Analysis of Algorithms

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Analysis of Algorithms

Given an algorithm, some key questions to ask are:
— How efficient is this algorithm?
— Can we predict its running time on specific inputs?

— Should we use this algorithm or should we use an
alternative?

— Should we try to come up with a better algorithm?

Chapter 2 establishes some guidelines for answering
these questions.

Using these guidelines, sometimes we can obtain
easy answers.

— At other times, getting the answers may be more difficult.

Empirical Analysis

* This is an alternative to the more mathematically
oriented methods we will consider.

* Running two alternative algorithms on the same data
and comparing the running times can be a useful
tool.

— 1 second vs. one minute is an easy-to-notice difference.

 However, sometimes empirical analysis is not a good
option.

— For example, if it would take days or weeks to run the
programs.

Data for Empirical Analysis

e How do we choose the data that we use in the
experiments?

Data for Empirical Analysis

e How do we choose the data that we use in the
experiments?

— Actual data.
* Pros:
* Cons:
— Random data.
* Pros:
* Cons:
— Perverse data.

* Pros:
e Cons:

Data for Empirical Analysis

e How do we choose the data that we use in the
experiments?

— Actual data.
* Pros: give the most relevant and reliable estimates of performance.
e Cons: may be hard to obtain.

— Random data.
* Pros: easy to obtain, make the estimate not data-specific.

e Cons: may be too unrealistic.

— Perverse data.

* Pros: gives us worst case estimate, so we can obtain guarantees of
performance.

e Cons: the worst case estimate may be much worse than average
performance.

Comparing Running Times

When comparing running times of two implementations,
we must make sure the comparison is fair.

We are often much more careful optimizing "our"
algorithm compared to the "competitor" algorithm.

Implementations using different programming languages
may tell us more about the difference between the
languages than the difference between implementations.

An easier case is when both implementations use mostly
the same codebase, and differ in a few lines.

— Example: the different implementations of Union-Find in
Chapter 1.

Avoid Insufficient Analysis

* Not performing analysis of algorithmic performance
can be a problem.

— Many (perhaps the majority) of programmers have no
background in algorithms.

— People with background in algorithmic analysis may be too
lazy, or too pressured by deadlines, to use this background.
* Unnecessarily slow software is a common
conseguence when skipping analysis.

Avoid Excessive Analysis

 Worrying too much about algorithm performance
can also be a problem.
— Sometimes, slow is fast enough.

— A user will not even notice an improvement from a
millisecond to a microsecond.

— The time spent optimizing the software should never
exceed the total time saved by these optimizations.

* E.g., do not spend 20 hours to reduce running time by 5 hours on a
software that you will only run 3 times and then discard.

* Ask yourself: what are the most important
bottlenecks in my code, that | need to focus on?

e Ask yourself: is this analysis worth it? What do |
expect to gain?

Mathematical Analysis of Algorithms

 Some times it may be hard to mathematically predict
how fast an algorithm will run.

 However, we will study a relatively small set of
techniques that applies on a relatively broad range of
algorithms.

* First technique: find key operations and key quantities.

— ldentify the important operations in the program that
constitute the bottleneck in the computations.

* This way, we can focus on estimating the number of times these
operations are performed, vs. trying to estimate the number of CPU
instructions and/or nanoseconds the program will take.

— ldentify a few key quantities that measure the size of the data
that determine the running time.

Finding Key Operations

 We said it is a good idea to identify the important
operations in the code, that constitute the
bottleneck in the computations.

e How can we do that?

Finding Key Operations

 We said it is a good idea to identify the important
operations in the code, that constitute the
bottleneck in the computations.

* How can we do that?
— One approach is to just think about it.

— Another approach is to use software profilers, which show
how much time is spent on each line of code.

Finding Key Operations

 What were the key operations for Union Find?
— 7?7

 What were the key operations for Binary Search?
— 7?7

 What were the key operations for Selection Sort?
— 7?7

Finding Key Operations

What were the key operations for Union Find?
— Checking and changing ids in Find.
— Checking and changing ids in Union.

