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Symbol Tables - Dictionaries 

• A symbol table is a data structure that allows us to 
maintain and use an organized set of items. 

• Main operations: 

– Insert new item. 

– Search and return an item with a given key. 

– Delete an item. 

– Modify an item. 

– Sort all items. 

– Find k-th smallest item. 
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Symbol Tables - Dictionaries 

• Similarities and differences compared to priority 
queues: 
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Symbol Tables - Dictionaries 

• Similarities and differences compared to priority 
queues: 

• In priority queues we care about: 

– Insertions. 

– Finding/deleting the max item efficiently. 

• In symbol tables we care about: 

– Insertions. 

– Finding/deleting any item efficiently. 
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Keys and Items 

• Question: what is the difference between a "key" and 
an "item"? 
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Keys and Items 

• Question: what is the difference between a "key" and 
an "item"? 

– An item contains a key, and possibly other pieces of 
information as well. 

– The key is just the part of the item that we use for 
sorting/searching. 

• For example, the item can be a student record and 
the key can be a student ID. 
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Multiple Keys 

• In actual applications, we oftentimes want to search 
or sort by different criteria. 

• For example, we may want to search a customer 
database by ??? 
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Multiple Keys 

• In actual applications, we oftentimes want to search 
or sort by different criteria. 

• For example, we may want to search a customer 
database by: 

– Customer ID. 

– Last name. 

– First name. 

– Phone. 

– Address. 

– … 
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Multiple Keys 

• Accommodating the ability to search by different criteria (i.e., 
allow multiple keys) is a standard topic in a databases course. 

• However, the general idea is fairly simple: 

• Define a primary key, that is unique. 
– That is why we all have things such as: 

– Social Security number. 

– UTA ID number. 

– Customer ID number, and so on. 

• Build a main symbol table based on the primary key. 

• For any other field (like address, phone, last name) that we 
may want to search by, build a separate symbol table, that 
simply maps values in this field to primary keys. 
– The "key" for each such separate symbol table is NOT the primary key. 
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Generality of Search by Key 

• In this course we will only discuss searching by a 
single key. 

– This is the problem that is relevant for an algorithms 
course. 

• The previous slides hopefully have convinced you 
that if you can search by a single key, you can easily 
accommodate multiple keys as well. 

– That topic is covered in standard database courses. 
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Overview 

• We will now see some standard ways to implement 
symbol tables. 

• Some straightforward ways use arrays and lists. 

– Simple implementations, problematic performance or 
severe limitations. 

• The most commonly used methods use trees. 

– Relatively simple implementations (but more complicated 
than array/list-based implementations). 

– Good performance. 
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Key-Indexed Search  

• Suppose that: 

– The keys are distinct positive integers, that are sufficiently 
small. 
• What exactly we mean by "sufficiently small" will be clarified in a 

bit. 

• "Distinct" means that no two items share the same key. 

– We store our items in an array (so, we have an array-based 
implementation). 

• How would you implement symbol tables in that 
case? 

– How would you support insertions, deletions, search? 
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Key-Indexed Search  

• Keys are indices into an array. 

• Initialization??? 

• Insertions??? 

• Deletions??? 

• Search??? 
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Key-Indexed Search  

• Keys are indices into an array. 

• Initialization: set all array entries to null, O(N) time. 

• Insertions, deletions, search: Constant time. 

• Limitations: 

– Keys must be unique. 
• This can be OK for primary keys, but not for keys such as last 

names, that are not expected to be unique. 

– Keys must be small enough so that the array fits in 
memory. 

• In summary: optimal performance, severe 
limitations. 
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Unordered Array Implementation 

• Note: this is different than the key-indexed 
implementation we just talked about. 

• Key idea: just throw items into an array. 

• Implementation and time complexity: 

– Initialization??? 

– Insert? 

– Delete? 

– Search? 

 

15 



Unordered Array Implementation 

• Note: this is different than the key-indexed implementation 
we just talked about. 

