
Priority Queues, Heaps, and Heapsort

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Priority Queues

• So far we have seen sorting methods that works in batch
mode:
– They are given all the items at once

– They sort the items.

– Done!

• Another case of interest is online methods, that deal with
data that change.

• Goal: support (efficiently):
– Insertion of a new element.

– Deletion of the max element.

– Initialization (organizing an initial set of data).

• The abstract data type that supports these operations is called
priority queue.

2

Priority Queues - Applications

• Scheduling:

– Flight take-offs and landings.

– Programs getting executed on a computer.

– Real-time requests for information on a database system.

– Computer simulations and games, to schedule a sequence
of events.

• Waiting lists:

– Students getting admitted to college.

– Patients getting admitted to a hospital.

• Lots more…

3

Priority Queues and Sorting

• Priority queues support:
– Insertion of a new element.

– Deletion of the max element.

– Initialization (organizing an initial set of data).

• These operations support applications that batch methods,
like quicksort, mergesort, do not support.

• However, these operations can also support sorting:

• Given items to sort:
– Initialize a priority queue that contains those items.

– Initialize result to empty list.

– While the priority queue is not empty:

• Remove max element from queue, add it to beginning of result.

• We will see an implementation (heapsort) of this algorithm
that takes Θ(N lg N) time. 4

Naïve Implementation Using Arrays

• Initialization:

– Given N data, just store them on an array.

– Time: Θ(???)

• Insertion of a new item:

– (Assumption: the array has enough memory.)

– Store the item at the end of the array.

– Time: Θ(???)

• Deletion of max element:

– Scan the array to find max item.

– Delete that item.

– Time: Θ(???)
5

Naïve Implementation Using Arrays

• Initialization:

– Given N data, just store them on an array.

– Time: Θ(N), good!

• Insertion of a new item:

– (Assumption: the array has enough memory.)

– Store the item at the end of the array.

– Time: Θ(1), good!

• Deletion of max element:

– Scan the array to find max item.

– Delete that item.

– Time: Θ(N), bad!
6

Naïve Implementation Using Lists

• Initialization:

– Given N data, just store them on an list.

– Time: Θ(N), good!

• Insertion of a new item:

– Store the item at the beginning (or end) of the list.

– Time: Θ(1), good!

• Deletion of max element:

– Scan the list to find max item.

– Delete that item.

– Time: Θ(N), bad!

7

Using Ordered Arrays/Lists

• Initialization:

– Given N data, sort them.

– Time: Θ(???)

• Insertion of a new item:

– (Assumption: if using an array, it must have enough memory.)

– Insert the item at the right place, to keep array/list sorted.

– Time: Θ(???)

• Deletion of max element:

– Delete the last item.

– Time: Θ(???)

8

Using Ordered Arrays/Lists

• Initialization:

– Given N data, sort them.

– Time: O(N lg N). OK!

• Insertion of a new item:

– (Assumption: if using an array, it must have enough memory.)

– Insert the item at the right place, to keep array/list sorted.

– Time: O(N). Bad!

• Deletion of max element:

– Delete the last item.

– Time: Θ(1). Good!

9

Using Heaps (New Data Type)

• Initialization:

– Given N data, heapify them (we will see how in a few slides).

– Time: Θ(N). Good!

• Insertion of a new item:

– Insert the item at the right place, to maintain the heap
property. (details in a few slides).

– Time: O(lg N). Good!

• Deletion of max element:

– Delete the first item.

– Rearrange other items, to maintain the heap property. (details
in a few slides).

– Time: O(lg N). Good! 10

Definition of Heaps

• We have two equivalent representations of heaps:

– As binary trees.

– As arrays.

• Thus, we have two logically equivalent definitions:

• A binary tree is a heap if, for every node N in that
tree, the key of N is larger than or equal to the keys
of the children of N, if any.

• An array A (with 1 as the first index) is a heap if, for
every position N of A:

– If A[2N] is not out of bounds, then A[N] >= A[2N].

