
Trees and Graphs

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Graphs

• A graph is formally defined as:

– A set V of vertices (also called nodes).

– A set E of edges. Each edge is a pair of two vertices in V.

• Graphs can be directed or undirected.

• In a directed graph, edge (A, B) means that we can go
(using that edge) from A to B, but not from B to A.

– We can have both edge (A, B) and edge (B, A) if we want to
show that A and B are linked in both directions.

• In an undirected graph, edge (A, B) means that we
can go (using that edge) from both A to B and B to A.

2

Example: of an Undirected Graph

• A graph is formally defined as:

– A set V of vertices.

– A set E of edges. Each edge is
a pair of two vertices in V.

• What is the set of vertices
on the graph shown here?

– {0, 1, 2, 3, 4, 5, 6, 7}

• What is the set
of edges?

– {(0,1), (0,2), (0,5), (0,6), (0, 7), (3, 4), (3, 5),
 (4, 5), (4, 6), (4,7)}.

3

 0

 1

 7

 2

 5

 3

 4

 6

Trees

• Trees are a natural data structure for representing
several types of data.

– Family trees.

– Organizational chart of a corporation, showing who
supervises who.

– Folder (directory) structure on a hard drive.

– Parsing an English sentence into its parts.

4

A Family Tree (from Wikipedia)

5

An Organizational Chart
(from Wikipedia)

6

A Parse Tree (from Wikipedia)

7

Paths

• A path in a tree is a list of distinct vertices, in which successive
vertices are connected by edges.
– No vertex is allowed to appear twice in a path.

• Example: ("Joseph Wetter", "Jessica Grey", "Jason Grey",
"Hanna Grey")

8

Trees and Graphs

• Are trees graphs?

– Always?

– Sometimes?

– Never?

• Are graphs trees?

– Always?

– Sometimes?

– Never?

9

Trees and Graphs

• All trees are graphs.

• Some graphs are trees, some graphs are not trees.

• What is the distinguishing characteristic of trees?

• What makes a graph a tree?

10

Trees and Graphs

• All trees are graphs.

• Some graphs are trees, some graphs are not trees.

• What is the distinguishing characteristic of trees?

– What makes a graph a tree?

• A tree is a graph such that any two nodes (vertices)
are connected by precisely one path.

– If you can find two nodes that are not connected by any
path, then the graph is not a tree.

– If you can find two nodes that are connected to each other
by more than one path, then the graph is not a tree.

11

Example

• Are these graphs trees?

12

 0

 1

 7

 2

 5

 3

 4

 6
 0

 1

 7

 2

 5

 3

 4

 6

Example

• Are these graphs trees?

13

 0

 1

 7

 2

 5

 3

 4

 6
 0

 1

 7

 2

 5

 3

 4

 6

No, this is not a tree. For
example, there are two paths
connecting node 5 to node 4.

Yes, this is a tree. Any two
vertices are connected by
exactly one path.

Example

• Are these graphs trees?

14

 0

 1

 7

 2

 5

 3

 4

 6
 0

 1

 7

 2

 5

 3

 4

 6

Example

• Are these graphs trees?

15

Yes, this is a tree. Any two
vertices are connected by
exactly one path.

No, this is not a tree. For
example, there is no path
connecting node 7 to node 4.

 0

 1

 7

 2

 5

 3

 4

 6
 0

 1

 7

 2

 5

 3

 4

 6

Root of the Tree

• A rooted tree is a tree where one node is designated
as the root.

• Given a tree, ANY node can be the root.

16

 0

 1

 7

 2

 5

 3

 4

 6

Terminology

• A rooted tree is a tree where one node is explicitly
designated as the root.

– From now on, as is typical in computer science, all trees
will be rooted trees

– We will typically draw trees with the root placed at the
top.

• Each node has exactly one node directly above it,
which is called a parent.

• If Y is the parent of X, then Y is the node right after X
on the path from X to the root.

17

Terminology

• If Y is the parent of X, then X is called a child of Y.

– The root has no parents.

– Every other node, except for the root, has exactly one
parent.

• A node can have 0, 1, or more children.

• Nodes that have children are called internal nodes or
non-terminal nodes.

• Nodes that have no children are called leaves or
terminal nodes, or external nodes.

18

Terminology

• The level of the root is defined to be 0.

• The level of each node is defined to be 1+ the level
of its parent.

• The height of a tree is the maximum of the levels of
all nodes in the tree.

19

M-ary Trees

• An M-ary tree is a tree where every node is either a leaf or it
has exactly M children.

• Example: binary trees, ternary trees, ...

20

 0

 1

 7

 2

 5 3

 4

 6

 0

 1

 7

 2

 6

Is this a binary tree?

