Example Algorithms

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Examples of Algorithms

Union-Find.
Binary Search.
Selection Sort.

What each of these algorithms does is the
next topic we will cover.

Connectivity: An Example

Suppose that we have a large number of
computers, with no connectivity.

— No computer is connected to any other computer.

We start establishing direct computer-to-
computer links.
We define connectivity(A, B) as follows:

— If A and B are directly linked, they are connected.

— If A and B are connected, and B and C are
connected, then A and C are connected.

Connectivity is transitive.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

 How do we tell the computer? What do we need to
provide?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.
— Every time we establish a link between two

computers, we tell our program about that link.

 How do we tell the computer? What do we need to
provide?

* Answer: we need to provide two integers, specifying
the two computers that are getting linked.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

 What does it mean that "connectivity changed"?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.
 What does it mean that "connectivity changed"?

* It means that there exist at least two computers X and Y
that were not connected before the new link was in
place, but are connected now.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

e Can you come up with an example where the new link
does not change connectivity?

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

e Can you come up with an example where the new link
does not change connectivity?

* Suppose we have computers 1, 2, 3, 4. Suppose 1 and 2
are connected, and 2 and 3 are connected. Then,
directly linking 1 to 3 does not add connectivity.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

— How do we do that?

A Useful Connectivity Property

* Suppose we have N computers.

e At each point (as we establish links), these N
computers will be divided into separate
networks.

— All computers within a network are connected.
— If computers A and B belong to different networks,
they are not connected.

e Each of these networks is called a connected
component.

Initial Connectivity

* Suppose we have N computers.

* Before we have established any links, how
many connected components do we have?

Initial Connectivity

* Suppose we have N computers.
* Before we have established any links, how
many connected components do we have?

— N components: each computer is its own
connected component.

Labeling Connected Components

* Suppose we have N computers.

* Suppose we have already established some
links, and we have K connected components.

* How can we keep track, for each computer,
what connected component it belongs to?

Labeling Connected Components

Suppose we have N computers.

Suppose we have already established some links, and
we have K connected components.

How can we keep track, for each computer, what
connected component it belongs to?
— Answer: maintain an array id of N integers.

— id[p] will be the ID of the connected component of
computer p (where p is an integer).

— For convenience, we can establish the convention that the
ID of a connected component X is just some integer p such
that computer p belongs to X.

The Union-Find Problem

 We want a program that behaves as follows:
— Each computer is represented as a number.
— We start our program.

— Every time we establish a link between two
computers, we tell our program about that link.

— We want the program to tell us if the new link has
changed connectivity or not.

— How do we do that?

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were already connected, we do not need to
do anything.

— How can we check if they were already
connected?

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and

q:

— The new link means p and g are connected.

— If they were already connected, we do not need to
do anything.

— How can we check if they were already
connected?

* Answer: id[p] == id[q]

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were not already connected, then the
connected components of p and g need to be
merged.

Union-Find: First Solution

It is rather straightforward to come up with a
brute force method:

Every time we establish a link between p and
q:
— The new link means p and g are connected.

— If they were not already connected, then the
connected components of p and g need to be
merged.

— We can go through each computeriin the
network, and if id[i] == id[p], we set id[i] = id[q].

Union-Find: First Solution

#include <stdio.h>
#define N 10000
main ()
{ int i, p, q, t, id[N];
for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d\n", &p, &q) == 2)
{
if (id[p] == id[qgq]) continue;
for (t = id[p], 1 = 0; i < N; i++)
if (id[i] == t) id[i] = id[q];

printf (" %d %d\n", p, q);

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.

* What is the best case, that will lead to faster
execution?

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.

 What is the best case, that will lead to faster
execution?

— Best case: all links are identical, we only need to
do one union. Then, we need at least N
Instructions.

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.

e What is the worst case, that will lead to the
slowest execution?

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.

e What is the worst case, that will lead to the
slowest execution?

— Worst case: each link requires a new union
operation. Then, we need at least N*L
instructions, where L is the number of links.

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.
— L is the number of links.

e Source of variance: M. In the best case, M =
???. In the worst case, M = ??7.

Time Analysis

* The first solution to the Union-Find problem
takes at least M*N instructions, where:

— N is the number of objects.
— M is the number of union operations.
— L is the number of links.

e Source of variance: M. In the best case, M = 1.
In the worst case, M = L.

The Find and Union Operations

find: given an object p, find out what set it belongs
to.

union: given two objects p and q, unite their two
sets.

