
Recursion and Dynamic Programming

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Recursion

• Recursion is a fundamental concept in computer science.

• Recursive algorithms: algorithms that solve a problem by
solving one or more smaller instances of the same problem.

• Recursive functions: functions that call themselves.

• Recursive data types: data types that are defined using
references to themselves.

• Example?

2

Recursion

• Recursion is a fundamental concept in computer science.

• Recursive algorithms: algorithms that solve a problem by
solving one or more smaller instances of the same problem.

• Recursive functions: functions that call themselves.

• Recursive data types: data types that are defined using
references to themselves.

• Example? Nodes in the implementation of linked lists.

• In all recursive concepts, there is one or more base cases. No
recursive concept can be understood without understanding
its base cases.

• What is the base case for nodes?

3

Recursion

• Recursion is a fundamental concept in computer science.

• Recursive algorithms: algorithms that solve a problem by
solving one or more smaller instances of the same problem.

• Recursive functions: functions that call themselves.

• Recursive data types: data types that are defined using
references to themselves.

• Example? Nodes in the implementation of linked lists.

• In all recursive concepts, there is one or more base cases. No
recursive concept can be understood without understanding
its base cases.

• What is the base case for nodes?
– A node pointing to NULL.

 4

Recursive Algorithms

• Recursive algorithms: algorithms that solve a problem by
solving one or more smaller instances of the same problem.

• A recursive algorithm can always be implemented both using
recursive functions, and without recursive functions.

• Example of a recursive function:

5

Recursive Algorithms

• Recursive algorithms: algorithms that solve a problem by
solving one or more smaller instances of the same problem.

• A recursive algorithm can always be implemented both using
recursive functions, and without recursive functions.

• Example of a recursive function: the factorial.
– How is factorial(3) evaluated?

6

Recursive Definition:

int factorial(int N)
{
 if (N == 0) return 1;
 return N*factorial(N-1);
}

Non-Recursive Definition :

int factorial(int N)
{
 int result = 1;
 int i;
 for (i = 2; i <= N; i++) result *= i;
 return result;
}

Analyzing a Recursive Program

• Analyzing a recursive program
involves answering two questions:

– Does the program always terminate?

– Does the program always compute
the right result?

• Both questions are answered by
induction.

• Example: does the factorial
function on the right always
compute the right result?

• Proof: by induction.
7

Recursive Definition:

int factorial(int N)
{
 if (N == 0) return 1;
 return N*factorial(N-1);
}

Analyzing a Recursive Program

• Proof: by induction.

• Step 1: (the base case)
– For N = 0, factorial(0) returns 1, which is

correct.

• Step 2: (using the inductive
hypothesis)
– Suppose that factorial(N) returns the right

result for N = K, where K is an integer >= 0.

– Then, for N = K+1, factorial(N) returns:
 N * factorial(K) = N * K! = N * (N-1)! = N!.

– Thus, for N = K+1, factorial(N) also returns
the correct result.

• Thus, by induction, factorial(N)
computes the correct result for all N.

8

Recursive Definition:

int factorial(int N)
{
 if (N == 0) return 1;
 return N*factorial(N-1);
}

Where precisely
was the inductive
hypothesis used?

In substituting K!
for factorial(K).

Guidelines for Designing Recursive
Functions

• We should design recursive functions so that it is
easy to convince ourselves that they are correct.

– Strictly speaking, the only way to convince ourselves is a
mathematical proof.

– Loosely speaking, we should follow some guidelines to
make our life easier.

• So, it is a good idea for our recursive functions to
follow these rules:

– They must explicitly solve one or more base cases.

– Each recursive call must involve smaller values of the
arguments, or smaller sizes of the problem.

 9

Example Violation of the
Guidelines

int puzzle(int N)

{

 if (N == 1) return 1;

 if (N % 2 == 0)

 return puzzle(N/2);

 else return puzzle(3*N+1);

}

• How does this function violate the guidelines we just stated?

10

Example Violation of the
Guidelines

int puzzle(int N)

{

 if (N == 1) return 1;

 if (N % 2 == 0)

 return puzzle(N/2);

 else return puzzle(3*N+1);

}

• How does this function violate the guidelines we just stated?

• The function does NOT always call itself with smaller values.

• Consequence: it is hard to prove if this function always
terminates.

• No one has actually been able to prove or disprove that!!!
11

How is puzzle(3)
evaluated?

Euclid's Algorithm

int gcd(int m, int n)

{

 if (n == 0) return m;

 return gcd(n, m % n);

}

• One of the most ancient algorithms.

• Computes the greatest common divisor of two numbers.

• It is based on the property that if T divides X and Y, then T also
divides X mod Y.

• How is gcd(96, 36) evaluated?

12

Euclid's Algorithm

int gcd(int m, int n)

{

 if (n == 0) return m;

 return gcd(n, m % n);

}

• One of the most ancient algorithms.

• Computes the greatest common divisor of two numbers.

• It is based on the property that if T divides X and Y, then T also
divides X mod Y.

• How is gcd(96, 36) evaluated?

• gcd(96, 36) = gcd(36, 24) = gcd(24, 12) = gcd(12, 0) = 12.
13

Evaluating Prefix Expressions

• Prefix expressions: they place each operand BEFORE its two
arguments.