Is this a binary tree?

M-ary Trees

• An M-ary tree is a tree where every node is either a leaf or it
has exactly M children.

• Example: binary trees, ternary trees, ...

21

 0

 1

 7

 2

 5 3

 4

 6

 0

 1

 7

 2

 6

This is not a binary tree, node 3 has 1 child.

This is a binary tree.

Ordered Trees

• A rooted tree is called ordered if the order in which
we list the children of each node is significant.

• For example, if we have a binary ordered tree, we
will refer to the left child and the right child of each
node.

• If the tree is not ordered, then it does not make
sense to talk of a left child and a right child.

22

Properties of Binary Trees

• A binary tree with N internal notes has N+1 external
nodes.

• A binary tree with N internal notes has 2N edges
(links).

• The height of a binary tree with N internal nodes is at
least lg N and at most N.

– Height = lg N if all leaves are at the same level.

– Height = N if each internal node has one leaf child.

23

Defining Nodes for Binary Trees

typedef struct node *link;

struct node

{

 Item item;

 link left;

 link right;

};

24

Traversing a Binary Tree

• Traversing is the process of going through each node of a
tree, and doing something with that node. Examples:
– We can print the contents of the node.

– We can change the contents of the node.

– We can otherwise use the contents of the node in computing
something.

• We have three choices about the order in which we visit
nodes when we traverse a binary tree.
– Preorder: we visit the node, then its left subtree, then its right

subtree.

– Inorder: we visit the left subtree, then the node, then the right
subtree.

– Postorder: we visit the left subtree, then the right subtree, then the
node.

25

Examples

• In what order will the values of the nodes be printed
if we print the tree by traversing it:

– Preorder?

– Inorder?

– Postorder?

26

 0

 1

 7

 2

 6

Examples

• In what order will the values of the nodes be printed
if we print the tree by traversing it:

– Preorder? 0, 1, 2, 6, 7 .

– Inorder? 1, 0, 6, 2, 7.

– Postorder? 1, 6, 7, 2, 0.

27

 0

 1

 7

 2

 6

Recursive Tree Traversal

28

void traverse_inorder(link h)
{
 if (h == NULL) return;
 traverse(h->l);
 do_something_with(h);
 traverse(h->r);
}

void traverse_preorder(link h)
{
 if (h == NULL) return;
 do_something_with(h);
 traverse(h->l);
 traverse(h->r);
}

void traverse_postorder(link h)
{
 if (h == NULL) return;
 traverse(h->l);
 traverse(h->r);
 do_something_with(h);
}

Recursive Examples

29

int count(link h)
{
 if (h == NULL) return 0;
 int c1 = count(h->left);
 int c2 = count(h->right);
 return c1 + c2 + 1;
}

int height(link h)
{
 if (h == NULL) return -1;
 int u = height(h->left);
 int v = height(h->right);
 if (u > v) return u+1;
 else return v+1;
}

Counting the number
of nodes in the tree:

Computing the height
 of the tree:

Recursive Examples

30

void printnode(char c, int h)
{
 int i;
 for (i = 0; i < h; i++) printf(" ");
 printf("%c\n", c);
}

void show(link x, int h)
{
 if (x == NULL) { printnode("*", h); return; }
 printnode(x->item, h);
 show(x->l, h+1);
 show(x->r, h+1);
}

Printing the
contents of
each node:

(assuming that
the items in
the nodes are
characters)

Recursive Graph Traversal

• Recursive functions are also frequently used to
traverse graphs.

• When traversing a tree, it is natural to start at the
root.

• When traversing a graph, we must specify the node
with start from.

• In the following examples we will assume that we
represent graphs using adjacency lists.

31

Reminder: Defining a Graph Using
Adjacency Lists

typedef struct struct_graph * graph;

struct struct_graph

{

 int number_of_vertices;

 list * adjacencies;

};

32

Graph Traversal - Graph Search

• Overall, we will use the terms "graph traversal" and
"graph search" almost interchangeably.

• However, there is a small difference:

– "Traversal" implies we visit every node in the graph.

– "Search" implies we visit nodes until we find something we
are looking for.

• For example:

– A node labeled "New York".

– A node containing integer 2014.

33

Graph Search in General

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• The pseudocode is really a template.

• It does not specify what we really want to do.

• To fully specify an algorithm, we need to better define what
each of the red lines.

34

Graph Search in General

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• Depending on what we specify in those lines, this template
can produce a wide variety of applications:
– Printing each node of the graph.

– Driving directions.

– The best move for a board game like chess.

– A solution to a mathematical problem…

35

Specifying Graph Search Behavior

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• What do we do when visiting a node?

• Whatever we want. For example:
– Print the contents of the node.

