Priority Queues, Heaps, and Heapsort

CSE 2320 – Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Priority Queues

- So far we have seen sorting methods that works in <u>batch</u> <u>mode</u>:
 - They are given all the items at once
 - They sort the items.
 - Done!
- Another case of interest is <u>online</u> methods, that deal with data that change.
- Goal: support (efficiently):
 - Insertion of a new element.
 - Deletion of the max element.
 - Initialization (organizing an initial set of data).
- The abstract data type that supports these operations is called priority queue.

Priority Queues - Applications

- Scheduling:
 - Flight take-offs and landings.
 - Programs getting executed on a computer.
 - Real-time requests for information on a database system.
 - Computer simulations and games, to schedule a sequence of events.
- Waiting lists:
 - Students getting admitted to college.
 - Patients getting admitted to a hospital.
- Lots more...

Priority Queues and Sorting

- Priority queues support:
 - Insertion of a new element.
 - Deletion of the max element.
 - Initialization (organizing an initial set of data).
- These operations support applications that batch methods, like quicksort, mergesort, do not support.
- However, these operations can also support sorting:
- Given items to sort:
 - Initialize a priority queue that contains those items.
 - Initialize result to empty list.
 - While the priority queue is not empty:
 - Remove max element from queue, add it to beginning of result.
- We will see an implementation (heapsort) of this algorithm that takes Θ(N lg N) time.

Naïve Implementation Using Arrays

- Initialization:
 - Given N data, just store them on an array.
 - Time: Θ(???)
- Insertion of a new item:
 - (Assumption: the array has enough memory.)
 - Store the item at the end of the array.
 - Time: Θ(???)
- Deletion of max element:
 - Scan the array to find max item.
 - Delete that item.
 - Time: Θ(???)

Naïve Implementation Using Arrays

- Initialization:
 - Given N data, just store them on an array.
 - Time: $\Theta(N)$, good!
- Insertion of a new item:
 - (Assumption: the array has enough memory.)
 - Store the item at the end of the array.
 - Time: $\Theta(1)$, good!
- Deletion of max element:
 - Scan the array to find max item.
 - Delete that item.
 - Time: Θ(N), bad!

Naïve Implementation Using Lists

- Initialization:
 - Given N data, just store them on an list.
 - Time: $\Theta(N)$, good!
- Insertion of a new item:
 - Store the item at the beginning (or end) of the list.
 - Time: $\Theta(1)$, good!
- Deletion of max element:
 - Scan the list to find max item.
 - Delete that item.
 - Time: $\Theta(N)$, bad!

Using Ordered Arrays/Lists

- Initialization:
 - Given N data, sort them.
 - Time: Θ(???)
- Insertion of a new item:
 - (Assumption: if using an array, it must have enough memory.)
 - Insert the item at the right place, to keep array/list sorted.
 - Time: Θ(???)
- Deletion of max element:
 - Delete the last item.
 - Time: Θ(???)

Using Ordered Arrays/Lists

- Initialization:
 - Given N data, sort them.
 - Time: O(N lg N). OK!
- Insertion of a new item:
 - (Assumption: if using an array, it must have enough memory.)
 - Insert the item at the right place, to keep array/list sorted.
 - Time: O(N). Bad!
- Deletion of max element:
 - Delete the last item.
 - Time: $\Theta(1)$. Good!

Using Heaps (New Data Type)

- Initialization:
 - Given N data, **heapify** them (we will see how in a few slides).
 - Time: Θ(N). Good!
- Insertion of a new item:
 - Insert the item at the right place, to maintain the <u>heap</u>
 <u>property</u>. (details in a few slides).
 - Time: O(lg N). Good!
- Deletion of max element:
 - Delete the first item.
 - Rearrange other items, to maintain the <u>heap property</u>. (details in a few slides).
 - Time: O(lg N). Good!

Definition of Heaps

- We have two equivalent representations of heaps:
 - As binary trees.
 - As arrays.
- Thus, we have two logically equivalent definitions:
- A binary tree is a heap if, for every node N in that tree, the key of N is larger than or equal to the keys of the children of N, if any.
- An array A (with 1 as the first index) is a heap if, for every position N of A:
 - If A[2N] is not out of bounds, then A[N] >= A[2N].
 - If A[2N + 1] is not out of bounds, then $A[N] \ge A[2*N + 1]$.