• Example: * + 7 * * 4 6 + 8 9 5

14

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

15

Example: * + 7 * * 4 6 + 8 9 5:

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

16

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + wait wait
• 7

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

17

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * wait wait
• * wait wait
• 4

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

18

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * wait wait
• * 4 wait
• 6

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

19

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * wait wait
• * 4 6 = 24

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

20

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * 24 wait
• + wait wait

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

21

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * 24 wait
• + wait wait
• 8

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

22

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * 24 wait
• + 8 wait
• 9

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

23

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * 24 wait
• + 8 9 = 17

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

24

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 wait
• * 24 17 = 408

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

25

Example: * + 7 * * 4 6 + 8 9 5:
• * wait wait
• + 7 408 = 415

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

26

Example: * + 7 * * 4 6 + 8 9 5:
• * 415 wait
• 5

Evaluating Prefix Expressions

• Code for evaluating prefix expressions:

char *a; int i;

int eval()

{

 int x = 0;

 while (a[i] == ' ') i++;

 if (a[i] == '+')

 { i++; return eval() + eval(); }

 if (a[i] == '*')

 { i++; return eval() * eval(); }

 while ((a[i] >= '0') && (a[i] <= '9'))

 x = 10*x + (a[i++]-'0');

 return x;

}

27

Example: * + 7 * * 4 6 + 8 9 5:
• * 415 5 = 2075

Recursive Vs. Non-Recursive
Implementations

• In some cases, recursive functions are much easier to read.

• The make crystal clear the mathematical structure of the
algorithm.

• To process recursive data types, such as nodes, oftentimes it is
easy to write recursive functions.

• Example: int count(link x)
– count how many links there are between x and the end of the list.

– Recursive solution?

– Base case? Recursive function?

28

Recursive Vs. Non-Recursive
Implementations

• In some cases, recursive functions are much easier to read.

• The make crystal clear the mathematical structure of the
algorithm.

• To process recursive data types, such as nodes, oftentimes it is
easy to write recursive functions.

• Example: int count(link x)
– count how many links there are between x and the end of the list.

– Recursive solution? count(x) = 1 + count(x->next)

– Base case: x = NULL. Recursive function:

int count(link x)

{ if (x == NULL) return 0;

 return 1 + count(x->next);

}

29

Recursive Vs. Non-Recursive
Implementations

• In some cases, recursive functions are much easier to read.
– They make crystal clear the mathematical structure of the algorithm.

• To process recursive data types, such as nodes, oftentimes it is
easy to write recursive functions.

• However, any recursive function can also be written in a non-
recursive way.

• Oftentimes recursive functions run slower. Why?

30

Recursive Vs. Non-Recursive
Implementations

• In some cases, recursive functions are much easier to read.
– They make crystal clear the mathematical structure of the algorithm.

• To process recursive data types, such as nodes, oftentimes it is
easy to write recursive functions.

• However, any recursive function can also be written in a non-
recursive way.

• Oftentimes recursive functions run slower. Why?
– Recursive functions generate many function calls.

– The CPU has to pay a price (perform a certain number of operations)
for each function call.

• Non-recursive implementations are oftentimes somewhat
uglier (and more buggy, harder to debug) but more efficient.
– Compromise: make first version recursive, second non-recursive. 31

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• How can we write a function that computes Fibonacci
numbers?

32

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Consider this function: what is its running time?

33

int Fibonacci(int i)
{
 if (i < 1) return 0;
 if (i == 1) return 1;
 return F(i-1) + F(i-2);
}

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Consider this function: what is its running time?
– g(N) = g(N-1) + g(N-2) + constant

– g(N) = O(Fibonacci(N)) = O(1.618N)

– We cannot even compute Fibonacci(40)
in a reasonable amount of time.

 34

int Fibonacci(int i)
{
 if (i < 1) return 0;
 if (i == 1) return 1;
 return F(i-1) + F(i-2);
}

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Alternative: remember values we have already computed.

35

exponential version:

int Fibonacci(int i)
{
 if (i < 1) return 0;
 if (i == 1) return 1;
 return F(i-1) + F(i-2);
}

linear version:

int Fibonacci(int i)
{
 int * F = malloc(sizeof(int) * (i+1));
 F[0] = 0; F[1] = 1;
 int j;
 for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2];
 return F[i];
}

Bottom-up Dynamic Programming

• The technique we have just used is called bottom-up
dynamic programming.

• It is widely applicable, in a large variety of problems.

36

Bottom-up Dynamic Programming

• Requirements for using dynamic programming:

– The answer to our problem P can be easily obtained from
answers to smaller problems.

– We can order problems in a sequence (P0, P1, P2, ..., PK) of
reasonable size, so that:

• Pk is our original problem P.

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are
easy to solve (they are base cases).

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1.

• If these requirements are met, we solve problem P as follows:

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P.

– For i = 0 to K, solve PK.

– Return solution for PK.

37

Bottom-up Dynamic Programming

• Requirements for using dynamic programming:

– The answer to our problem P can be easily obtained from
answers to smaller problems.

– We can order problems in a sequence (P0, P1, P2, ..., PK) of
reasonable size, so that:

• Pk is our original problem P.

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are
easy to solve (they are base cases).

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1.

• If these requirements are met, we solve problem P as follows:

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P.

– For i = 0 to K, solve PK.

– Return solution for PK.

38

How can we relate all this
terminology to the problem of
 computing Fibonacci numbers?

Dynamic Programming for Fibonacci

• Requirements for using dynamic programming:

– The answer to our problem P can be easily obtained from
answers to smaller problems. Yes! Fib(N) = Fib(N-1) + Fib(N-2)

– We can order problems in a sequence (P0, P1, P2, ..., PK) of
reasonable size, so that:

• Pk is our original problem P.

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are
easy to solve (they are base cases).

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1.

– Yes!

• Pi is the problem of computing Fibonacci(i).

• PN is our problem, since we want to compute Fibonacci(N).

• P0, P1 are base cases.

• For i >= 2, Fib(i) is easy to solve given Fib(0), Fib(1), …, Fib(i-1).
39

• If these requirements are met, we solve problem P as follows:

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P.

– For i = 0 to K, solve PK.

– Return solution for PK.

• That is exactly what this
function does.