– If A[2N + 1] is not out of bounds, then A[N] >= A[2*N + 1].
11

Representing a Heap

• Consider this array:

• We can draw the array
as a tree.

– The children of A[N] are
A[2N] and A[2N+1].

12

position 1 2 3 4 5 6 7 8 9 10 11 12

value X T O G S M N A E R A I

Representing a Heap

• Consider this array:

• We can draw the array
as a tree.

– The children of A[N] are
A[2N] and A[2N+1].

– This example shows
that the tree and array
representations are
equivalent.

13

position 1 2 3 4 5 6 7 8 9 10 11 12

value X T O G S M N A E R A I

 X

 T

N

O

G S

 I

M

A A E R

Representing a Heap

• A binary tree
representing a heap
should be complete.

• All levels are full,
except possibly for the
last level.

• At the last level:

– Nodes are placed on
the left.

– Empty positions are
placed on the right.

 14

 X

 T

N

O

G S

 I

M

A A E R

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

15

 X

 T

N

O

G S

 I

M

A A E R

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

16

 X

 T

N

O

G S

 I

M

A A V R

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

– Exchange V and G. Done?

17

 X

 T

N

O

V S

 I

M

A A G R

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

– Exchange V and G.

– Exchange V and T. Done?

18

 X

V

N

O

T S

 I

M

A A G R

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

– Exchange V and G.

– Exchange V and T. Done.

19

 X

V

N

O

T S

 I

M

A A G R

Increasing a Key

• Implementation:

fixUp(Item a[], int k)

{

 while ((k > 1) && (less(a[k/2], a[k])))

 {

 exch(a[k], a[k/2]);

 k = k/2;

 }

}

 20

 X

V

N

O

T S

 I

M

A A G R

Decreasing a Key

• Also called “decreasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and largest child, starting at the
node that changed key.

21

 X

 T

N

O

G S

 I

M

A A E R

Decreasing a Key

• Also called “decreasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and largest child, starting at the
node that changed key.

• Example:

– An X changes to a B.

22

B

 T

N

O

G S

 I

M

A A E R

Decreasing a Key

• Also called “decreasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and largest child, starting at the
node that changed key.

• Example:

– An X changes to a B.

– Exchange B and T.

23

T

B

N

O

G S

 I

M

A A E R

Decreasing a Key

• Also called “decreasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and largest child, starting at the
node that changed key.

• Example:

– An X changes to a B.

– Exchange B and T.

– Exchange B and S.

24

T

S

N

O

G B

 I

M

A A E R

Decreasing a Key

• Also called “decreasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and largest child, starting at the
node that changed key.

• Example:

– An X changes to a B.

– Exchange B and T.

– Exchange B and S.

– Exchange B and R. 25

T

S

N

O

G R

 I

M

A A E B

Decreasing a Key

• Implementation:

fixDown(Item a[], int k, int N)

{

 int j;

 while (2*k <= N)

 {

 j = 2*k;

 if ((j < N) && less ((a[j], a[j+1]))) j++;

 if (!less(a[k], a[j])) break;

 exch(a[k], a[j]); k = j;

 }

} 26

T

S

N

O

G R

 I

M

A A E B

Insertions and Deletions

• To insert an item to a heap:
– Insert the item to the end of the heap.

– Call fix up to restore the heap property.

– Time = O(???)

• The only element we care to delete from a heap is the
maximum element.

• This element is always the first element of the heap.

• To delete the maximum element:
– Exchange the first and last elements of the heap.

– Delete the last element (which is the maximum element).

– Call fixDown to restore the heap property.

– Time = O(???)

27

Insertions and Deletions

• To insert an item to a heap:
– Insert the item to the end of the heap.

– Call fix up to restore the heap property.

– Time = O(lg N)

• The only element we care to delete from a heap is the
maximum element.

• This element is always the first element of the heap.

• To delete the maximum element:
– Exchange the first and last elements of the heap.

– Delete the last element (which is the maximum element).

– Call fixDown to restore the heap property.