– Use the contents in some computation (min, max, sum, ...).

– See if the node has a value we care about ("New York", 2014, ...).

– These are all reasonable topics for assignments/exams.

36

Specifying Graph Search Behavior

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• Inserting children of a node to the to_visit list:

• We have a choice: insert a child even if it already is included in
that list, or not?
– In some cases we should not. Example: ???

– In some cases we should, but we may not see such cases in this
course.

37

Specifying Graph Search Behavior

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• Inserting children of a node to the to_visit list:

• We have a choice: insert a child even if it already is included in
that list, or not?
– In some cases we should not. Example: printing each node.

– In some cases we should, but we may not see such cases in this
course.

38

Specifying Graph Search Behavior

• GraphSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only element.

– While(to_visit is not empty):

• Remove a node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end of list to_visit.

• Most important question (for the purposes of this course):
– Removing a node from list to_visit: Which node? The first, the last,

some other one?

• The answer has profound implications for time complexity,
space complexity, other issues you may see later or in other
courses…

39

Depth-First Search

• DepthFirstSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only

element.

– While(to_visit is not empty):

• Remove the last node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end
of list to_visit.

• In depth-first search, the list of
nodes to visit is treated as a LIFO
(last-in, first-out) queue.

• DepthFirstSearch(graph, 5):

• In what order does it visit nodes?
40

 0

 1

 7

 2

 5
 3

 4

 6

Depth-First Search

• DepthFirstSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only

element.

– While(to_visit is not empty):

• Remove the last node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end
of list to_visit.

• DepthFirstSearch(graph, 5):

• In what order does it visit nodes?

• The answer is not unique.
– One possibility: 5, 4, 3, 7, 0, 1, 2, 6.

– Another possibility: 5, 3, 4, 7, 0, 6, 1, 2.

– Another possibility: 5, 0, 6, 4, 3, 7, 1, 2. 41

 0

 1

 7

 2

 5
 3

 4

 6

Depth-First Search

void depth_first(Graph g, int start)

{

 int * visited = malloc(sizeof(int) * g->number_of_vertices);

 int i;

 for (i = 0; i < g->number_of_vertices; i++) visited[i] = 0;

 depth_first_helper(g, start, visited);

}

void depth_first_helper (Graph g, int k, int * visited)

{ link t;

 do_something_with(k); // This is just a placeholder.

 visited[k] = 1;

 for (t = listFirst(g->adjacencies[k]); t != NULL; t = t->next)

 if (!visited[linkItem(t)]) depth_first_helper(g, linkItem(t), visited);

} 42

This code assumes that
each link item is an int.

Note: no need to
explicitly maintain a
list of nodes to visit.

Breadth-First Search

• BreadthFirstSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only

element.

– While(to_visit is not empty):

• Remove the first node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end
of list to_visit.

• In breadth-first search, the list of
nodes to visit is treated as a LIFO
(last-in, first-out) queue.

• BreadthFirstSearch(graph, 5):

• In what order does it visit nodes?
43

 0

 1

 7

 2

 5
 3

 4

 6

Breadth-First Search

• BreadthFirstSearch(graph, starting_node)
– Initialize list to_visit to a list with starting_node as its only

element.

– While(to_visit is not empty):

• Remove the first node N from list to_visit.

• "Visit" that node.

• If that node was what we were looking for, break.

• Add the children of that node to the end
of list to_visit.

• BreadthFirstSearch(graph, 5):

• In what order does it visit nodes?

• The answer is not unique.
– One possibility: 5, 4, 3, 0, 7, 1, 2, 6.

– Another possibility: 5, 3, 4, 0, 7, 6, 1, 2.

– Another possibility: 5, 0, 4, 3, 6, 1, 2, 7.

44

 0

 1

 7

 2

 5
 3

 4

 6

Breadth-First Search

void breadth_first(Graph g, int k)

{

 int i; link t;

 int * visited = malloc(sizeof(int) * g->number_of_vertices);

 for (i = 0; i < g->number_of_vertices; i++) visited[i] = 0;

 QUEUEinit(V); QUEUEput(k);

 while (!QUEUEempty())

 if (visited[k = QUEUEget()] == 0)

 {

 do_something_with(k); // This is just a placeholder.

 visited[k] = 1;

 for (t = g->adjacencies[k]; t != NULL; t = t->next)

 if (visited[linkItem(t)] == 0) QUEUEput(linkItem(t));

 }

} 45

This pseudocode uses the
textbook's implementation
of queues.

Note

• The previous examples should be treated as very
detailed C-like pseudocode, not as ready-to-run
code.

• We have seen several different implementations of
graphs, lists, queues.

• To make the code actually work, you will need to
make sure it complies with specific implementations.

46