40

Dynamic Programming for Fibonacci

linear version:

int Fibonacci(int i)
{
 int * F = malloc(sizeof(int) * (i+1));
 F[0] = 0;
 F[1] = 1;
 int j;
 for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2];
 return F[i];
}

Bottom-Up vs. Top Down

• When the conditions that we stated previously are satisfied,
we can use dynamic programming.

• There are two versions of dynamic programming.
– Bottom-up.

– Top-down.

• We have already seen how bottom-up works.
– It solves problems in sequence, from smaller to bigger.

• Top-down dynamic programming takes the opposite
approach:
– Start from the larger problem, solve smaller problems as needed.

– For any problem that we solve, store the solution, so we never have to
compute the same solution twice.

• This approach is also called memoization.
41

Top-Down Dynamic Programming

• Maintain an array where solutions to problems can
be saved.

• To solve a problem P:

– See if the solution has already been been stored in the
array.

• If so, just return the solution.

• Otherwise:

– Issue recursive calls to solve whatever smaller problems
we need to solve.

– Using those solutions obtain the solution to problem P.

– Store the solution in the solutions array.

– Return the solution.

42

Top-Down Solution for Fibonacci

• Textbook solution:

int F(int i)

{

 int t;

 if (knownF[i] != unknown) return knownF[i];

 if (i == 0) t = 0;

 if (i == 1) t = 1;

 if (i > 1) t = F(i-1) + F(i-2);

 return knownF[i] = t;

}

• This is a partial solution. Initialization of known is not shown.

43

Top-Down Solution for Fibonacci

• General strategy:

• Create a top-level function that:
– Creates memory for the array of solutions.

– Initializes the array by marking that all solutions are currently
"unknown".

– Calls a helper function, that takes the same arguments, plus the
solutions array.

• The helper function:
– If the solution it wants is already computed, returns the solution.

– If we have a base case, computes the result directly.

– Otherwise: computes the result using recursive calls.

– Stores the result in the solutions array.

– Returns the result.

• How do we write these two functions for Fibonacci?
44

Top-Level Function

int Fibonacci(int number)

{

 // Creating memory for the array of solutions.

 int * solutions = malloc(sizeof(int) * (number +1));

 int index;

 // Marking the solutions to all cases as "unknown".

 // We use the convention that -1 stands for "unknown".

 for (index = 0; index <= number; index++) solutions[index] = -1;

 int result = FibHelper(number, solutions);

 free(solutions);

 return result;

}
45

Helper Function

int FibHelper(int N, int * solutions)

{

 // if problem already solved, return stored solution.

 if (solutions[N] != -1) return solutions[number];

 int result;

 if (N == 0) result = 0; // base case

 else if (N == 1) result = 1; // base case

 // recursive case

 else result = FibHelper(N-1, solutions) + FibHelper(N-2, solutions);

 solutions[number] = result; // memoization

 return result;

}
46

The Knapsack Problem

• The Fibonacci numbers are just a toy example for dynamic
programming, as they can be computed with a simple for loop.

• The classic problem for introducing dynamic programming is
the knapsack problem.
– A thief breaks in at the store.

– The thief can only carry out of the store items with a total weight of W.

– There are N types of items at the store. Each type Ti has a value Vi and
a weight Wi.

– What is the maximum total value items that the thief can carry out?

– What items should the thief carry out to obtain this maximum value?

• We will make two important assumptions:
– That the store has unlimited quantities of each item type.

– That the weight of each item is an integer >= 1.

47

Example

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

• For example, suppose that the table above describes the
types of items available at the store.

• Suppose that the thief can carry out a maximum weight of 17.

• What are possible combinations of items that the thief can
carry out?
– Five A's: weight = 15, value = 20.

– Two A's, a B, and a C: weight = 17, value = 23.

– A D and an E: weight = 17, value = 24.

• The question is, what is the best combination?
48

Solving the Knapsack Problem

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

• For example, suppose that the table above describes the
types of items available at the store.

• The question is, what is the best combination?

• Can you propose any algorithm (even horribly slow) for
finding the best combination?

49

Solving the Knapsack Problem

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

• One approach: consider all possible sets of items.

• Would that work?

50

Solving the Knapsack Problem

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

• One approach: consider all possible sets of items.

• Would that work? NO!!!
– We have unlimited quantities of each item.

– Therefore the number of all possible set of items is infinite, so it takes
infinite time to consider them.

• An algorithm that takes infinite time IS NOT THE SAME THING
as an algorithm that is horribly slow.
– Horribly slow algorithms eventually terminate, so mathematically

they are valid solutions.

– Algorithms that take infinite time never terminate, so they are
mathematically not valid solutions.

51

Solving the Knapsack Problem

• To use dynamic programming, we need to identify whether
solving our problem can be done easily if we have already
sold smaller problems.

• What would be a smaller problem?
– Our original problem is: find the set of items with weight <= W that

has the most value.

52

Solving the Knapsack Problem

• To use dynamic programming, we need to identify whether
solving our problem can be done easily if we have already
sold smaller problems.

• What would be a smaller problem?
– Our original problem is: find the set of items with weight <= W that

has the most value.

• A smaller problem is: find the set of items with weight <= W'
that has the most value, where W' < W.

• If we have solved the problem for all W' < W, how can we use
those solutions to solve the problem for W?

53

Solving the Knapsack Problem

• Our original problem is: find the set of items with weight <= W
that has the most value.

• A smaller problem is: find the set of items with weight <= W'
that has the most value, where W' < W.

• If we have solved the problem for all W' < W, how can we use
those solutions to solve the problem for W?

int knap(int W, int * weights, int * values):

{

 max_value = 0;

 For each type of item i:

 value = values[i] + knap(W - weights[i]);

 if (value > max_value) max_value = value.

} 54

solution to smaller problem

How Does This Work?

• We want to compute:
knap(17).

• knap(17) can be
computed from which
values?

• val_A = ???

