10], B[0, ..., 10]) = 6 

i n t i m i d - a t i o - 

i - - m m i g r a t i o n 
 

• This solution converts "intimidatio" to "immigration". 

• Using one more deletion (of the final 'n' of "intimidation"), we 
convert "intimidation" to "immigration" with cost 7. 
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Computing the Edit Distance 

• Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) 
– Edit distance from A to B, excluding the last letter of both A and B. 

• Example: 
– A = "intimidation".      |A| = 12. 

– B = "immigration".      |B| = 11. 

• edit_distance(A[0, ..., 10], B[0, ..., 9]) = 5 

i n t i m i d - a t i o 

i - - m m i g r a t i o 
 

• This solution converts "intimidatio" to "immigratio". 

• The same solution converts "intimidation" to "immigration", 
because both words have the same last letter.  
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Computing the Edit Distance 

• Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) 
– Edit distance from A to B, excluding the last letter of both A and B. 

• Example: 
– A = "nation".      |A| = 6. 

– B = "patios".      |B| = 6. 

• edit_distance(A[0, ..., 10], B[0, ..., 9]) = 1 

n a t i o 

p a t i o  
 

• This solution converts "natio" to " patio". 

• The same solution, plus one substitution ('n' with 's') converts 
"nation" to "patios", with cost 2. 
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Computing the Edit Distance 

• Summary: edit_distance(A, B) is the smallest of the 
following three: 

– 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + ? 

– 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + ? 

 

– 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + ? 
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Computing the Edit Distance 

• Summary: edit_distance(A, B) is the smallest of the 
following three: 

– 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + 1 

– 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + 1 

 

– 3: either edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]). 
• If the last letter of A is the same as the last letter of B. 

– or edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + 1. 
• If the last letter of A is not the same as the last letter of B. 
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Computing the Edit Distance 

• What sequence of problems do we need to solve in 
order to compute edit_distance(A, B)? 
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Computing the Edit Distance 

• What sequence of problems do we need to solve in 
order to compute edit_distance(A, B)? 

• For each i in 0, ..., |A|-1 

– For each j in 0, ..., |B|-1 
• Compute edit_distance(A[0, ..., i], B[0, ..., j]). 

• The total number of problems we need to to solve is 
|A| * |B|, which is manageable. 

• What are the base cases? 
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Computing the Edit Distance 

• Base case 1: edit_distance("", "")  = 0. 

– The edit distance between two empty strings. 

• Base case 2: edit_distance("", B[0, ..., j])  = j+1. 

• Base case 3: edit_distance(A[0, ..., i], "")  = i+1. 
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Computing the Edit Distance 

• For convenience, we define A[0, -1] = "", B[0, -1] = "". 

• Then, we can rewrite the previous base cases like 
this: 

• Base case 1: edit_distance(A[0, -1], B[0, -1])  = 0. 

– The edit distance between two empty strings. 

• Base case 2: edit_distance(A[0, -1], B[0, ..., j])  = j+1. 

• Base case 3: edit_distance(A[0, ..., i], B[0, -1])  = i+1. 

 

130 



Computing the Edit Distance 

• Recursive case: if i >= 0, j >= 0: 

• edit_distance(A[0, ..., i], B[0, ..., j]) = smallest of these 
three values: 

– 1: edit_distance(A[0, ..., i-1], B[0, ..., j) + 1 

– 2: edit_distance(A[0, ..., i], B[0, ..., j-1]) + 1 

 

– 3: either edit_distance(A[0, ..., i-1], B[0, ..., j-1]). 
• If A[i] == B[j]. 

– or edit_distance(A[0, ..., i-1], B[0, ..., j-1]) + 1. 
• If A[i] != B[j]. 
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