• Key idea: just throw items into an array. 

• Initialization: initialize all entries to null.  
– Linear time. 

• Insert: place the new item at the end.  
– Constant time. 

• Delete: remove the item, move all subsequent items to fill in 
the gap. 
– Linear time. This is a problem. 

• Search: scan the array, until you find the key you are looking 
for. 
– Linear time. This is a problem. 
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Variations 

• Unordered list implementation:  
– Linear time for deletion and search. 

• Ordered array implementation. 
– Linear time for insertion and deletion. 

– Logarithmic time for search: binary search (rings a bell?) 

• Ordered list implementation. 
– Linear time for insertion, deletion, search. 

• Filling in the details on these variations is left as an exercise. 

• However, each of these versions requires linear time for at 
least one of insertion, deletion, search. 
– We want methods that take at most logarithmic time for insertions, 

deletions, and searches. 
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Search Trees 

• Preliminary note: "search trees" as a term does NOT 
refer to a specific implementation of symbol tables. 

– This is a very common mistake. 

• The term refers to a family of implementations, that 
may have different properties. 

• We will see soon specific implementations with good 
properties, such as: 

– 2-3-4 trees. 

– Red-black trees. 
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Search Trees 

• What all search trees have in common is the 
implementation of search. 

• Insertions and deletions can differ, and have 
important implications on overall performance. 

• The main goal is to have insertions and deletions 
that: 

– Are efficient (at most logarithmic time). 

– Leave the tree balanced, to support efficient search (at 
most logarithmic time). 
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Binary Search Trees 

• Definition: a binary search tree is a binary tree 
where: 

• Each internal node contains an item. 

– External nodes (leaves) do not contain items. 

• The item at each node is: 

– Greater than or equal to all items on the left subtree. 

– Less than all items in the right subtree. 
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Binary Search Trees 

• Parenthesis: is this a binary tree? 

• According to the definition in the book 
(that we use in this course), no, because 
one node has only one child. 

• However, a binary tree can only have an 
odd number of nodes. 

• What are we supposed to do if the 
number of items is even? 
– Hint: look back to the previous definition. 
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Binary Search Trees 

• Parenthesis: is this a binary tree? 

• According to the definition in the book 
(that we use in this course), no, because 
one node has only one child. 

• However, a binary tree can only have an 
odd number of nodes. 

• What are we supposed to do if the 
number of items is even? 

• We make the convention that items are 
only stored at internal nodes. 

• Leaves exist, but they do not contain 
items. 

• To simplify, we will not be showing leaves. 
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Binary Search Trees 

• So, is this a binary tree? 
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Binary Search Trees 

• So, is this a binary tree? 

• We will make the convention that yes, this 
is a binary tree whose leaves contain no 
items and are not shown. 
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Binary Search Trees 

• Definition: a binary search tree is a binary tree where 
the item at each node is: 

– Greater than or equal to all items on the left subtree. 

– Less than all items in the right subtree. 
 

• How do we implement search? 
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Binary Search Trees 

• Definition: a binary search tree is a binary tree where 
the item at each node is: 

– Greater than or equal to all items on the left subtree. 

– Less than all items in the right subtree. 
 

• search(tree, key) 

– if (tree == null) return null 

– else if (key == tree.item.key)  
• return tree.item 

– else if (key < tree.item.key)  
• return search(tree.left_child, key) 

– else return search(tree.right_child, key) 
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Performance of Search 

• Note: so far we have said nothing about how to implement 
insertions and deletions. 

• Given that, what can we say about the worst-case time 
complexity of search? 
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Performance of Search 

• Note: so far we have said nothing 
about how to implement insertions 
and deletions. 

• Given that, what can we say about the 
worst-case time complexity of search? 

• A binary tree can be perfectly balanced 
or maximally unbalanced. 
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Performance of Search 

• Note: so far we have said nothing about how to implement 
insertions and deletions. 