• val_B = ???

• val_C = ???

• val_D = ???

• val_E = ???

 55

int knap(int W, int * weights, int * values):

{

 max_value = 0;

 For each type of item i:

 value = values[i] + knap(W - weights[i]);

 if (value > max_value)

 max_value = value;

}

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

How Does This Work?

• We want to compute:
knap(17).

• knap(17) will be the
maximum of these five
values:

• val_A = 3 + knap(14)

• val_B = 4 + knap(13)

• val_C = 7 + knap(10)

• val_D = 8 + knap(9)

• val_E = 9 + knap(8)

56

int knap(int W, int * weights, int * values):

{

 max_value = 0;

 For each type of item i:

 value = values[i] + knap(W - weights[i]);

 if (value > max_value)

 max_value = value;

}

item type: A B C D E

weight: 3 4 7 8 9

value 4 5 10 11 13

Recursive Solution for Knapsack

57

pseudocode:

int knap(int W, int * weights, int * values):

{

 max_value = 0;

 For each type of item i:

 value = values[i] + knap(W - weights[i], weights, values);

 if (value > max_value)

 max_value = value;

 return max_value;

}

What is missing from this
pseudocode if we want a
complete solution?

Recursive Solution for Knapsack

58

pseudocode:

int knap(int W, int * weights, int * values):

{

 max_value = 0;

 For each type of item i:

 value = values[i] + knap(W - weights[i], weights, values);

 if (value > max_value)

 max_value = value;

 return max_value;

}

What is missing from this
pseudocode if we want a
complete solution?

The base case:
knap(0) = 0

Recursive Solution for Knapsack

59

struct Items

{

 int number;

 char ** types;

 int * weights;

 int * values;

};

int knapsack(int max_weight, struct Items items)

{

 if (max_weight <= 0) return 0;

 int max_value = 0;

 int i;

 for (i = 0; i < items.number; i++)

 {

 int rem = max_weight - items.weights[i];

 int value = items.values[i] + knapsack(rem, items);

 if (value > max_value) max_value = value;

 }

 return max_value;

}

Recursive Solution for Knapsack

60

int knapsack(int max_weight, struct Items items)

{

 if (max_weight <= 0) return 0;

 int max_value = 0;

 int i;

 for (i = 0; i < items.number; i++)

 {

 int rem = max_weight - items.weights[i];

 int value = items.values[i] + knapsack(rem, items);

 if (value > max_value) max_value = value;

 }

 return max_value;

}

running time?

Recursive Solution for Knapsack

61

running time?

very slow
(exponential)

How can we
make it faster?

int knapsack(int max_weight, struct Items items)

{

 if (max_weight <= 0) return 0;

 int max_value = 0;

 int i;

 for (i = 0; i < items.number; i++)

 {

 int rem = max_weight - items.weights[i];

 int value = items.values[i] + knapsack(rem, items);

 if (value > max_value) max_value = value;

 }

 return max_value;

}

Bottom-Up Dynamic Programming
for the Knapsack Problem

• Requirements for using dynamic programming:
– The answer to our problem P can be easily obtained from answers to smaller

problems.

– We can order problems in a sequence (P0, P1, P2, ..., PK) of reasonable size, so
that:

• Pk is our original problem P.

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are easy
to solve (they are base cases).

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1.

• If these requirements are met, we solve problem P as follows:

– Create the sequence of problems P0, P1, P2, ..., PK, such that Pk = P.

– For i = 0 to K, solve PK.

– Return solution for PK.

62

How can we relate all this terminology
to the Knapsack Problem?

63

Bottom-Up Dynamic Programming
for the Knapsack Problem

• Requirements for using dynamic programming:
– The answer to our problem P can be easily obtained from answers to smaller

problems. Yes! Knapsack(W) uses answers for W-1, W-2, …, W-max_weight.

– We can order problems in a sequence (P0, P1, P2, ..., PK) of reasonable size, so
that:

• Pk is our original problem P.

• The initial problems, P0 and possibly P1, P2, ..., PR up to some R, are easy
to solve (they are base cases).

• For i > R, each Pi can be easily solved using solutions to P0, ..., Pi-1.

– Yes!

• Pi is the problem of computing Knapsack(i).

• PW is our original problem, since we want to compute Knapsack (W).

• P0, P1 are base cases.

• For i >= 2, Knapsack(i) is easy to solve given Knapsack (0), Knapsack(1),
…, Knapsack(i-1).

Bottom-Up Solution

int knapsack(int max_weight, Items items)

• Create array of solutions.

• Base case: solutions[0] = 0.

• For each weight in {1, 2, ..., max_weight}

– max_value = 0.

– For each item in items:
• remainder = weight - item.weight.

• if (remainder < 0) continue;

• value = item.value + solutions[remainder].

• If (value > max_value) max_value = value.

– solutions[weight] = max_value.

• Return solutions[max_weight].

64

Top-Down Solution

Top-level function (almost identical to helper function for
Fibonacci top-down solution):

int knapsack(int max_weight, Items items)

• Create array of solutions.

• Initialize all values in solutions to "unknown".

• result = helper_function(max_weight, items, solutions)

• Free up the array of solutions.

• Return result.

65

Top-Down Solution: Helper Function

int helper_function(int weight, Items items, int * solutions)

• // Check if this problem has already been solved.

• if (solutions[weight] != "unknown") return solutions[weight].

• If (weight == 0) result = 0. // Base case

• Else:
– result = 0.

– For each item in items:

• remainder = weight - item.weight.

• if (remainder < 0) continue;

• value = item.value + helper_function(remainder, items, solutions).

• If (value > result) result = value.

• solutions[weight] = result. // Memoization

• Return result. 66

Performance Comparison

• Recursive version: (knapsack_recursive.c)

– Runs reasonably fast for max_weight <= 60.

