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Priority Queues 

• So far we have seen sorting methods that works in batch 
mode: 
– They are given all the items at once 

– They sort the items. 

– Done! 

• Another case of interest is online methods, that deal with 
data that change. 

• Goal: support (efficiently): 
– Insertion of a new element. 

– Deletion of the max element. 

– Initialization (organizing an initial set of data). 

• The abstract data type that supports these operations is called 
priority queue. 
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Priority Queues - Applications 

• Scheduling: 

– Flight take-offs and landings. 

– Programs getting executed on a computer. 

– Real-time requests for information on a database system. 

– Computer simulations and games, to schedule a sequence 
of events. 

• Waiting lists: 

– Students getting admitted to college. 

– Patients getting admitted to a hospital. 

• Lots more… 
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Priority Queues and Sorting 

• Priority queues support: 
– Insertion of a new element. 

– Deletion of the max element. 

– Initialization (organizing an initial set of data). 

• These operations support applications that batch methods, 
like quicksort, mergesort, do not support. 

• However, these operations can also support sorting: 

• Given items to sort: 
– Initialize a priority queue that contains those items. 

– Initialize result to empty list. 

– While the priority queue is not empty: 

• Remove max element from queue, add it to beginning of result. 

• We will see an implementation (heapsort) of this algorithm 
that takes Θ(N lg N) time.  4 



Naïve Implementation Using Arrays 

• Initialization: 

– Given N data, just store them on an array. 

– Time: Θ(???) 

• Insertion of a new item: 

– (Assumption: the array has enough memory.) 

– Store the item at the end of the array. 

– Time: Θ(???) 

• Deletion of max element: 

– Scan the array to find max item. 

– Delete that item. 

– Time: Θ(???) 
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Naïve Implementation Using Arrays 

• Initialization: 

– Given N data, just store them on an array. 

– Time: Θ(N), good! 

• Insertion of a new item: 

– (Assumption: the array has enough memory.) 

– Store the item at the end of the array. 

– Time: Θ(1), good! 

• Deletion of max element: 

– Scan the array to find max item. 

– Delete that item. 

– Time: Θ(N), bad! 
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Naïve Implementation Using Lists 

• Initialization: 

– Given N data, just store them on an list. 

– Time: Θ(N), good! 

• Insertion of a new item: 

– Store the item at the beginning (or end) of the list. 

– Time: Θ(1), good! 

• Deletion of max element: 

– Scan the list to find max item. 

– Delete that item. 

– Time: Θ(N), bad! 
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Using Ordered Arrays/Lists 

• Initialization: 

– Given N data, sort them. 

– Time: Θ(???) 

• Insertion of a new item: 

– (Assumption: if using an array, it must have enough memory.) 

– Insert the item at the right place, to keep array/list sorted. 

– Time: Θ(???) 

• Deletion of max element: 

– Delete the last item. 

– Time: Θ(???) 
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Using Ordered Arrays/Lists 

• Initialization: 

– Given N data, sort them. 

– Time: O(N lg N). OK! 

• Insertion of a new item: 

– (Assumption: if using an array, it must have enough memory.) 

– Insert the item at the right place, to keep array/list sorted. 

– Time: O(N). Bad! 

• Deletion of max element: 

– Delete the last item. 

– Time: Θ(1). Good! 
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Using Heaps (New Data Type) 

• Initialization: 

– Given N data, heapify them (we will see how in a few slides). 

– Time: Θ(N). Good! 

• Insertion of a new item: 

– Insert the item at the right place, to maintain the heap 
property. (details in a few slides). 

– Time: O(lg N). Good! 

• Deletion of max element: 

– Delete the first item. 

– Rearrange other items, to maintain the heap property. (details 
in a few slides). 

– Time: O(lg N). Good! 10 



Definition of Heaps 

• We have two equivalent representations of heaps: 

– As binary trees. 

– As arrays. 

• Thus, we have two logically equivalent definitions: 

• A binary tree is a heap if, for every node N in that 
tree, the key of N is larger than or equal to the keys 
of the children of N, if any. 

• An array A (with 1 as the first index) is a heap if, for 
every position N of A: 

– If A[2N] is not out of bounds, then A[N] >= A[2N]. 