Time complexity of find in our first solution:
— 7?7

Time complexity of union in our first solution:
— 2?7

The Find and Union Operations

find: given an object p, find out what set it belongs
to.

union: given two objects p and q, unite their two
sets.
Time complexity of find in our first solution:

— Just checking id[p].

— One instruction in C, a constant number of instructions on
the CPU.

Time complexity of union in our first solution:

— At least N instructions, if p and g belong to different sets.

Rewriting First Solution With Functions
- Part 1

#include <stdio.h>

#define N 10 /* Made N smaller, so we can print all ids */

/* returns the set id of the object. */
int find(int object, int id[])
{

return id[object];

/* unites the two sets specified by set idl and set id2*/
void set union(int set idl, int set id2, int id[], int size)
{
int i;
for (1 = 0; i < size; i++)
if (id[i] == set idl) id[i] = set id2;

Rewriting First Solution With Functions
- Part 2

main ()
{ int p, q, i, id[N], p_id, g id;
for (i = 0; i < N; i++) id[i] = i;
while (scanf("%d %d", &p, &q) == 2)
{
p_id = find(p, id); gq_id = find(q, id);
if (p_id == q_id)
{
printf (" %d and %d were on the same set\n", p, q);
continue;
}
set union(p _id, g id, id, N);
printf (" %d %d link led to set union\n", p, q);
for (i = 0; i < N; i++)
printf (" id[%d] = %d\n", i, id[i]);
}

Why Rewrite?

The rewritten code makes the find and union
operations explicit.

We can replace find and union as we wish,
and we can keep the main function
unchanged.

Note: union is called set_union in the code,
because union is a reserved keywords in C.

Next: try different versions of find and union,
to make the code more efficient.

Next Version

id[p] will not point to the set_id of p.
— It will point to just another element of the same set.
— Thus, id[p] initiates a sequence of elements:

— id[p] = p2, id[p2] = p3, ..., id[pn] = pn
This sequence of elements ends when we find an
element pn such that id[pn] = pn.

We will call this pn the id of the set.
This sequence is not allowed to contain cycles.
We re-implement find and union to follow these rules.

Second Version

int find(int object, int id[])
{ int next object;

next object = id[object];

while (next object != id[next object])
next object = id[next object];

return next object;

/* unites the two sets specified by set idl and set id2 */
void set union(int set idl, int set id2, int id[], int size)
{

id[set idl] = set id2;

id Array Defines Trees of Pointers

By drawing out what points to what in the id array,
we obtain trees.
— Each connected component corresponds to a tree.
— Each object p corresponds to a node whose parent is id[p].
— Exception: if id[p] == p, then p is the root of a tree.

In first version of Union-Find, a connected
component of two or more objects corresponded to
a tree with two levels.

Now, a connected component of n objects (n >= 2)
can have anywhere from 2 to n levels.

See textbook figures 1.4, 1.5 (pages 13-14).

Time Analysis of Second Version

e How much time does union take?
e How much time does find take?

Time Analysis of Second Version

e How much time does union take?

— a constant number of operations (which is the
best result we could hope for).

e How much time does find take?

— find(p) needs to find the root of the tree that p
belongs to. This needs at least as many
instructions as the distance from p to the root of
the tree.

Time Analysis of Second Version

e Worst case?

Time Analysis of Second Version

* Worst case: we process M links in this order:
- 10
— 21
— 32
— M M-1

 Then, how will the ids look after we process each
link?

Time Analysis of Second Version

* Worst case: we process M links in this order:
- 10
— 21
— 32
— M M-1
* Then, how will the ids look after we process the m-th
link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

Time Analysis of Second Version

* Worst case: we process links in this order:
—-10,21,32,.. MM-1.

 Then, how will the ids look after we process each
link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

* How many instructions will find take?

Time Analysis of Second Version

Worst case: we process links in this order:
—-10,21,32,.. MM-1.

Then, how will the ids look after we process each link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

How many instructions will find take?

— at least m instructions for the m-th link.
Total?

Time Analysis of Second Version

Worst case: we process links in this order:
—-10,21,32,.. MM-1.

Then, how will the ids look after we process each link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

How many instructions will find take?

— at least m instructions for the m-th link.

Total?1+2+3+..+M=0.5*M * (M+1). So, at least
0.5 * MZ instructions. Quadratic in M.

Compare to first version: M*N. Which is better?