– Time = O(lg N)

28

Batch Initialization

• Batch initialization of a heap is the process of
converting an unsorted array of data into a heap.

• We will see two methods that are pretty easy to
implement:

• Top-down batch initialization.

– O(N lg N) time.

– O(N) extra space (in addition to the space that the input
array already takes).

• Bottom-up batch initialization.

– O(N) time.

– O(1) extra space (in addition to the space that the input
array already takes).

29

Top-Down Batch Initialization

Heap top_down_heap_init(Item * array, int N)

 Heap result = newHeap(N).

 for counter = 0, ..., N-1.

 heap_insert(array[counter]).

 return result.

• How much time does this take?

30

Top-Down Batch Initialization

Heap top_down_heap_init(Item * array, int N)

 Heap result = newHeap(N).

 for counter = 0, ..., N-1.

 heap_insert(array[counter]).

 return result.

• How much time does this take?

– We need to do N insertions.

– Each insertion takes O(lg N) time.

– So, in total, we need O(N lg N) time.

31

Bottom-Up Batch Initialization

struct heap_struct

{

 int length;

 Item * array;

};

32

typedef struct heap_struct * Heap;

Heap bottom_up_heap_init(Item * array, int N)

 for counter = N/2, ..., 1

 fixDown(array, counter, N).

 Heap result = malloc(sizeof(*result)).

 result.array = array.

 result.N = N.

 return result.

Visualizing Bottom-Up Initialization

• N = 14

• counter = 7

• fixDown(counter, N):

33

position 1 2 3 4 5 6 *7 8 9 10 11 12 13 14

value 50 40 30 15 60 10 28 45 35 55 95 90 85 60

Visualizing Bottom-Up Initialization

• N = 14

• counter = 7

• fixDown(counter, N):

34

position 1 2 3 4 5 6 *7 8 9 10 11 12 13 14

value 50 40 30 15 60 10 60 45 35 55 95 90 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 6

• fixDown(counter, N):

35

position 1 2 3 4 5 *6 7 8 9 10 11 12 13 14

value 50 40 30 15 60 10 60 45 35 55 95 90 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 6

• fixDown(counter, N):

36

position 1 2 3 4 5 *6 7 8 9 10 11 12 13 14

value 50 40 30 15 60 90 60 45 35 55 95 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 5

• fixDown(counter, N):

37

position 1 2 3 4 *5 6 7 8 9 10 11 12 13 14

value 50 40 30 15 60 90 60 45 35 55 95 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 5

• fixDown(counter, N):

38

position 1 2 3 4 *5 6 7 8 9 10 11 12 13 14

value 50 40 30 15 95 90 60 45 35 55 60 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 4

• fixDown(counter, N):

39

position 1 2 3 *4 5 6 7 8 9 10 11 12 13 14

value 50 40 30 15 95 90 60 45 35 55 60 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 4

• fixDown(counter, N):

40

position 1 2 3 *4 5 6 7 8 9 10 11 12 13 14

value 50 40 30 45 95 90 60 15 35 55 60 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 3

• fixDown(counter, N):

41

position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14

value 50 40 30 45 95 90 60 15 35 55 60 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 3

• fixDown(counter, N):

42

position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14

value 50 40 90 45 95 30 60 15 35 55 60 10 85 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 3

• fixDown(counter, N):

43

position 1 2 *3 4 5 6 7 8 9 10 11 12 13 14

value 50 40 90 45 95 85 60 15 35 55 60 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 2

• fixDown(counter, N):

44

position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14

value 50 40 90 45 95 85 60 15 35 55 60 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 2

• fixDown(counter, N):

45

position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14

value 50 95 90 45 40 85 60 15 35 55 60 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 2

• fixDown(counter, N):

46

position 1 *2 3 4 5 6 7 8 9 10 11 12 13 14

value 50 95 90 45 60 85 60 15 35 55 40 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 1

• fixDown(counter, N):

47

position *1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 50 95 90 45 60 85 60 15 35 55 40 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 1

• fixDown(counter, N):

48

position *1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 95 50 90 45 60 85 60 15 35 55 40 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 1

• fixDown(counter, N):

49

position *1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 95 60 90 45 50 85 60 15 35 55 40 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 1

• fixDown(counter, N):

50

position *1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 95 60 90 45 55 85 60 15 35 50 40 10 30 28

Visualizing Bottom-Up Initialization

• N = 14

• counter = 1

• DONE!!!