Representing a Heap

• Consider this array:

position	1	2	3	4	5	6	7	8	9	10	11	12
value	Х	т	0	G	S	Μ	Ν	Α	Ε	R	Α	Т

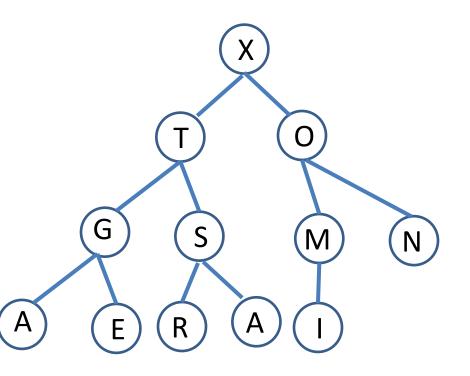
- We can draw the array as a tree.
 - The children of A[N] areA[2N] and A[2N+1].

Representing a Heap

• Consider this array:

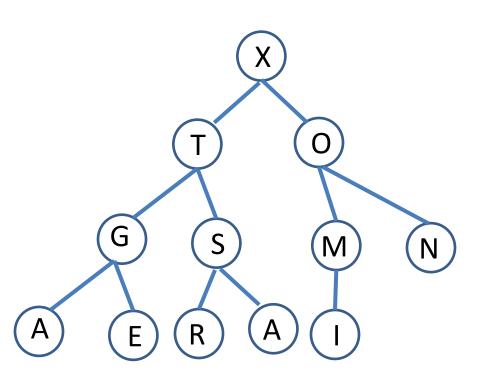
position	1	2	3	4	5	6	7	8	9	10	11	12
value	Х	т	0	G	S	Μ	Ν	Α	Ε	R	Α	I

- We can draw the array as a tree.
 - The children of A[N] are
 A[2N] and A[2N+1].
 - This example shows that the tree and array representations are equivalent.

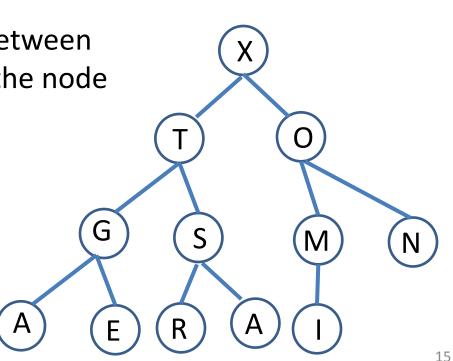


Representing a Heap

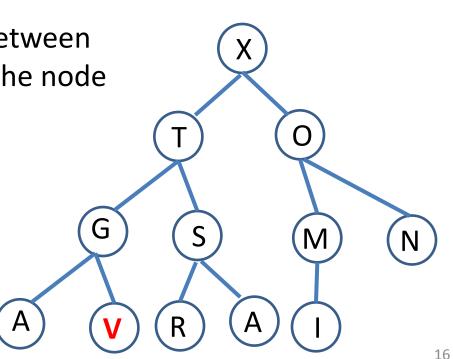
- A binary tree representing a heap should be <u>complete</u>.
- All levels are full, except possibly for the last level.
- At the last level:
 - Nodes are placed on the left.
 - Empty positions are placed on the right.



- Also called "increasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.



- Also called "increasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.



- Also called "increasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.
 - Exchange V and G. Done?

Х

S

()

Μ

Α

- Also called "increasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.
 - Exchange V and G.
 - Exchange V and T. Done?

Х

S

()

Μ

Α

- Also called "increasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.
 - Exchange V and G.
 - Exchange V and T. Done.