Time Analysis of Second Version

Worst case: we process links in this order:
—-10,21,32,.. MM-1.

Then, how will the ids look after we process each link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

How many instructions will find take?

— at least m instructions for the m-th link.

Total?1+2+3+..+M=0.5*M * (M+1). So, at least
0.5 * MZ instructions. Quadratic in M.

Compare to first version: M*N. Which is better?
— The new version, if M < N.

Time Analysis of Second Version

Worst case: we process links in this order:
—-10,21,32,.. MM-1.

Then, how will the ids look after we process each link?
— id[m] = m-1, id[m-1] = m-2, id[m-2] = m-3, ...

What if M > N?

Then the number of instructions is:
1+2+3+...+N+N+...+N.

Still better than first version (where we need M*N
instructions). Compare:

1+2+4+3+..+N+N+..+N (second version)
N+N+N+..+N+N+..+N (first version)

Third Version

 find: same as in second version.

* union: always change the id of the smaller set to that
of the larger one.

— How do we know which set is smaller?

Third Version

* find: same as in second version.
* union: always change the id of the smaller set to that
of the larger one.

— How do we know which set is smaller?
— Use a new array, that keeps track of the size of each set.

Third Version

 find: same as in second version.

* union: always change the id of the smaller set to that
of the larger one.

void set union(int set_idl, int set id2, int id[], int sz[])
{ 1f (sz[set_idl] < sz[set id2])
{
id[set idl] set id2;
sz[set id2] += sz[set idl];
}
else
{
id[set id2] set idl;
sz[set idl] += sz[set id2];
}

Third Version

main ()
{ int p, q, i1, id[N], sz[n], p_id, q _id;
for (i = 0; i < N; i++)
{ id[i] = 1i; sz[i] = 1; }
while (scanf("%d %d", &p, &q) == 2)
{ p id = find(p, id); g id = find(q, id);
if (p_id == g_id)
{
printf (" %d and %d were on the same set\n", p, q);
continue;
}
set union(p_id, q id, id, sz);
printf (" %d %d link led to set union\n", p, q);
for (i = 0; 1 < N; i++)
{ printf (" id[%d] = %d\n", i, id[i]); }

Time Analysis of Third Version

 What is the key effect of considering the size of the
two sets?

Time Analysis of Third Version

What is the key effect of considering the size of the
two sets?

We get flatter trees. When we merge two trees, we
avoid creating long chains.

How does that improve running time?

Time Analysis of Third Version

What is the key effect of considering the size of the
two sets?

We get flatter trees. When we merge two trees, we
avoid creating long chains.

How does that improve running time?

For a connected component of n objects, find will
need at most log n operations.
— Remember, log is always base 2.

Thus, now we need how many steps in total, for all
the find operations in the program?

Time Analysis of Third Version

What is the key effect of considering the size of the
two sets?

We get flatter trees. When we merge two trees, we
avoid creating long chains.

How does that improve running time?

For a connected component of n objects, find will
need at most log n operations.

— Remember, log is always base 2.

Thus, now we need at most M * log N steps in total.

Optional: Fourth Version

* As we go through a tree during a find operation,
flatten the tree at the same time.

int find(int object, int id[])
{

int next object;

next object = id[object];

while (next object != id[next object])

{
id[next object] = id[id[next object]];
next object = id[next object];

}

return next object;

}

Optional: Fourth Version

* After repeated find operations, trees get flatter and
flatter, and closer to the best case (two levels).

int find(int object, int id[])
{

int next object;

next object = id[object];

while (next object != id[next object])

{
id[next object] = id[id[next object]];
next object = id[next object];

}

return next object;

}

Optional: Fourth Version

 When all trees are flat (2 levels), how many
operations does a single find take?

Optional: Fourth Version

When all trees are flat (2 levels), how many
operations does a single find take?

It just needs to check id[p]. The number of
operations does not depend on the size of the
connected component, or the total number of
objects.

When the number of operations does not depend on
any variables, we say that the number of operations
IS constant.

A constant number of operations is algorithmically
the best case we can ever hope for.

Next Problem: Membership Search

* We have a set S of N objects.

* Given an object v, we want to determine if v is
an element of S.

* For simplicity, now we will only handle the
case where objects are integers.

— It will become apparent later in the course that
the solution actually works for much more general
types of objects.

e Can anyone think of a simple solution for this
problem?

Sequential Search

We have a set S of N objects.

Given an object v, we want to determine if v is
an element of S.