– If A[2N + 1] is not out of bounds, then A[N] >= A[2*N + 1]. 
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Representing a Heap 

• Consider this array: 

 

 

 

• We can draw the array 
as a tree. 

– The children of A[N] are 
A[2N] and A[2N+1]. 
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Representing a Heap 

• Consider this array: 

 

 

 

• We can draw the array 
as a tree. 

– The children of A[N] are 
A[2N] and A[2N+1]. 

– This example shows 
that the tree and array 
representations are 
equivalent. 
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position 1 2 3 4 5 6 7 8 9 10 11 12 

value X T O G S M N A E R A I 
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Representing a Heap 

• A binary tree 
representing a heap 
should be complete. 

• All levels are full, 
except possibly for the 
last level. 

• At the last level: 

– Nodes are placed on 
the left.  

– Empty positions are 
placed on the right.  
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Increasing a Key 

• Also called “increasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and parent, starting at the node  
that changed key. 
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Increasing a Key 

• Also called “increasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and parent, starting at the node  
that changed key. 

• Example: 

– An E changes to a V. 
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Increasing a Key 

• Also called “increasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and parent, starting at the node  
that changed key. 

• Example: 

– An E changes to a V. 

–  Exchange V and G. Done? 
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Increasing a Key 

• Also called “increasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and parent, starting at the node  
that changed key. 

• Example: 

– An E changes to a V. 

– Exchange V and G.  

– Exchange V and T.  Done? 
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Increasing a Key 

• Also called “increasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and parent, starting at the node  
that changed key. 

• Example: 

– An E changes to a V. 

– Exchange V and G.  

– Exchange V and T.  Done. 
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Increasing a Key 

• Implementation: 
 

fixUp(Item a[], int k) 

{ 

    while ((k > 1) && (less(a[k/2], a[k]))) 

    {  

          exch(a[k], a[k/2]);  

          k = k/2;  

    } 

} 
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Decreasing a Key 

• Also called “decreasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and largest child, starting at the  
node that changed key. 
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Decreasing a Key 

• Also called “decreasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and largest child, starting at the  
node that changed key. 

• Example: 

– An X changes to a B. 
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Decreasing a Key 

• Also called “decreasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and largest child, starting at the  
node that changed key. 

• Example: 

– An X changes to a B. 

– Exchange B and T. 
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Decreasing a Key 

• Also called “decreasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and largest child, starting at the  
node that changed key. 

• Example: 

– An X changes to a B. 

– Exchange B and T.  

– Exchange B and S. 
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Decreasing a Key 

• Also called “decreasing the priority” of an item. 

• Such an operation can lead to violation of the 
heap property. 

• Easy to fix: 

– Exchange items as needed, between  
node and largest child, starting at the  
node that changed key. 

• Example: 

– An X changes to a B. 

– Exchange B and T.  

– Exchange B and S. 

– Exchange B and R. 25 
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Decreasing a Key 

• Implementation: 
 

fixDown(Item a[], int k, int N) 

{  

   int j; 

   while (2*k <= N) 

   {  

       j = 2*k; 

       if ((j < N) && less ((a[j], a[j+1]))) j++; 

       if (!less(a[k], a[j])) break; 

       exch(a[k], a[j]); k = j; 

   } 

} 26 
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Insertions and Deletions 

• To insert an item to a heap: 
– Insert the item to the end of the heap. 

– Call fix up to restore the heap property. 

– Time = O(???) 

• The only element we care to delete from a heap is the 
maximum element. 

• This element is always the first element of the heap. 

• To delete the maximum element: 
– Exchange the first and last elements of the heap. 

– Delete the last element (which is the maximum element). 

– Call fixDown to restore the heap property. 

– Time = O(???) 
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Insertions and Deletions 

• To insert an item to a heap: 
– Insert the item to the end of the heap. 

– Call fix up to restore the heap property. 

– Time = O(lg N) 

• The only element we care to delete from a heap is the 
maximum element. 

• This element is always the first element of the heap. 

• To delete the maximum element: 
– Exchange the first and last elements of the heap. 

– Delete the last element (which is the maximum element). 