What were the key operations for Binary Search?

— Comparisons between numbers.

What were the key operations for Selection Sort?

— Comparisons between numbers.

In all three cases, the running time was proportional
to the total number of those key operations.

Finding Key Quantities

We said that it is a good idea to identify a few key
guantities that measure the size of the data and that
are the most important in determining the running
time.

What were the key quantities for Union-Find?
— 7?7

What were the key quantities for Binary Search?
— 2?7

What were the key quantities for Selection Sort?
—?2??

Finding Key Quantities

We said that it is a good idea to identify a few key
guantities that measure the size of the data and that
are the most important in determining the running
time.

What were the key quantities for Union-Find?
— Number of nodes, number of edges.

What were the key quantities for Binary Search?

— Size of the array.

What were the key quantities for Selection Sort?

— Size of the array.

Finding Key Quantities

* These key quantities are different for each set of data
that the algorithm runs on.

* Focusing on these quantities greatly simplifies the
analysis.

— For example, there is a huge number of integer arrays of
size 1,000,000, that could be passed as inputs to Binary
Search or to Selection Sort.

— However, to analyze the running time, we do not need to
worry about the contents of these arrays (which are too

diverse), but just about the size, which is expressed as a
single number.

Describing Running Time

Rule: most algorithms have a primary parameter N,
that measures the size of the data and that affects
the running time most significantly.

Example: for binary search, N is ???
Example: for selection sort, N is ??7

Example: for Union-Find, N is ??7?

Describing Running Time

Rule: most algorithms have a primary parameter N,
that measures the size of the data and that affects
the running time most significantly.

Examp
Examp
Examp

e: for binary search, N is the size of the array.
e: for selection sort, N is the size of the array.
e: for Union-Find, N is ???

— Union-Find is one of many exceptions.

— Two key parameters, number of nodes, and number of
edges, must be considered to determine the running time.

Describing Running Time

* Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

* When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

 Why proportional and not equal?

Describing Running Time

Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

Why proportional and not equal?
Because the actual running time is not a defining
characteristic of an algorithm.

— Running time depends on programming language, actual
implementation, compiler used, machine executing the

code, ...

Describing Running Time

* Rule: most algorithms have a primary parameter N,
that affects the running time most significantly.

* When we analyze an algorithm, our goal is to find a
function f(N), such that the running time of the
algorithm is proportional to f(N).

e We will now take a look at the most common
functions that are used to describe running time.

The Constant Function: f(N) = 1

 f(N) = 1. What does it mean to say that the running
time of an algorithm is described by 1°?

The Constant Function: f(N) = 1

 f(N) = 1. What does it mean to say that the running
time of an algorithm is described by 1°?

* |t means that the running time of the algorithm is
proportional to 1, which means...

The Constant Function: f(N) = 1

f(N) = 1: What does it mean to say that the running
time of an algorithm is described by 1°?

It means that the running time of the algorithm is
proportional to 1, which means...

— that the running time is constant, or at least bounded by a
constant.
This happens when all instructions of the program
are executed only once, or at least no more than a
certain fixed number of times.

If f(N) = 1, we say that the algorithm takes constant
time. This is the best case we can ever hope for.

The Constant Function: f(N) = 1

 What algorithm (or part of an algorithm) have we
seen whose running time is constant?

The Constant Function: f(N) = 1

 What algorithm (or part of an algorithm) have we
seen whose running time is constant?

* The find operation in the quick-find version of Union-
Find.

Logarithmic Time: f(N) = log N

* f(N) = log N: the running time is proportional to the
logarithm of N.

 How good or bad is that?

Logarithmic Time: f(N) = log N

* f(N) = log N: the running time is proportional to the
logarithm of N.
 How good or bad is that?
— log 1000 ~= ?7??,
— The logarithm of one million is about ???.
— The logarithm of one billion is about ?7??.
— The logarithm of one trillion is about ???.

Logarithmic Time: f(N) = log N

f(N) = log N: the running time is proportional to the
logarithm of N.

How good or bad is that?