Sequential search:

— Compare v with every element of S.

How long does this take?

Sequential Search

We have a set S of N objects.

Given an object v, we want to determine if v is
an element of S.
Sequential search:

— Compare v with every element of S.

How long does this take?

— IfvisinS, we need on average to compare v with
|S|/2 objects.

— Ifvis notin S, we need compare v with all |S|
objects.

Sequential Search - Version 2

 Assume that S is sorted in ascending order (this is an
assumption that we did not make before).
e Sequential search, version 2:

— Compare v with every element of S, till we find the first
element s such that s >=w.

— Then, if s = v we can safely say that vis notin S.

* How long does this take?

Sequential Search - Version 2

Assume that S is sorted in ascending order (this is an
assumption that we did not make before).

Sequential search, version 2:

— Compare v with every element of S, till we find the first
element s such that s >=w.

— Then, if s = v we can safely say that vis notin S.

How long does this take?

— We need on average to compare v with |S|/2 objects,
regardless of whether visin S or not.

A little bit better than when S was not sorted, but
only by a factor of 2, only when vis not in S.

Binary Search

Again, assume that S is sorted in ascending order.

At first, if visin S, v can appear in any position, from
0 to N-1 (where N is the size of S).

Let's call left the leftmost position where v may be,
and right the rightmost position where v may be.

Initially:

— left=0

—right=N-1

Now, suppose we compare v with S[N/2].

— Note: if N/2 is not an integer, round it down.
— What can we say about left and right?

Binary Search

Initially:

— left=0

— right=N-1

Now, suppose we compare v with S[N/2].
— What can we say about left and right?

f v ==S[N/2], we found v, so we are done.
fv<S[N/2], then right =N/2 - 1.
fv>S[N/2], then left=N/2 + 1.

mportance: We have reduced our search range in
nalf, with a single comparison.

/* Determines if v is an element of S.

*/

Binary Search - Code

If yes, it returns the position of v in a.

If not, it returns -1.

N is the size of S.

int search(int S[], int N, int v)

{

int left, right;

left = 0; right = N-1;
while (right >= left)

{ int m = (left+right)/2;

if (v == S[m]) return m;

if (v < S[m]) right = m-1; else left

}

return -1;

= m+l;

Time Analysis of Binary Search

How many elements do we need to compare v
with, if S contains N objects?

At most log(N).

This is what we call logarithmic time
complexity.

While constant time is the best we can hope,
we are usually very happy with logarithmic
time.

Next Problem - Sorting

e Suppose that we have an array of items (numbers,
strings, etc.), that we want to sort.

* Why would we want to sort?

Next Problem - Sorting

Suppose that we have an array of items (numbers,
strings, etc.), that we want to sort.

Why would we want to sort?

— To use in binary search.

— To compute rankings, statistics (top-10, top-100, median).
Sorting is one of the most common operations in
software.

In this course we will do several different sorting
algorithms, with different properties.

Today we will look at one of the simplest: Selection
Sort.

Selection Sort

First step: find the smallest element, and exchange it
with element at position O.

Second step: find the second smallest element, and
exchange it with element at position 1.

n-th step: find the n-th smallest element, and
exchange it with element at position n-1.

If we do this |S| times, then S will be sorted.

Selection Sort - Code

* For simplicity, we only handle the case where the
items are integers.

/* sort array S in ascending order.
N is the number of elements in S. */
void selection(int S[], int N)
{ int 1, j, temp;
for (i = 0; 1 < N; 1i++)
{ int min = 1i;
for (jJ = i+1l; jJ < N; jJ++)
if (S[Jj] < S[min]) min = j;
temp = S[min]; S[min] = S[i]; S[1i] = temp;

Selection Sort - Time Analysis

First step: find the smallest element, and exchange it
with element at position O.

— We need N-1 comparisons.

Second step: find the second smallest element, and
exchange it with element at position 1.

— We need N-2 comparisons.

n-th step: find the n-th smallest element, and
exchange it with element at position n-1.

— We need N-n comparisons.

Total: (N-1) + (N-2) + (N-3) + ... + 1 = about 0.5 * N2
comparisons.

Selection Sort - Time Analysis

e Total: (N-1) + (N-2) + (N-3) + ... + 1 = about 0.5 * N?
comparisons.

* Quadratic time complexity.

e Commonly used sorting algorithms are a bit more
complicated, but have N * log(N) time complexity,
which is much better (as N gets large).