– Starts getting noticeably slower after that.

– For max_weight = 70 I gave up waiting.

• Bottom-up version: (knapsack_bottom_up.c)

– Tried up to max_weight = 100 million.

– No problems, very fast.

– Took 4 seconds for max_weight = 100 million.

• Top-down version: (knapsack_top_down.c)

– Very fast, but crashes around max_weight = 97,000.

– The system cannot handle that many recursive function
calls.

67

Limitation of All Three Solutions

• Each of the solutions returns a number.

• Is a single number all we want to answer our original
problem?

68

Limitation of All Three Solutions

• Each of the solutions returns a number.

• Is a single number all we want to answer our original
problem?

– No. Our original problem was to find the best set of items.

– It is nice to know the best possible value we can achieve.

– But, we also want to know the actual set of items that
achieves that value.

• This will be left as a homework for you.

69

Weighted Interval Scheduling (WIS)

• Suppose you are a plumber.

• You are offered N jobs.

• Each job has the following attributes:

– start: the start time of the job.

– finish: the finish time of the job.

– value: the amount of money you get paid for that job.

• What is the best set of jobs you can take up?

– You want to make the most money possible.

• Why can't you just take up all the jobs?

70

Weighted Interval Scheduling (WIS)

• Suppose you are a plumber.

• You are offered N jobs.

• Each job has the following attributes:

– start: the start time of the job.

– finish: the finish time of the job.

– value: the amount of money you get paid for that job.

• What is the best set of jobs you can take up?

– You want to make the most money possible.

• Why can't you just take up all the jobs?

• Because you cannot take up two jobs that are
overlapping.

71

Example WIS Input

• We assume, for simplicity, that
jobs have been sorted in ascending
order of the finish time.
– We have not learned yet good

methods for sorting that we can use.

• If we take job A, we cannot take
any other job that starts BEFORE
job A finishes.

• Can we do both job 0 and job 1?

• Can we do both job 0 and job 2?

72

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Example WIS Input

• We assume, for simplicity, that
jobs have been sorted in ascending
order of the finish time.
– We have not learned yet good

methods for sorting that we can use.

• If we take job A, we cannot take
any other job that starts BEFORE
job A finishes.

• Can we do both job 0 and job 1?
– Yes.

• Can we do both job 0 and job 2?
– No (they overlap).

73

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Example WIS Input

• A possible set of jobs we could
take: 0, 1, 5, 10, 13.

• What is the value?
– 3 + 5.5 + 4.5 + 6 + 6 = 25.

• Can you propose any algorithm
(even horribly slow) for finding
the best set of jobs?

74

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Example WIS Input

• Simplest algorithm for finding the
best subset of jobs:
– Consider all possible subsets of jobs.

– Ignore subsets with overlapping
jobs.

– Find the subset with the best total
value.

• Time complexity? If we have N
jobs, what is the total number of
subsets of jobs?

75

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Example WIS Input

• Simplest algorithm for finding the
best subset of jobs:
– Consider all possible subsets of jobs.

– Ignore subsets with overlapping
jobs.

– Find the subset with the best total
value.

• Time complexity? If we have N
jobs, what is the total number of
subsets of jobs?
– Total number of subsets: 2N.

– Exponential time complexity.

76

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• To use dynamic programming, we
must relate the solution to our
problem to solutions to smaller
problems.

• For example, consider job 14.

• What kind of problems that
exclude job 14 would be relevant
in solving the original problem,
that includes job 14?

77

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• We can easily solve the problem for
jobs 0-14, given solutions to these
two smaller problems:

• Problem 1: best set using jobs 0-13.
– When job 14 is available, the best set

using jobs 0-13 is still an option to us,
although not necessarily the best one.

• Problem 2: best set using jobs 0-10.
– Why is this problem relevant?

78

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• We can easily solve the problem for
jobs 0-14, given solutions to these
two smaller problems:

• Problem 1: best set using jobs 0-13.
– When job 14 is available, the best set

using jobs 0-13 is still an option to us,
although not necessarily the best one.

• Problem 2: best set using jobs 0-10.
– Why is this problem relevant?

– Because job 10 is the last job before job
14 that does NOT overlap with job 14.

– Thus, job 14 can be ADDED to the
solution for jobs 0-10.

79

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• We can easily solve the problem for
jobs 0-14, given solutions to these
two smaller problems:

• Problem 1: best set using jobs 0-13.

• Problem 2: best set using jobs 0-10.

• The solution for jobs 0-14 is simply
the best of these two options:
– Best set using jobs 0-13.

– Best set using jobs 0-10, plus job 14.

• How can we write this solution in
pseudocode?

 80

0 1 4.5 3
1 5.3 6.1 5.5
2 3 7.2 2
3 6 8 10
4 0.5 10 7
5 7 12.5 4.5
6 8.2 13 3
7 9 15.3 7
8 10.5 16 2
9 9 17.5 9
10 13 19 6
11 16 20.5 8
12 17 23 12
13 20.2 24.1 6
14 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• Step 1: to make our life
easier, we will insert a zero
job at the beginning. The
zero job:
– Starts at time zero

– Finishes at time zero.

– Has zero value.

• Step 2: we need to
preprocess jobs, so that for
each job i we compute:
– last [i] = the index of the last

job preceding job i that does
NOT overlap with job i.

81

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

Solving WIS With Dynamic
Programming

• Step 1: to make our life
easier, we will insert a zero
job at the beginning. The
zero job:
– Starts at time zero

– Finishes at time zero.

– Has zero value.

• Step 2: we need to
preprocess jobs, so that for
each job i we compute:
– last [i] = the index of the last

job preceding job i that does
NOT overlap with job i.

82

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Solving WIS With Dynamic
Programming

float wis(jobs, last)

• N = number of jobs.

• Initialize solutions array.

• solutions[0] = 0.