• The heap condition is now satisfied.

51

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 95 60 90 45 55 85 60 15 35 50 40 10 30 28

Running Time

• How can we analyze the running time?

• To simplify, suppose that N = 2n - 1.

• The counter starts at value ???.

• At that point, we call fixDown on a heap of size ???.

52

Heap bottom_up_heap_init(Item * array, int N)
 for counter = N/2, ..., 1
 fixDown(array, counter, N).

 Heap result = malloc(sizeof(*result)).
 result.array = array.
 result.N = N.
 return result.

Running Time

• How can we analyze the running time?

• To simplify, suppose that N = 2n - 1.

• The counter starts at value 2n-1 - 1.

• At that point, we call fixDown on a heap of size 3 (= 22 - 1).

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown
on a heap of size 22 - 1.

53

Heap bottom_up_heap_init(Item * array, int N)
 for counter = N/2, ..., 1
 fixDown(array, counter, N).

 Heap result = malloc(sizeof(*result)).
 result.array = array.
 result.N = N.
 return result.

Running Time

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown
on a heap of size 22 - 1.

• For counter values between 2n-2 - 1 and 2n-3, we call fixDown
on a heap of size ???.

• …

• For counter value 20 we call fixDown on a heap of size ???.

54

Heap bottom_up_heap_init(Item * array, int N)
 for counter = N/2, ..., 1
 fixDown(array, counter, N).

 Heap result = malloc(sizeof(*result)).
 result.array = array.
 result.N = N.
 return result.

Running Time

• For counter values between 2n-1 - 1 and 2n-2, we call fixDown
on a heap of size 22 - 1.

• For counter values between 2n-2 - 1 and 2n-3, we call fixDown
on a heap of size 7 (= 23 - 1).

• …

• For counter value 20 we call fixDown on a heap of size 2n - 1.

55

Heap bottom_up_heap_init(Item * array, int N)
 for counter = N/2, ..., 1
 fixDown(array, counter, N).

 Heap result = malloc(sizeof(*result)).
 result.array = array.
 result.N = N.
 return result.

Running Time

56

Counter:
from

Counter:
to

Number of
Iterations

Heap Size Time per
Iteration

Time for All
Iterations

2n-1 - 1 2n-2 2n-2 22 - 1 O(2) O(2n-2 * 2)

2n-2 - 1 2n-3 2n-3 23 - 1 O(3) O(2n-3 * 3)

2n-3 - 1 2n-4 2n-4 24 - 1 O(4) O(2n-4 * 4)

…

21 - 1=1 20 = 1 20 = 1 2n - 1 O(n) O(20 * n)

• Sum: (2𝑘 ∗ (𝑛 − 𝑘))𝑛−2
𝑘=0

• This is not that trivial to analyze.

• It turns out that (2𝑘 ∗ (𝑛 − 𝑘))𝑛−2
𝑘=0 = Θ(Ν)

• Thus, bottom-up batch initialization takes linear time.

Bottom-Up Versus Top-Down

• Top-down initialization does not touch the input
array.

– Instead, it creates a new heap, where it inserts the data.

– Thus, it needs O(N) extra space, in addition to the space
already taken by the input array.

• Bottom-up initialization, instead, changes the input
array.

– The heap does not allocate memory for a new array.

– Instead, the heap uses the input array as its own array.

– Consequently, it needs O(1) extra space, in addition to the
space already taken by the input array.

57

Heapsort

void heapsort(Item a[], int N)

 bottom_up_heap_init(a, N).

 for counter = N, …, 2

 exch(a[1], a[counter]).

 fixDown(a, 1, counter-1).

58