• Given that, what can we say about the worst-case time 
complexity of search? 

• Search takes time that is in the worst case linear to the 
number of items. 
– This is not very good. 

• Search takes time that is linear to the height of the tree. 

• For balanced trees, search takes time logarithmic to the 
number of items. 
– This is good. 

• So, the challenge is to make sure that insertions and deletions 
leave the tree balanced. 
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Naïve Insertion 

• To insert an item, the simplest approach is to go 
down the tree until finding a leaf position where it is 
appropriate to insert the item. 

• Pseudocode ??? 
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Naïve Insertion 

• To insert an item, the simplest approach is to go 
down the tree until finding a leaf position where it is 
appropriate to insert the item. 

• insert(tree, item) 

– if (tree == null) return new tree(item.key) 

– else if (item.key  <  tree.item.key)  
• tree.left_child = insert(tree.left_child, item) 

– else if (item.key  >  tree.item.key)  
• tree.right_child = insert(tree.right_child, item) 

– return tree 
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Naïve Insertion 

• To insert an item, the simplest approach is to go 
down the tree until finding a leaf position where it is 
appropriate to insert the item. 

• insert(tree, item) 

– if (tree == null) return new tree(item.key) 

– else if (item.key  <  tree.item.key)  
• tree.left_child = insert(tree.left_child, item) 

– else if (item.key  >  tree.item.key)  
• tree.right_child = insert(tree.right_child, item) 

– return tree 

32 

Why do we use line 
tree.left_child = insert(tree.left_child, item) 
instead of line 
insert(tree.left_child, item) 



Naïve Insertion 

• To insert an item, the simplest approach is to go 
down the tree until finding a leaf position where it is 
appropriate to insert the item. 

• insert(tree, item) 

– if (tree == null) return new tree(item.key) 

– else if (item.key  <  tree.item.key)  
• tree.left_child = insert(tree.left_child, item) 

– else if (item.key  >  tree.item.key)  
• tree.right_child = insert(tree.right_child, item) 

– return tree 
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Answer: To handle the base case, where we  
return a new node, and the parent must make  
this new node a child. 



Naïve Insertion 

• Inserting a 39: 

34 

40 

23 
52 

15 37 44 



Naïve Insertion 

• Inserting a 39: 
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Naïve Insertion 

• If items are inserted in random order, the resulting 
trees are reasonably balanced. 

• If items are inserted in ascending order, the resulting 
tree is maximally imbalanced. 

• We will next see more sophisticated methods, that 
guarantee that the resulting tree is balanced 
regardless of the order of insertions/deletions. 
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2-3-4 Trees 

• A 2-3-4 tree is a tree that 
either is empty or contains 
three types of nodes: 

• 2-nodes, which contain: 
– An item with key K. 

– A left subtree with keys <= K. 

– A right subtree with keys > K. 

• 3-nodes, which contain: 
– Two items with keys K1 and 

K2, K1 <= K2. 

– A left subtree with keys <= K1. 

– A middle subtree with  
K1 < keys <= K2. 

– A right subtree with keys > K2. 
37 

• 4-nodes, which contain: 
–  Three items with keys K1, K2, 

K3, K1 <= K2 <= K3. 

– A left subtree with keys <= K1. 

– A middle-left subtree with  
K1 < keys <= K2. 

– A middle-right subtree with 
K2 < keys <= K3. 

– A right subtree with keys > K3. 

• For a 2-3-4 search tree to be 
called balanced, all leaves 
must be at the same 
distance from the root. 

• We will only consider 
balanced 2-3-4 trees. 

 



Example of 2-3-4 Tree 
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Search in 2-3-4 Trees 

• Search in 2-3-4 trees is a generalization of search in binary 
search trees. 

• For simplicity, we assume that all keys are unique. 

• Given a search key, at each node select one of the subtrees by 
comparing the  search key with the 1, 2, or 3 keys  that are 
present at the node. 