• For (i = 1 to N)
– S1 = solutions[i-1].

– L = last[i].

– SL = solutions[L].

– S2 = SL + jobs[i].value.

– solutions[i] = max(S1, S2).

• Return solutions[N];

83

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Backtracking

• As in our solution to the knapsack problem, the pseudocode
we just saw returns a number:
– The best total value we can achieve.

• In addition to the best value, we also want to know the set of
jobs that achieves that value.

• This is a general issue in dynamic programming.

• How can we address it?

84

Backtracking

• As in our solution to the knapsack problem, the pseudocode
we just saw returns a number:
– The best total value we can achieve.

• In addition to the best value, we also want to know the set of
jobs that achieves that value.

• This is a general issue in dynamic programming.

• There is a general solution, called backtracking.

• The key idea is:
– In DP the final solution is always built from smaller solutions.

– At each smaller problem, we have to choose which (even smaller)
solutions to use for solving that problem.

– We must record, for each smaller problem, the choice we made.

– At the end, we backtrack and recover the individual decisions that led
to the best solution.

85

Backtracking for the WIS Solution

86

• First of all, what should the function return?

Backtracking for the WIS Solution

87

• First of all, what should the function return?

– The best value we can achieve.

– The set of intervals that achieves that value.

• How can we make the function return both
these things?

• The solution that will be preferred throughout
the course:

– Define a Result structure containing as many
member variables as we need to store in the result.

– Make the function return an object of that structure.

Backtracking for the WIS Solution

88

• First of all, what should the function return?

– The best value we can achieve.

– The set of intervals that achieves that value.

struct WIS_result

{

 float value;

 list set;

};

struct WIS_result wis(struct Intervals intervals)

Backtracking Solution

Result wis(jobs, last)

• N = number of jobs.

• solutions[0] = 0.

• For (i = 1 to N)
– L = last[i].

– SL = solutions[L].

– S1 = solutions[i-1].

– S2 = SL + jobs[i].value.

– solutions[i] = max(S1, S2).

• How can we keep track of
the decisions we make?

89

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Backtracking Solution

Result wis(jobs, last)

• N = number of jobs.

• solutions[0] = 0.

• For (i = 1 to N)
– L = last[i].

– SL = solutions[L].

– S1 = solutions[i-1].

– S2 = SL + jobs[i].value.

– solutions[i] = max(S1, S2).

• How can we keep track of
the decisions we make?

• Remember the last job of
each solution. 90

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Backtracking Solution

Result wis(jobs, last)

• N = number of jobs.

• solutions[0] = 0.

• used[0] = 0.

• For (i = 1 to N)
– L = last[i].

– SL = solutions[L].

– S1 = solutions[i-1].

– S2 = SL + jobs[i].value.

– solutions[i] = max(S1, S2).

– If S2 > S1 then used[i] = i.

– Else used[i] = used[i-1].

91

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Backtracking Solution

• // backtracking part

• list set = new List.

• counter = used[N].

• while(counter != 0)
– job = jobs[counter].

– insertAtBeginning(set, job).

– counter = ???

• WIS_result result.

• result.value = solutions[N].

• result.set = set.

• return result.

92

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Backtracking Solution

• // backtracking part

• list set = new List.

• counter = used[N].

• while(counter != 0)
– job = jobs[counter].

– insertAtBeginning(set, job).

– counter = used[last[counter]].

• WIS_result result.

• result.value = solutions[N].

• result.set = set.

• return result.

93

0 0 0 0
1 1 4.5 3
2 5.3 6.1 5.5
3 3 7.2 2
4 6 8 10
5 0.5 10 7
6 7 12.5 4.5
7 8.2 13 3
8 9 15.3 7
9 10.5 16 2
10 9 17.5 9
11 13 19 6
12 16 20.5 8
13 17 23 12
14 20.2 24.1 6
15 19 25 10

job ID start finish value

0
0
1
0
1
0
2
4
4
5
4
7
9
9
11
11

last

Matrix Multiplication: Review

• Suppose that A1 is of size S1 x S2, and A2 is of size S2 x
S3.

• What is the time complexity of computing A1 * A2?

• What is the size of the result?

94

Matrix Multiplication: Review

• Suppose that A1 is of size S1 x S2, and A2 is of size S2 x
S3.

• What is the time complexity of computing A1 * A2?

• What is the size of the result? S1 x S3.

• Each number in the result is computed in O(S2) time
by:

– multiplying S2 pairs of numbers.

– adding S2 numbers.

• Overall time complexity: O(S1 * S2 * S3).

95

Optimal Ordering for Matrix
Multiplication

• Suppose that we need to do a sequence of matrix
multiplications:

– result = A1 * A2 * A3 * ... * AK

• The number of rows for Ai must equal the number of
columns for Ai+1.

• What is the time complexity for performing this
sequence of multiplications?

96

Optimal Ordering for Matrix
Multiplication

• Suppose that we need to do a sequence of matrix
multiplications:

– result = A1 * A2 * A3 * ... * AK

• The number of rows for Ai must equal the number of
columns for Ai+1.

• What is the time complexity for performing this
sequence of multiplications?

• The answer is: it depends on the order in which we
perform the multiplications.

97

An Example

• Suppose:
– A1 is17x2.

– A2 is 2x35.

– A3 is 35x4.

• (A1 * A2) * A3:

• A1 * (A2 * A3):

98

An Example

• Suppose:
– A1 is17x2.

– A2 is 2x35.

– A3 is 35x4.

• (A1 * A2) * A3:
– 17*2*35 = 1190 multiplications and additions to compute A1 * A2.

– 17*35*4 = 2380 multiplications and additions to compute multiplying
the result of (A1 * A2) with A3.

– Total: 3570 multiplications and additions.

• A1 * (A2 * A3):
– 2*35*4 = 280 multiplications and additions to compute A2 * A3.