Х

S

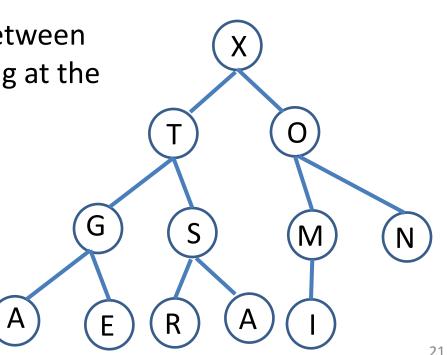
()

Μ

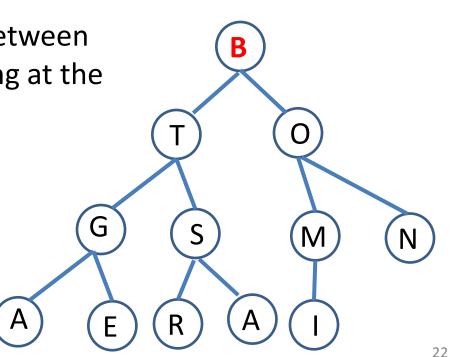
• Implementation:

```
fixUp(Item a[], int k)
{
  while ((k > 1) \&\& (less(a[k/2], a[k])))
                                                     Х
                                                          Ο
      exch(a[k], a[k/2]);
      k = k/2;
                                                  S
                                                          Μ
                                                                  Ν
                                    Α
```

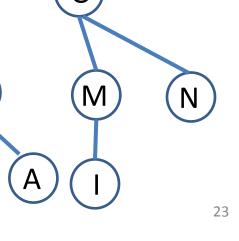
- Also called "decreasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and largest child, starting at the node that changed key.



- Also called "decreasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and largest child, starting at the node that changed key.
- Example:
 - An X changes to a B.



- Also called "decreasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and <u>largest</u> child, starting at the node that changed key.
- Example:
 - An X changes to a B.
 - Exchange B and T.



()

В

S

G

- Also called "decreasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and <u>largest</u> child, starting at the node that changed key.
- Example:
 - An X changes to a B.
 - Exchange B and T.
 - Exchange B and S.

()

Μ

G

F

Α

B

- Also called "decreasing the priority" of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and <u>largest</u> child, starting at the node that changed key.
- Example:
 - An X changes to a B.
 - Exchange B and T.
 - Exchange B and S.
 - Exchange B and R.

 \bigcap

Μ

G

F

А

R

• Implementation:

```
fixDown(Item a[], int k, int N)
{
  int j;
 while (2*k <= N)
    j = 2*k;
                                                          S
                                                                      \bigcirc
    if ((j < N) && less ((a[j], a[j+1]))) j++;
    if (!less(a[k], a[j])) break;
                                                   G
                                                            R
                                                                       Μ
    exch(a[k], a[j]); k = j;
```

Α

F

Ν

Insertions and Deletions

- To insert an item to a heap:
 - Insert the item to the end of the heap.
 - Call fix up to restore the heap property.
 - Time = O(???)
- The only element we care to delete from a heap is the maximum element.
- This element is always the first element of the heap.
- To delete the maximum element:
 - Exchange the first and last elements of the heap.
 - Delete the last element (which is the maximum element).
 - Call fixDown to restore the heap property.
 - Time = O(???)

Insertions and Deletions

- To insert an item to a heap:
 - Insert the item to the end of the heap.
 - Call fix up to restore the heap property.
 - Time = O(lg N)
- The only element we care to delete from a heap is the maximum element.
- This element is always the first element of the heap.
- To delete the maximum element:
 - Exchange the first and last elements of the heap.
 - Delete the last element (which is the maximum element).
 - Call fixDown to restore the heap property.
 - Time = O(lg N)

Batch Initialization

- Batch initialization of a heap is the process of converting an unsorted array of data into a heap.
- We will see two methods that are pretty easy to implement:

• Top-down batch initialization.

- O(N lg N) time.
- O(N) extra space (in addition to the space that the input array already takes).

• Bottom-up batch initialization.

- O(N) time.
- O(1) extra space (in addition to the space that the input array already takes).

Top-Down Batch Initialization

```
Heap top_down_heap_init(Item * array, int N)
Heap result = newHeap(N).
for counter = 0, ..., N-1.
    heap_insert(array[counter]).
return result.
```

How much time does this take?

Top-Down Batch Initialization

```
Heap top_down_heap_init(Item * array, int N)
Heap result = newHeap(N).
for counter = 0, ..., N-1.
    heap_insert(array[counter]).
return result.
```

- How much time does this take?
 - We need to do N insertions.
 - Each insertion takes O(lg N) time.
 - So, in total, we need O(N lg N) time.