– Call fixDown to restore the heap property. 

– Time = O(lg N) 

 
28 



Batch Initialization 

• Batch initialization of a heap is the process of 
converting an unsorted array of data into a heap. 

• We will see two methods that are pretty easy to 
implement: 

• Top-down batch initialization. 

– O(N lg N) time. 

– O(N) extra space (in addition to the space that the input 
array already takes). 

• Bottom-up batch initialization. 

– O(N) time. 

– O(1) extra space (in addition to the space that the input 
array already takes). 
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Top-Down Batch Initialization 

Heap top_down_heap_init(Item * array, int N) 

   Heap result = newHeap(N). 

   for counter = 0, ..., N-1. 

      heap_insert(array[counter]). 

   return result. 

 

• How much time does this take? 
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Top-Down Batch Initialization 

Heap top_down_heap_init(Item * array, int N) 

   Heap result = newHeap(N). 

   for counter = 0, ..., N-1. 

      heap_insert(array[counter]). 

   return result. 

 

• How much time does this take? 

– We need to do N insertions. 

– Each insertion takes O(lg N) time. 

– So, in total, we need O(N lg N) time. 
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Bottom-Up Batch Initialization 

struct heap_struct 

{ 

  int length; 

  Item * array; 

}; 
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typedef struct heap_struct * Heap; 
 

Heap bottom_up_heap_init(Item * array, int N) 

   for counter = N/2, ..., 1 

      fixDown(array, counter, N). 
 

   Heap result = malloc(sizeof(*result)). 

   result.array = array. 

   result.N = N. 

   return result. 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 7 

• fixDown(counter, N): 
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Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 7 

• fixDown(counter, N): 
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position 1 2 3 4 5 6 *7 8 9 10 11 12 13 14 

value 50 40 30 15 60 10 60 45 35 55 95 90 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 6 

• fixDown(counter, N): 
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position 1 2 3 4 5 *6 7 8 9 10 11 12 13 14 

value 50 40 30 15 60 10 60 45 35 55 95 90 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 6 

• fixDown(counter, N): 
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position 1 2 3 4 5 *6 7 8 9 10 11 12 13 14 

value 50 40 30 15 60 90 60 45 35 55 95 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 5 

• fixDown(counter, N): 
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position 1 2 3 4 *5 6 7 8 9 10 11 12 13 14 

value 50 40 30 15 60 90 60 45 35 55 95 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 5 

• fixDown(counter, N): 
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position 1 2 3 4 *5 6 7 8 9 10 11 12 13 14 

value 50 40 30 15 95 90 60 45 35 55 60 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 4 

• fixDown(counter, N): 
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position 1 2 3 *4 5 6 7 8 9 10 11 12 13 14 

value 50 40 30 15 95 90 60 45 35 55 60 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 4 

• fixDown(counter, N): 
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position 1 2 3 *4 5 6 7 8 9 10 11 12 13 14 

value 50 40 30 45 95 90 60 15 35 55 60 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 3 

• fixDown(counter, N): 
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position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14 

value 50 40 30 45 95 90 60 15 35 55 60 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 3 

• fixDown(counter, N): 
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position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14 

value 50 40 90 45 95 30 60 15 35 55 60 10 85 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 3 

• fixDown(counter, N): 
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position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14 

value 50 40 90 45 95 85 60 15 35 55 60 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 2 

• fixDown(counter, N): 
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position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14 

value 50 40 90 45 95 85 60 15 35 55 60 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 2 

• fixDown(counter, N): 
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position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14 

value 50 95 90 45 40 85 60 15 35 55 60 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 2 

• fixDown(counter, N): 
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position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14 

value 50 95 90 45 60 85 60 15 35 55 40 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 1 

• fixDown(counter, N): 
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position *1 2 3 4 5 6 7 8 9 10 11 12 13 14 

value 50 95 90 45 60 85 60 15 35 55 40 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 1 

• fixDown(counter, N): 
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position *1 2 3 4 5 6 7 8 9 10 11 12 13 14 

value 95 50 90 45 60 85 60 15 35 55 40 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 1 

• fixDown(counter, N): 
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position *1 2 3 4 5 6 7 8 9 10 11 12 13 14 

value 95 60 90 45 50 85 60 15 35 55 40 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 1 

• fixDown(counter, N): 
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position *1 2 3 4 5 6 7 8 9 10 11 12 13 14 

value 95 60 90 45 55 85 60 15 35 50 40 10 30 28 



Visualizing Bottom-Up Initialization 

• N = 14 

• counter = 1 

• DONE!!! 

