
Symbol Tables and Search Trees

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Symbol Tables - Dictionaries

• A symbol table is a data structure that allows us to
maintain and use an organized set of items.

• Main operations:

– Insert new item.

– Search and return an item with a given key.

– Delete an item.

– Modify an item.

– Sort all items.

– Find k-th smallest item.

2

Symbol Tables - Dictionaries

• Similarities and differences compared to priority
queues:

3

Symbol Tables - Dictionaries

• Similarities and differences compared to priority
queues:

• In priority queues we care about:

– Insertions.

– Finding/deleting the max item efficiently.

• In symbol tables we care about:

– Insertions.

– Finding/deleting any item efficiently.

4

Keys and Items

• Question: what is the difference between a "key" and
an "item"?

5

Keys and Items

• Question: what is the difference between a "key" and
an "item"?

– An item contains a key, and possibly other pieces of
information as well.

– The key is just the part of the item that we use for
sorting/searching.

• For example, the item can be a student record and
the key can be a student ID.

6

Multiple Keys

• In actual applications, we oftentimes want to search
or sort by different criteria.

• For example, we may want to search a customer
database by ???

7

Multiple Keys

• In actual applications, we oftentimes want to search
or sort by different criteria.

• For example, we may want to search a customer
database by:

– Customer ID.

– Last name.

– First name.

– Phone.

– Address.

– …

8

Multiple Keys

• Accommodating the ability to search by different criteria (i.e.,
allow multiple keys) is a standard topic in a databases course.

• However, the general idea is fairly simple:

• Define a primary key, that is unique.
– That is why we all have things such as:

– Social Security number.

– UTA ID number.

– Customer ID number, and so on.

• Build a main symbol table based on the primary key.

• For any other field (like address, phone, last name) that we
may want to search by, build a separate symbol table, that
simply maps values in this field to primary keys.
– The "key" for each such separate symbol table is NOT the primary key.

9

Generality of Search by Key

• In this course we will only discuss searching by a
single key.

– This is the problem that is relevant for an algorithms
course.

• The previous slides hopefully have convinced you
that if you can search by a single key, you can easily
accommodate multiple keys as well.

– That topic is covered in standard database courses.

10

Overview

• We will now see some standard ways to implement
symbol tables.

• Some straightforward ways use arrays and lists.

– Simple implementations, problematic performance or
severe limitations.

• The most commonly used methods use trees.

– Relatively simple implementations (but more complicated
than array/list-based implementations).

– Good performance.

11

Key-Indexed Search

• Suppose that:

– The keys are distinct positive integers, that are sufficiently
small.
• What exactly we mean by "sufficiently small" will be clarified in a

bit.

• "Distinct" means that no two items share the same key.

– We store our items in an array (so, we have an array-based
implementation).

• How would you implement symbol tables in that
case?

– How would you support insertions, deletions, search?

12

Key-Indexed Search

• Keys are indices into an array.

• Initialization???

• Insertions???

• Deletions???

• Search???

13

Key-Indexed Search

• Keys are indices into an array.

• Initialization: set all array entries to null, O(N) time.

• Insertions, deletions, search: Constant time.

• Limitations:

– Keys must be unique.
• This can be OK for primary keys, but not for keys such as last

names, that are not expected to be unique.

– Keys must be small enough so that the array fits in
memory.

• In summary: optimal performance, severe
limitations.

 14

Unordered Array Implementation

• Note: this is different than the key-indexed
implementation we just talked about.

• Key idea: just throw items into an array.

• Implementation and time complexity:

– Initialization???

– Insert?

– Delete?

– Search?

15

Unordered Array Implementation

• Note: this is different than the key-indexed implementation
we just talked about.

• Key idea: just throw items into an array.

• Initialization: initialize all entries to null.
– Linear time.

• Insert: place the new item at the end.
– Constant time.

• Delete: remove the item, move all subsequent items to fill in
the gap.
– Linear time. This is a problem.

• Search: scan the array, until you find the key you are looking
for.
– Linear time. This is a problem.

16

Variations

• Unordered list implementation:
– Linear time for deletion and search.

• Ordered array implementation.
– Linear time for insertion and deletion.

– Logarithmic time for search: binary search (rings a bell?)

• Ordered list implementation.
– Linear time for insertion, deletion, search.

• Filling in the details on these variations is left as an exercise.

• However, each of these versions requires linear time for at
least one of insertion, deletion, search.
– We want methods that take at most logarithmic time for insertions,

deletions, and searches.

17

Search Trees

• Preliminary note: "search trees" as a term does NOT
refer to a specific implementation of symbol tables.

– This is a very common mistake.

• The term refers to a family of implementations, that
may have different properties.

• We will see soon specific implementations with good
properties, such as:

– 2-3-4 trees.

– Red-black trees.

18

Search Trees

• What all search trees have in common is the
implementation of search.

• Insertions and deletions can differ, and have
important implications on overall performance.