Bottom-Up Batch Initialization

```
struct heap_struct
```

```
{
int length;
Item * array;
```

};

typedef struct heap_struct * Heap;

```
Heap bottom_up_heap_init(Item * array, int N)
for counter = N/2, ..., 1
```

```
fixDown(array, counter, N).
```

```
Heap result = malloc(sizeof(*result)).
result.array = array.
result.N = N.
return result.
```

- N = 14
- counter = 7
- fixDown(counter, N):

position	1	2	3	4	5	6	*7	8	9	10	11	12	13	<u>14</u>
value	50	40	30	15	60	10	28	45	35	55	95	90	85	60

- N = 14
- counter = 7
- fixDown(counter, N):

position	1	2	3	4	5	6	*7	8	9	10	11	12	13	<u>14</u>
value	50	40	30	15	60	10	60	45	35	55	95	90	85	28

- N = 14
- counter = 6
- fixDown(counter, N):

position	1	2	3	4	5	*6	7	8	9	10	11	<u>12</u>	<u>13</u>	14
value	50	40	30	15	60	10	60	45	35	55	95	90	85	28

- N = 14
- counter = 6
- fixDown(counter, N):

position	1	2	3	4	5	*6	7	8	9	10	11	<u>12</u>	<u>13</u>	14
value	50	40	30	15	60	90	60	45	35	55	95	10	85	28

- N = 14
- counter = 5
- fixDown(counter, N):

position	1	2	3	4	*5	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	50	40	30	15	60	90	60	45	35	55	95	10	85	28

- N = 14
- counter = 5
- fixDown(counter, N):

position	1	2	3	4	*5	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	50	40	30	15	95	90	60	45	35	55	60	10	85	28

- N = 14
- counter = 4
- fixDown(counter, N):

position	1	2	3	*4	5	6	7	<u>8</u>	<u>9</u>	10	11	12	13	14
value	50	40	30	15	95	90	60	45	35	55	60	10	85	28

- N = 14
- counter = 4
- fixDown(counter, N):

position	1	2	3	*4	5	6	7	<u>8</u>	<u>9</u>	10	11	12	13	14
value	50	40	30	45	95	90	60	15	35	55	60	10	85	28

- N = 14
- counter = 3
- fixDown(counter, N):

position	1	2	*3	4	5	<u>6</u>	<u>7</u>	8	9	10	11	12	13	14
value	50	40	30	45	95	90	60	15	35	55	60	10	85	28

- N = 14
- counter = 3
- fixDown(counter, N):

position	1	2	*3	4	5	<u>6</u>	<u>7</u>	8	9	10	11	<u>12</u>	<u>13</u>	14
value	50	40	90	45	95	30	60	15	35	55	60	10	85	28

- N = 14
- counter = 3
- fixDown(counter, N):

position	1	2	*3	4	5	<u>6</u>	<u>7</u>	8	9	10	11	<u>12</u>	<u>13</u>	14
value	50	40	90	45	95	85	60	15	35	55	60	10	30	28

- N = 14
- counter = 2
- fixDown(counter, N):

position	1	*2	3	<u>4</u>	<u>5</u>	6	7	8	9	10	11	12	13	14
value	50	40	90	45	95	85	60	15	35	55	60	10	30	28

- N = 14
- counter = 2
- fixDown(counter, N):

position	1	*2	3	<u>4</u>	<u>5</u>	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	50	95	90	45	40	85	60	15	35	55	60	10	30	28

- N = 14
- counter = 2
- fixDown(counter, N):

position	1	*2	3	<u>4</u>	<u>5</u>	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	50	95	90	45	60	85	60	15	35	55	40	10	30	28

- N = 14
- counter = 1
- fixDown(counter, N):

position	*1	<u>2</u>	<u>3</u>	4	5	6	7	8	9	10	11	12	13	14
value	50	95	90	45	60	85	60	15	35	55	40	10	30	28

- N = 14
- counter = 1
- fixDown(counter, N):

position	*1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	6	7	8	9	10	11	12	13	14
value	95	50	90	45	60	85	60	15	35	55	40	10	30	28

- N = 14
- counter = 1
- fixDown(counter, N):

position	*1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	95	60	90	45	50	85	60	15	35	55	40	10	30	28

- N = 14
- counter = 1
- fixDown(counter, N):

position	*1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	6	7	8	9	<u>10</u>	<u>11</u>	12	13	14
value	95	60	90	45	55	85	60	15	35	50	40	10	30	28