– 17*2*4 = 136 multiplications and additions to compute multiplying A1
with the result of (A2 * A3).

– Total: 416 multiplications and additions.
99

Adaptation to Dynamic Programming

• Suppose that we need to do a sequence of matrix
multiplications:
– result = A1 * A2 * A3 * ... * AK

• To figure out if and how we can use dynamic programming,
we must address the standard two questions we always need
to address for dynamic programming:

1. Can we define a set of smaller problems, such that the
solutions to those problems make it easy to solve the original
problem?

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

100

Defining Smaller Problems

1. Can we define a set of smaller problems, whose solutions make
it easy to solve the original problem?
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK

• Yes! Suppose that, for every i between 1 and K-1 we know:
– The best order (and best cost) for multiplying matrices A1, ..., Ai.

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK.

• Then, for every such i, we obtain a possible solution for our
original problem:
– Multiply matrices A1, ..., Ai in the best order. Let C1 be the cost of that.

– Multiply matrices Ai+1, ..., AK in the best order. Let C2 be the cost of that.

– Compute (A1 * ... * Ai) * (Ai+1 * ... * AK). Let C3 be the cost of that.

• C3 = rows of (A1 * ... * Ai) * cols of (A1 * ... * Ai) * cols of (Ai+1 * ... * AK).
 = rows of A1 * cols of Ai * cols of AK

– Total cost of this solution = C1 + C2 + C3.

101

Defining Smaller Problems

1. Can we define a set of smaller problems, whose solutions make
it easy to solve the original problem?
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK

• Yes! Suppose that, for every i between 1 and K-1 we know:
– The best order (and best cost) for multiplying matrices A1, ..., Ai.

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK.

• Then, for every such i, we obtain a possible solution.

• We just need to compute the cost of each of those solutions,
and choose the smallest cost.

• Next question:

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

102

Defining Smaller Problems

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

• To compute answer for A1 * A2 * A3 * ... * AK :
For i = 1, …, K-1, we had to consider solutions for:
– A1, ..., Ai.

– Ai+1, ..., AK.

• So, what is the set of all problems we must solve?

103

Defining Smaller Problems

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

• To compute answer for A1 * A2 * A3 * ... * AK :
For i = 1, …, K-1, we had to consider solutions for:
– A1, ..., Ai.

– Ai+1, ..., AK.

• So, what is the set of all problems we must solve?

• For M = 1, ..., K.
– For N = 1, ..., M.

• Compute the best ordering for AN * ... * AM.

• What this the number of problems we need to solve? Is the
size reasonable?
– We must solve Θ(K2) problems. We consider this a reasonable number.

104

Defining Smaller Problems

• The set of all problems we must solve:

• For M = 1, ..., K.
– For N = 1, ..., M.

• Compute the best ordering for AN * ... * AM.

• What is the order in which we must solve these problems?

105

Defining Smaller Problems

• The set of all problems we must solve, in the correct order:

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• N must go from M to 1, NOT the other way around.

• Why? Because, given M, the larger the N is, the smaller the
problem is of computing the best ordering for AN * ... * AM.

106

Solving These Problems

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• What are the base cases?

• N = M.
– costs[N][M] = 0.

• N = M - 1.
– costs[N][M] = rows(AN) * cols(AN) * cols(AM).

• Solution for the recursive case:

107

Solving These Problems

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• Solution for the recursive case:

• minimum_cost = 0

• For R = N, ..., M-1:
– cost1 = costs[N][R]

– cost2 = costs[R+1][M]

– cost3 = rows(AN) * cols(AR) * cols(AM)

– cost = cost1 + cost2 + cost3

– if (cost < minimum_cost) minimum_cost = cost

• costs[N][M] = minimum_cost

108

The Edit Distance

• Suppose A and B are two strings.

• By applying insertions, deletions, and substitutions, we can
always convert A to B.

• Insertion example: we insert an 'r' at position 2, to convert
"cat" to "cart".

• Deletion example: we delete the 'r' at position 2, to convert
"cart" to "cat".

• Substitution example: we replace the 'o' at position 1 with an
'i', to convert "dog" to "dig".

• Note: each insertion/deletion/substitution inserts, deletes, or
changes only one character, NOT multiple characters.

109

The Edit Distance

• For example, to convert "chicken" to "ticket":

• One solution:

– Substitute 'c' with 't'.

– Delete 'h'.

– Replace 'n' with 't'.

– Total: three operations.

• Another solution:

– Delete 'c'.

– Substitute 'h' with 't'.

– Replace 'n' with 't'.

– Total: three operations.

110

The Edit Distance

• Question: given two strings A and B, what is the smallest
number of operations we need in order to convert A to B?

• The answer is called the edit distance between A and B.

• This distance, and variations, have significant applications in
various fields, including bioinformatics and pattern
recognition.

111

Visualizing the Edit Distance

• Assignment preview: you will have to write code that
produces such output.

• Edit distance between "chicken" and "ticket" = ?

112

Visualizing the Edit Distance

• Assignment preview: you will have to write code that
produces such output.

• Edit distance between "chicken" and "ticket" = 3

c h i c k e n

t - i c k e t

x x x

• Three operations:

– Substitution: 'c' with 't'.

– Insertion: 'h'.

– Substitution: 'n' with 't'.

113

Visualizing the Edit Distance

• Edit distance between "lazy" and "crazy" = ?

114

Visualizing the Edit Distance

• Edit distance between "lazy" and "crazy" = 2

l - a z y

c r a z y

x x . . .

• Two operations:

– Substitution: 'l' with 'c'.

– Insertion: 'r'.

115

Visualizing the Edit Distance

• Edit distance between "intimidation" and
"immigration" = ?