• The main goal is to have insertions and deletions
that:

– Are efficient (at most logarithmic time).

– Leave the tree balanced, to support efficient search (at
most logarithmic time).

19

Binary Search Trees

• Definition: a binary search tree is a binary tree
where:

• Each internal node contains an item.

– External nodes (leaves) do not contain items.

• The item at each node is:

– Greater than or equal to all items on the left subtree.

– Less than all items in the right subtree.

20

Binary Search Trees

• Parenthesis: is this a binary tree?

• According to the definition in the book
(that we use in this course), no, because
one node has only one child.

• However, a binary tree can only have an
odd number of nodes.

• What are we supposed to do if the
number of items is even?
– Hint: look back to the previous definition.

21

40

23
52

15 37 44

Binary Search Trees

• Parenthesis: is this a binary tree?

• According to the definition in the book
(that we use in this course), no, because
one node has only one child.

• However, a binary tree can only have an
odd number of nodes.

• What are we supposed to do if the
number of items is even?

• We make the convention that items are
only stored at internal nodes.

• Leaves exist, but they do not contain
items.

• To simplify, we will not be showing leaves.

22

40

23
52

15 37 44

Binary Search Trees

• So, is this a binary tree?

23

40

23
52

15 37 44

Binary Search Trees

• So, is this a binary tree?

• We will make the convention that yes, this
is a binary tree whose leaves contain no
items and are not shown.

24

40

23
52

15 37 44

Binary Search Trees

• Definition: a binary search tree is a binary tree where
the item at each node is:

– Greater than or equal to all items on the left subtree.

– Less than all items in the right subtree.

• How do we implement search?

25

Binary Search Trees

• Definition: a binary search tree is a binary tree where
the item at each node is:

– Greater than or equal to all items on the left subtree.

– Less than all items in the right subtree.

• search(tree, key)

– if (tree == null) return null

– else if (key == tree.item.key)
• return tree.item

– else if (key < tree.item.key)
• return search(tree.left_child, key)

– else return search(tree.right_child, key)

26

Performance of Search

• Note: so far we have said nothing about how to implement
insertions and deletions.

• Given that, what can we say about the worst-case time
complexity of search?

27

Performance of Search

• Note: so far we have said nothing
about how to implement insertions
and deletions.

• Given that, what can we say about the
worst-case time complexity of search?

• A binary tree can be perfectly balanced
or maximally unbalanced.

28

40

23
52

15 37 44

40

23

52

15

37

44

Performance of Search

• Note: so far we have said nothing about how to implement
insertions and deletions.

• Given that, what can we say about the worst-case time
complexity of search?

• Search takes time that is in the worst case linear to the
number of items.
– This is not very good.

• Search takes time that is linear to the height of the tree.

• For balanced trees, search takes time logarithmic to the
number of items.
– This is good.

• So, the challenge is to make sure that insertions and deletions
leave the tree balanced.

29

Naïve Insertion

• To insert an item, the simplest approach is to go
down the tree until finding a leaf position where it is
appropriate to insert the item.

• Pseudocode ???

30

Naïve Insertion

• To insert an item, the simplest approach is to go
down the tree until finding a leaf position where it is
appropriate to insert the item.

• insert(tree, item)

– if (tree == null) return new tree(item.key)

– else if (item.key < tree.item.key)
• tree.left_child = insert(tree.left_child, item)

– else if (item.key > tree.item.key)
• tree.right_child = insert(tree.right_child, item)

– return tree

31

Naïve Insertion

• To insert an item, the simplest approach is to go
down the tree until finding a leaf position where it is
appropriate to insert the item.

• insert(tree, item)

– if (tree == null) return new tree(item.key)

– else if (item.key < tree.item.key)
• tree.left_child = insert(tree.left_child, item)

– else if (item.key > tree.item.key)
• tree.right_child = insert(tree.right_child, item)

– return tree

32

Why do we use line
tree.left_child = insert(tree.left_child, item)
instead of line
insert(tree.left_child, item)

Naïve Insertion

• To insert an item, the simplest approach is to go
down the tree until finding a leaf position where it is
appropriate to insert the item.

• insert(tree, item)

– if (tree == null) return new tree(item.key)

– else if (item.key < tree.item.key)
• tree.left_child = insert(tree.left_child, item)

– else if (item.key > tree.item.key)
• tree.right_child = insert(tree.right_child, item)

– return tree

33

Answer: To handle the base case, where we
return a new node, and the parent must make
this new node a child.

Naïve Insertion

• Inserting a 39:

34

40

23
52

15 37 44

Naïve Insertion

• Inserting a 39:

35

40

23
52

15 37 44

39

Naïve Insertion

• If items are inserted in random order, the resulting
trees are reasonably balanced.

• If items are inserted in ascending order, the resulting
tree is maximally imbalanced.

• We will next see more sophisticated methods, that
guarantee that the resulting tree is balanced
regardless of the order of insertions/deletions.