- N = 14
- counter = 1
- DONE!!!
- The heap condition is now satisfied.

position	1	2	3	4	5	6	7	8	9	10	11	12	13	14
value	95	60	90	45	55	85	60	15	35	50	40	10	30	28

- How can we analyze the running time?
- To simplify, suppose that $N = 2^n 1$.
- The counter starts at value ???.
- At that point, we call fixDown on a heap of size ???.

```
Heap bottom_up_heap_init(Item * array, int N)
for counter = N/2, ..., 1
fixDown(array, counter, N).
Heap result = malloc(sizeof(*result)).
result.array = array.
result.N = N.
return result.
```

- How can we analyze the running time?
- To simplify, suppose that N = 2ⁿ 1.
- The counter starts at value 2ⁿ⁻¹ 1.
- At that point, we call fixDown on a heap of size $3 (= 2^2 1)$.
- For counter values between 2ⁿ⁻¹ 1 and 2ⁿ⁻², we call fixDown on a heap of size 2² - 1.

```
Heap bottom_up_heap_init(Item * array, int N)
for counter = N/2, ..., 1
fixDown(array, counter, N).
Heap result = malloc(sizeof(*result)).
result.array = array.
result.N = N.
return result.
```

- For counter values between 2ⁿ⁻¹ 1 and 2ⁿ⁻², we call fixDown on a heap of size 2² - 1.
- For counter values between 2ⁿ⁻² 1 and 2ⁿ⁻³, we call fixDown on a heap of size ???.
- •

...

• For counter value 2⁰ we call fixDown on a heap of size ???.

```
Heap bottom_up_heap_init(Item * array, int N)
for counter = N/2, ..., 1
fixDown(array, counter, N).
Heap result = malloc(sizeof(*result)).
result.array = array.
result.N = N.
return result.
```

- For counter values between 2ⁿ⁻¹ 1 and 2ⁿ⁻², we call fixDown on a heap of size 2² - 1.
- For counter values between 2ⁿ⁻² 1 and 2ⁿ⁻³, we call fixDown on a heap of size 7 (= 2³ - 1).
- •

...

• For counter value 2⁰ we call fixDown on a heap of size 2ⁿ - 1.

```
Heap bottom_up_heap_init(Item * array, int N)
for counter = N/2, ..., 1
fixDown(array, counter, N).
Heap result = malloc(sizeof(*result)).
result.array = array.
result.N = N.
return result.
```

Counter: from	Counter: to	Number of Iterations	Heap Size	-	Time for All Iterations
2 ⁿ⁻¹ - 1	2 ⁿ⁻²	2 ⁿ⁻²	2 ² - 1	O(2)	O(2 ⁿ⁻² * 2)
2 ⁿ⁻² - 1	2 ⁿ⁻³	2 ⁿ⁻³	2 ³ - 1	O(3)	O(2 ⁿ⁻³ * 3)
2 ⁿ⁻³ - 1	2 ⁿ⁻⁴	2 ⁿ⁻⁴	24 - 1	O(4)	O(2 ⁿ⁻⁴ * 4)
2 ¹ - 1=1	2 ⁰ = 1	2 ⁰ = 1	2 ⁿ - 1	O(n)	O(2 ⁰ * n)

• Sum:
$$\sum_{k=0}^{n-2} (2^k * (n-k))$$

- This is not that trivial to analyze.
- It turns out that $\sum_{k=0}^{n-2} (2^k * (n-k)) = \Theta(N)$
- Thus, bottom-up batch initialization takes linear time.

Bottom-Up Versus Top-Down

- Top-down initialization does not touch the input array.
 - Instead, it creates a new heap, where it inserts the data.
 - Thus, it needs O(N) extra space, in addition to the space already taken by the input array.
- Bottom-up initialization, instead, changes the input array.
 - The heap does not allocate memory for a new array.
 - Instead, the heap uses the input array as its own array.
 - Consequently, it needs O(1) extra space, in addition to the space already taken by the input array.

Heapsort

```
void heapsort(Item a[], int N)
bottom_up_heap_init(a, N).
for counter = N, ..., 2
exch(a[1], a[counter]).
fixDown(a, 1, counter-1).
```