• The heap condition is now satisfied. 
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position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

value 95 60 90 45 55 85 60 15 35 50 40 10 30 28 



Running Time 

• How can we analyze the running time? 

• To simplify, suppose that N = 2n - 1. 

• The counter starts at value ???. 

• At that point, we call fixDown on a heap of size ???. 
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Heap bottom_up_heap_init(Item * array, int N) 
   for counter = N/2, ..., 1 
      fixDown(array, counter, N). 
 

   Heap result = malloc(sizeof(*result)). 
   result.array = array. 
   result.N = N. 
   return result. 



Running Time 

• How can we analyze the running time? 

• To simplify, suppose that N = 2n - 1. 

• The counter starts at value 2n-1 - 1. 

• At that point, we call fixDown on a heap of size 3 (= 22 - 1). 

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown 
on a heap of size 22 - 1. 
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Heap bottom_up_heap_init(Item * array, int N) 
   for counter = N/2, ..., 1 
      fixDown(array, counter, N). 
 

   Heap result = malloc(sizeof(*result)). 
   result.array = array. 
   result.N = N. 
   return result. 



Running Time 

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown 
on a heap of size 22 - 1. 

• For counter values between 2n-2 - 1 and 2n-3, we call fixDown 
on a heap of size ???. 

• … 

• For counter value 20 we call fixDown on a heap of size ???. 
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Heap bottom_up_heap_init(Item * array, int N) 
   for counter = N/2, ..., 1 
      fixDown(array, counter, N). 
 

   Heap result = malloc(sizeof(*result)). 
   result.array = array. 
   result.N = N. 
   return result. 



Running Time 

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown 
on a heap of size 22 - 1. 

• For counter values between 2n-2 - 1 and 2n-3, we call fixDown 
on a heap of size 7 (= 23 - 1). 

• … 

• For counter value 20 we call fixDown on a heap of size 2n - 1. 
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Heap bottom_up_heap_init(Item * array, int N) 
   for counter = N/2, ..., 1 
      fixDown(array, counter, N). 
 

   Heap result = malloc(sizeof(*result)). 
   result.array = array. 
   result.N = N. 
   return result. 



Running Time 
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Counter: 
from 

Counter: 
to 

Number of 
Iterations 

Heap Size Time per 
Iteration 

Time for All 
Iterations 

2n-1 - 1 2n-2 2n-2 22 - 1 O(2) O(2n-2 * 2) 

2n-2 - 1 2n-3 2n-3 23 - 1 O(3) O(2n-3 * 3) 

2n-3 - 1 2n-4 2n-4 24 - 1 O(4) O(2n-4 * 4) 

… 

21 - 1=1 20 = 1 20 = 1 2n - 1 O(n) O(20 * n) 

• Sum:  (2𝑘  ∗ (𝑛 − 𝑘))𝑛−2
𝑘=0  

• This is not that trivial to analyze. 

• It turns out that   (2𝑘  ∗ (𝑛 − 𝑘))𝑛−2
𝑘=0  = Θ(Ν) 

• Thus, bottom-up batch initialization takes linear time. 

 



Bottom-Up Versus Top-Down 

• Top-down initialization does not touch the input 
array. 

– Instead, it creates a new heap, where it inserts the data. 

– Thus, it needs O(N) extra space, in addition to the space 
already taken by the input array. 

• Bottom-up initialization, instead, changes the input 
array. 

– The heap does not allocate memory for a new array. 

– Instead, the heap uses the input array as its own array. 

– Consequently, it needs O(1) extra space, in addition to the 
space already taken by the input array. 
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Heapsort 

void heapsort(Item a[], int N) 

    bottom_up_heap_init(a, N). 

    for counter = N, …, 2 

        exch(a[1], a[counter]). 

        fixDown(a, 1, counter-1). 
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