116

Visualizing the Edit Distance

• Edit distance between "intimidation" and
"immigration" = 5

i n t i m i d - a t i o n

i - - m m i g r a t i o n

. x x x . . x x

• Five operations:

– Deletion: 'n'.

– Deletion: 't'.

– Substitution: 'i' with 'm'.

– Substitution: 'd' with 'g'.

– Insertion: 'r'. 117

Computing the Edit Distance

• Assignment preview: you will have to implement this.

• What is the edit distance between:
– GATTACACCGTCTCGGGCATCCATAATGG

– CATTTATAGGTGAACTTGCGCGTTATGC

• Unlike previous examples, here the answer is not obvious.

• The two strings above are (very small) examples of DNA
sequences, using the four DNA letters: ACGT.

• In practice, the sequences may have thousands or millions of
letters.

• We need an algorithm for computing the edit distance
between two strings.

 118

Computing the Edit Distance

• To find a dynamic programming solution, we must find a
sequence of problems such that:
– Each problem in the sequence can be easily solved given solutions to

the previous problems.

– The number of problems in the sequence is not too large (e.g., not
exponential).

• Any ideas?

• Given strings A and B, can you identify smaller problems that
are related to computing the edit distance between A and B?

119

Computing the Edit Distance

• Notation:
– S[i, ..., j] is the substring of S that includes all letters from position i to

position j.

– |S| indicates the length of string S.

• Using this notation:
– A = A[0, ..., |A|-1]

– B = B[0, ..., |B|-1]

• The solution for edit_distance(A, B) depends on the solutions
to three smaller problems:
– edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2])

– edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1])

– edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])

 120

Computing the Edit Distance

• The solution for edit_distance(A, B) depends on the solutions
to three smaller problems:

• Problem 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2])
– Edit distance from A to B, excluding the last letter of B.

– We can insert the last letter of B to that solution.

• Example:
– A = "intimidation". |A| = 12.

– B = "immigration". |B| = 11.

• edit_distance(A[0, ..., 11], B[0, ..., 9]) = 6

i n t i m i d - a t i o n

i - - m m i g r a t i o -

• From this, we obtain a solution with cost 7.

121

Computing the Edit Distance

• Problem 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1])
– Edit distance from A to B, excluding the last letter of A.

– We can insert the last letter of A to that solution.

• Example:
– A = "intimidation". |A| = 12.

– B = "immigration". |B| = 11.

• edit_distance(A[0, ..., 10], B[0, ..., 10]) = 6

i n t i m i d - a t i o -

i - - m m i g r a t i o n

• This solution converts "intimidatio" to "immigration".

• Using one more deletion (of the final 'n' of "intimidation"), we
convert "intimidation" to "immigration" with cost 7.

122

Computing the Edit Distance

• Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])
– Edit distance from A to B, excluding the last letter of both A and B.

• Example:
– A = "intimidation". |A| = 12.

– B = "immigration". |B| = 11.

• edit_distance(A[0, ..., 10], B[0, ..., 9]) = 5

i n t i m i d - a t i o

i - - m m i g r a t i o

• This solution converts "intimidatio" to "immigratio".

• The same solution converts "intimidation" to "immigration",
because both words have the same last letter.

123

Computing the Edit Distance

• Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])
– Edit distance from A to B, excluding the last letter of both A and B.

• Example:
– A = "nation". |A| = 6.

– B = "patios". |B| = 6.

• edit_distance(A[0, ..., 10], B[0, ..., 9]) = 1

n a t i o

p a t i o

• This solution converts "natio" to " patio".

• The same solution, plus one substitution ('n' with 's') converts
"nation" to "patios", with cost 2.

124

Computing the Edit Distance

• Summary: edit_distance(A, B) is the smallest of the
following three:

– 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + ?

– 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + ?

– 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + ?

125

Computing the Edit Distance

• Summary: edit_distance(A, B) is the smallest of the
following three:

– 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + 1

– 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + 1

– 3: either edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]).
• If the last letter of A is the same as the last letter of B.

– or edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + 1.
• If the last letter of A is not the same as the last letter of B.

126

Computing the Edit Distance

• What sequence of problems do we need to solve in
order to compute edit_distance(A, B)?

127

Computing the Edit Distance

• What sequence of problems do we need to solve in
order to compute edit_distance(A, B)?

• For each i in 0, ..., |A|-1

– For each j in 0, ..., |B|-1
• Compute edit_distance(A[0, ..., i], B[0, ..., j]).

• The total number of problems we need to to solve is
|A| * |B|, which is manageable.

• What are the base cases?

128

Computing the Edit Distance

• Base case 1: edit_distance("", "") = 0.

– The edit distance between two empty strings.

• Base case 2: edit_distance("", B[0, ..., j]) = j+1.

• Base case 3: edit_distance(A[0, ..., i], "") = i+1.

129

Computing the Edit Distance

• For convenience, we define A[0, -1] = "", B[0, -1] = "".

• Then, we can rewrite the previous base cases like
this:

• Base case 1: edit_distance(A[0, -1], B[0, -1]) = 0.

– The edit distance between two empty strings.

• Base case 2: edit_distance(A[0, -1], B[0, ..., j]) = j+1.

• Base case 3: edit_distance(A[0, ..., i], B[0, -1]) = i+1.

130

Computing the Edit Distance

• Recursive case: if i >= 0, j >= 0:

• edit_distance(A[0, ..., i], B[0, ..., j]) = smallest of these
three values:

– 1: edit_distance(A[0, ..., i-1], B[0, ..., j) + 1

– 2: edit_distance(A[0, ..., i], B[0, ..., j-1]) + 1

– 3: either edit_distance(A[0, ..., i-1], B[0, ..., j-1]).
• If A[i] == B[j].

– or edit_distance(A[0, ..., i-1], B[0, ..., j-1]) + 1.
• If A[i] != B[j].

131