— log 1000 ~=10.

— The logarithm of one million is about 20.
— The logarithm of one billion is about 30.
— The logarithm of one trillion is about 40.

Function log N grows very slowly:

This means that the running time when N = one
trillion is only four times the running time when N =
1000. This is really good scaling behavior.

Logarithmic Time: f(N) = log N

* If f(N) =log N, we say that the algorithm takes
logarithmic time.

 What algorithm (or part of an algorithm) have we
seen whose running time is proportional to log N?

Logarithmic Time: f(N) = log N

If f(N) = log N, we say that the algorithm takes
logarithmic time.

What algorithm (or part of an algorithm) have we
seen whose running time is proportional to log N?

Binary Search.

The Find function on the weighted-cost quick-union
version of Union-Find.

Logarithmic Time: f(N) = log N

* Logarithmic time commonly occurs when solving a
big problem is solved in a sequence of steps, where:

— Each step reduces the size of the problem by some
constant factor.

— Each step requires no more than a constant number of
operations.
* Binary search is an example:
— Each step reduces the size of the problem by a factor of 2.

— Each step requires only one comparison, and a few
variable updates.

Linear Time: f(N) = N

f(N) = N: the running time is proportional to N.

This happens when we need to do some fixed
amount of processing on each input element.

What algorithms (or parts of algorithms) are
examples?

Linear Time: f(N) = N

f(N) = N: the running time is proportional to N.

This happens when we need to do some fixed
amount of processing on each input element.

What algorithms (or parts of algorithms) are
examples?

— The Union function in the quick-find version of Union-Find.

— Sequential search for finding the min or max value in an
array.

— Sequential search for determining whether a value
appears somewhere in an array.

* |Is this ever useful? Can't we always just do binary search?

Linear Time: f(N) = N

f(N) = N: the running time is proportional to N.

This happens when we need to do some fixed
amount of processing on each input element.

What algorithms (or parts of algorithms) are
examples?

— The Union function in the quick-find version of Union-Find.

— Sequential search for finding the min or max value in an
array.

— Sequential search for determining whether a value
appears somewhere in an array.

* |Is this ever useful? Can't we always just do binary search?
 If the array is not already sorted, binary search does not work.

N log N Time

f(N) = N log N: the running time is proportional to
N log N.

This running time is commonly encountered, especially
in algorithms working as follows:

— Break problem into smaller subproblems.
— Solve subproblems independently.
— Combine the solutions of the subproblems.

Many sorting algorithms have this complexity.

Comparing linear to N log N time.
— N =1 million, N log N is about ???
— N =1 billion, N log N is about ???
— N =1 trillion, N log N is about ???

N log N Time

* Comparing linear to N log N time.

— N =1 million, N log N is about 20 million.
— N =1 billion, N log N is about 30 billion.
— N =1 trillion, N log N is about 40 trillion.

* Nlog N is worse than linear time, but not by much.

Quadratic Time

f(N) = N2: the running time is proportional to the
square of N.

In this case, we say that the running time is quadratic
to N.

Any example where we have seen quadratic time?

Quadratic Time

f(N) = N2: the running time is proportional to the
square of N.

In this case, we say that the running time is quadratic
to N.

Any example where we have seen quadratic time?
— Selection Sort.

Quadratic Time

Comparing linear, N log N, and quadratic time.

10° (1 million) about 20 million 10'? (one trillion)
10° (1 billion) about 30 billion 10 (one quintillion)
102 (1 trillion) about 40 trillion 10%* (one septillion)

Quadratic time algorithms become impractical (too slow)
much faster than linear and N log N time algorithms.

Of course, what we consider "impractical” depends on
the application.
— Some applications are more tolerant of longer running times.

41

Cubic Time

f(N) = N3: the running time is proportional to the
cube of N.

In this case, we say that the running time is cubic to
N.

Cubic Time

* Example of a problem whose solution has cubic
running time: the assignment problem.
— We have two sets A and B. Each set contains N items.

— We have a cost function C(a, b), assigning a cost to
matching an item a of A with an item b of B.