• The time is linear to the height of the tree. 

• Since we assume that 2-3-4 trees are balanced, search time is 
logarithmic to the number of items. 

• Question to tackle next:  
– how to implement insertions and deletions so as to guarantee that, 

when we start with a balanced 2-3-4 tree, the tree remains balanced 
after the insertion or deletion. 
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Insertion in 2-3-4 Trees 

• We follow the same path as if we are searching for 
the item. 

• A simple approach would be to just insert the item at 
the end of that path. 

• However, if we insert the item at a new node at the 
end, the tree is not balanced any more. 

• We need to make sure that the tree remains 
balanced, so we follow a more complicated 
approach. 
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Insertion in 2-3-4 Trees 

• Given our key K: we follow the same path as in search. 

• On the way:  
– If we find a 2-node being parent to a 4-node, we transform the pair 

into a 3-node connected to two 2-nodes. 

– If we find a 3-node being parent to a 4-node, we transform the pair 
into a 4-node connected to two 2-nodes. 

– If the root becomes a 4-node, split it into three 2-nodes. 

• These transformations: 
– Are local (they only affect the nodes in question). 

– Do not affect the overall height or balance of the tree (except for 
splitting a 4-node at the root). 

• This way, when we get to the bottom of the tree, we know 
that the node we arrived at is not a 4-node, and thus it has 
room to insert the new item. 
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Transformation Examples 

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node. 

 

 

 

 
 

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node. 
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Transformation Examples 

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node. 

 

 

 

 
 

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node. 
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Insertion Example 

• Inserting an item with key 25: 
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Insertion Example 

• Inserting an item with key 25: 
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Insertion Example 

• Inserting an item with key 25: 
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Insertion Example 

• Inserting an item with key 25: 
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Insertion Example 

• Found a 2-node being parent to a 4-node, we must transform 
the pair into a 3-node connected to two 2-nodes. 
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Insertion Example 

• Found a 2-node being parent to a 4-node, we must transform 
the pair into a 3-node connected to two 2-nodes. 
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Insertion Example 

• Reached the bottom. Make insertion of item with key 25. 
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Insertion Example 

• Next: insert an item with key = 27. 
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Insertion Example 

• Next: insert an item with key = 27. 
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Insertion Example 

• Next: insert an item with key = 27. 
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Insertion Example 

• Next: insert an item with key = 27. 
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Insertion Example 

• Next: insert an item with key = 27. 
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Insertion Example 

• Next: insert an item with key = 26. 
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Insertion Example 

• Next: insert an item with key = 26. 

57 

22 28 

30 60 

70 80 

10 17 24 25 27 52 62 65 95 

48 

40 41 72 29 



Insertion Example 

• Next: insert an item with key = 26. 
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Insertion Example 

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes. 
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Insertion Example 

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes. 
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Insertion Example 

• Reached the bottom. Make insertion of item with key 26. 
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Insertion Example 

• Reached the bottom. Make insertion of item with key 26. 
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Insertion Example 

• Insert an item with key = 13. 
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Insertion Example 

• Insert an item with key = 13. 
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Insertion Example 

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes. 
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Insertion Example 

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes. 
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Insertion Example 

• Root is 4-node, must split. 
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Insertion Example 

• Root is 4-node, must split. 
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Insertion Example 

• Continue with inserting an item with key = 13. 
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Insertion Example 

• Continue with inserting an item with key = 13. 
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Insertion Example 

• Continue with inserting an item with key = 13. 
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Deletion on 2-3-4 Trees 

• More complicated. 

• The book does not cover it. 

• We will not cover it. 

• If you care, you can look it up on Wikipedia.  
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Red-Black Trees 

• Red black trees are an alternative way to 
view/implement 2-3-4 trees. 

• Red links: bind together 3-nodes and 4-nodes into 
small binary trees. 

• Black links: bind the tree together. 
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