36

2-3-4 Trees

• A 2-3-4 tree is a tree that
either is empty or contains
three types of nodes:

• 2-nodes, which contain:
– An item with key K.

– A left subtree with keys <= K.

– A right subtree with keys > K.

• 3-nodes, which contain:
– Two items with keys K1 and

K2, K1 <= K2.

– A left subtree with keys <= K1.

– A middle subtree with
K1 < keys <= K2.

– A right subtree with keys > K2.
37

• 4-nodes, which contain:
– Three items with keys K1, K2,

K3, K1 <= K2 <= K3.

– A left subtree with keys <= K1.

– A middle-left subtree with
K1 < keys <= K2.

– A middle-right subtree with
K2 < keys <= K3.

– A right subtree with keys > K3.

• For a 2-3-4 search tree to be
called balanced, all leaves
must be at the same
distance from the root.

• We will only consider
balanced 2-3-4 trees.

Example of 2-3-4 Tree

22

38

30 60

70 80 90

10 17 24 26 29 52 62 65 95

48

40 41 72 81 85

Search in 2-3-4 Trees

• Search in 2-3-4 trees is a generalization of search in binary
search trees.

• For simplicity, we assume that all keys are unique.

• Given a search key, at each node select one of the subtrees by
comparing the search key with the 1, 2, or 3 keys that are
present at the node.

• The time is linear to the height of the tree.

• Since we assume that 2-3-4 trees are balanced, search time is
logarithmic to the number of items.

• Question to tackle next:
– how to implement insertions and deletions so as to guarantee that,

when we start with a balanced 2-3-4 tree, the tree remains balanced
after the insertion or deletion.

39

Insertion in 2-3-4 Trees

• We follow the same path as if we are searching for
the item.

• A simple approach would be to just insert the item at
the end of that path.

• However, if we insert the item at a new node at the
end, the tree is not balanced any more.

• We need to make sure that the tree remains
balanced, so we follow a more complicated
approach.

40

Insertion in 2-3-4 Trees

• Given our key K: we follow the same path as in search.

• On the way:
– If we find a 2-node being parent to a 4-node, we transform the pair

into a 3-node connected to two 2-nodes.

– If we find a 3-node being parent to a 4-node, we transform the pair
into a 4-node connected to two 2-nodes.

– If the root becomes a 4-node, split it into three 2-nodes.

• These transformations:
– Are local (they only affect the nodes in question).

– Do not affect the overall height or balance of the tree (except for
splitting a 4-node at the root).

• This way, when we get to the bottom of the tree, we know
that the node we arrived at is not a 4-node, and thus it has
room to insert the new item.

41

Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

42

22

10 17 24 26 29

22

30 60

70 80 90 48

Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

43

22

10 17 24 26 29

22 26

10 17 29 24

22

30 60

70 80 90 48 22

30 60 80

70 48 70

Insertion Example

• Inserting an item with key 25:

44

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insertion Example

• Inserting an item with key 25:

45

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insertion Example

• Inserting an item with key 25:

46

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insertion Example

• Inserting an item with key 25:

47

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insertion Example

• Found a 2-node being parent to a 4-node, we must transform
the pair into a 3-node connected to two 2-nodes.

48

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insertion Example

• Found a 2-node being parent to a 4-node, we must transform
the pair into a 3-node connected to two 2-nodes.

49

22 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29

Insertion Example

• Reached the bottom. Make insertion of item with key 25.

50

22 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 27.

51

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 27.

52

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 27.

53

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 27.

54

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 27.

55

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 26.

56

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 26.

57

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 72 29

Insertion Example

• Next: insert an item with key = 26.

58

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 72 29

Insertion Example

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

59

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 72 29

Insertion Example

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

60

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 27

Insertion Example

• Reached the bottom. Make insertion of item with key 26.

61

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 27

Insertion Example

• Reached the bottom. Make insertion of item with key 26.

62

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

Insertion Example

• Insert an item with key = 13.

63

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

Insertion Example

• Insert an item with key = 13.

64

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

Insertion Example

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

65

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

Insertion Example

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

66

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

28

Insertion Example

• Root is 4-node, must split.

67

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

28

Insertion Example

• Root is 4-node, must split.

68

22

25

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

28

30

60

Insertion Example

• Continue with inserting an item with key = 13.

69

22

25

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

28

30

60

Insertion Example

• Continue with inserting an item with key = 13.

70

22

25

70 80

10 17 24 52 62 65 95

48

40 41 72 29 26 27

28

30

60

Insertion Example

• Continue with inserting an item with key = 13.

71

22

25

70 80

10 13 17 24 52 62 65 95

48

40 41 72 29 26 27

28

30

60

Deletion on 2-3-4 Trees

• More complicated.

• The book does not cover it.

• We will not cover it.

• If you care, you can look it up on Wikipedia.

72

Red-Black Trees

• Red black trees are an alternative way to
view/implement 2-3-4 trees.

• Red links: bind together 3-nodes and 4-nodes into
small binary trees.

• Black links: bind the tree together.

73