— Find the optimal one-to-one correspondence (i.e., a way to
match each element of A with one element of B and vice
versa), so that the sum of the costs is minimized.

Cubic Time

 Wikipedia example of the assignment problem:
— We have three workers, Jim, Steve, and Alan.
— We have three jobs that need to be done.
— There is a different cost associated with each worker doing

each job.
Clean EE
bathroom | floors
Jim $1 $3 S3

Steve $3 $2 S3
Alan $3 $4 S2

— What is the optimal job assignment?

e Cubic running time means that it is too slow to solve
this problem for, let's say, N = 1 million.

44

Exponential Time

f(N) = 2N: this is what we call exponential running time.
Such algorithms are usually too slow unless N is small.

Even for N = 100, 2N is too large and the algorithm will
not terminate in our lifetime, or in the lifetime of the
Universe.

Exponential time arises when we try all possible
combinations of solutions.

— Example: travelling salesman problem: find an itinerary that
goes through each of N cities, visits no city twice, and
minimizes the total cost of the tickets.

Quantum computers (if they ever arrive) may solve
some of these problems with manageable running time.

Some Useful Constants and Functions

ELEEN T these tables are for reference.

e 2.71828... We may use such symbols and
v (gamma) 0.57721.. functions as we discuss
specific algorithms.
¢ (phi) (1++/5)/2=1.61803...
function |name |approximation _
|x] floor function X
[x] ceiling function X
Fa Fibonacci numbers &N/ /5
Hy harmonic numbers In(N) +vy
N! factorial function (N/e)N

lg(N!) N Ig(N) - 1.44N

46

Motivation for Big-Oh Notation

Given an algorithm, we want to find a function that describes
the running time of the algorithm.

Key question: how much data can this algorithm handle in a
reasonable time?

There are some details that we would actually NOT want this
function to include, because they can make a function
unnecessarily complicated.

— Constants.

— Behavior fluctuations on small data.

The Big-Oh notation, which we will see in a few slides,
achieves that, and greatly simplifies algorithmic analysis.

Why Constants Are Not Important

* Does it matter if the running time is f(N) or 5*f(N)?

Why Constants Are Not Important

* Does it matter if the running time is f(N) or 5*f(N)?

* For the purposes of algorithmic analysis, it typically
does NOT matter.

e Constant factors are NOT an inherent property of the
algorithm. They depend on parameters that are
independent of the algorithm, such as:

— Choice of programming language.

— Quality of the code.

— Choice of compiler.

— Machine capabilities (CPU speed, memory size, ...)

Why Asymptotic Behavior Matters

* Asymptotic behavior: The behavior of a function as
the input approaches infinity.

h*f(N)
c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N 50

Why Asymptotic Behavior Matters

* Which of these functions works best asymptotically?

N: Size of data

h*f(N)

Running Time for input of size N

c*f(N)

g(N)

f(N)

51

Why Asymptotic Behavior Matters

* Which of these functions works best asymptotically?
— g(N) seems to grow VERY slowly after a while.

h*f(N)
c*f(N)

g(N)

N: Size of data

f(N)

Running Time for input of size N

Big-Oh Notation

A function g(N) is said to be O(f(N)) if there exist
constants ¢, and N, such that:

g(N) <c,f(N) forallN>N,.

THIS IS THE SINGLE MOST IMPORTANT THING YOU
LEARN IN THIS COURSE.

Typically, g(N) is the running time of an algorithm, in
your favorite units, implementation, and machine.
This can be a rather complicated function.

In algorithmic analysis, we try to find a f(N) that is
simple, and such that g(N) = O(f(N)).

Why Use Big-Oh Notation?

e A function g(N) is said to be O(f(N)) if there exist
constants ¢, and N, such that:

g(N) <c,f(N) forallN>N,.

* The Big-Oh notation greatly simplifies the analysis
task, by:
1. lIgnoring constant factors. How is this achieved?

* By the ¢, in the definition. We are free to choose ANY constant ¢,
we want, to make the formula work.

* Thus, Big-Oh notation is independent of programming language,
compiler, machine performance, and so on...

Why Use Big-Oh Notation?

e A function g(N) is said to be O(f(N)) if there exist
constants ¢, and N, such that:

g(N) <c,f(N) forallN>N,.

* The Big-Oh notation greatly simplifies the analysis
task, by:
2. lgnoring behavior for small inputs. How is this achieved?

* By the N, in the implementation. If a finite number of values are
not compatible with the formula, just ignore them.

* Thus, big-Oh notation focuses on asymptotic behavior.

Why Use Big-Oh Notation?

e A function g(N) is said to be O(f(N)) if there exist
constants ¢, and N, such that:

g(N) <c,f(N) forallN>N,.

* The Big-Oh notation greatly simplifies the analysis
task, by:
3. Allowing us to describe complex running time behaviors
of complex algorithms with simple functions, such as N,
log N, N2, 2N, and so on.

Such simple functions are sufficient for answering many
important questions, once you get used to Big-Oh notation.

Inferences from Big-Oh Notation

* Binary search takes logarithmic time.

* This means that, if g(N) is the running time, there
exist constants ¢, and N, such that:

g(N) <c,log(N) forall N>N,.

e Can this function handle trillions of data in reasonable
time?
— NOTE: the question is about time, not about memory.

Inferences from Big-Oh Notation

Binary search takes logarithmic time.

This means that, if g(N) is the running time, there
exist constants ¢, and N, such that:

g(N) <c,log(N) forall N>N,.

Can this function handle trillions of data in reasonable
time?
— NOTE: the question is about time, not about memory.
The answer is an easy YES!
— We don't even know what c, and Njare, and we don't care.
— The key thing is that the running time is O(log(N)).

Inferences from Big-Oh Notation

e Selection Sort takes quadratic time.

* This means that, if g(N) is the running time, there
exist constants ¢, and N, such that:

g(N) <c,N? forallN>N,.

e Can this function handle one billion data in
reasonable time?

Inferences from Big-Oh Notation

Selection Sort takes quadratic time.

This means that, if g(N) is the running time, there
exist constants ¢, and N, such that:

g(N) <c,N? forallN>N,.

Can this function handle one billion data in
reasonable time?

The answer is an easy NO!
— Again, we don't know what c,and N, are, and we don't care.

— The key thing is that the running time is quadratic.

Is Big-Oh Notation Always Enough?

 NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

Is Big-Oh Notation Always Enough?

NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

— Example 1: if we know that the algorithm will only be
applied to relatively small N, we may prefer a running time
of N? nanoseconds over log(N) centuries.

— Example 2: even constant factors can be important. For
many applications, we strongly prefer a running time of 3N
over 1500N.

Is Big-Oh Notation Always Enough?

NO! Big-Oh notation does not always tell us which of
two algorithms is preferable.

— Example 1: if we know that the algorithm will only be
applied to relatively small N, we may prefer a running time
of N? nanoseconds over log(N) centuries.

— Example 2: even constant factors can be important. For
many applications, we strongly prefer a running time of 3N
over 1500N.

* Big-Oh notation is not meant to tells us everything

about running time.

But, Big-Oh notation tells us a lot, and is often much
easier to compute than actual running times.

Simplifying Big-Oh Notation

e Suppose that we are given this running time:
g(N) = 35N? + 41N + log(N) + 1532.

 How can we express g(N) in Big-Oh notation?

Simplifying Big-Oh Notation

Suppose that we are given this running time:
g(N) = 35N? + 41N + log(N) + 1532.

How can we express g(N) in Big-Oh notation?
Typically we say that g(N) = O(N?).
The following are also correct, but unnecessarily
complicated, and thus less useful, and rarely used.
— g(N) = O(N?) + O(N).
— g(N) = O(N?) + O(N) + O(logN) + O(1).
— g(N) = O(35N? + 41N + log(N) + 1532).

Simplifying Big-Oh Notation

Suppose that we are given this running time:
g(N) = 35N? + 41N + log(N) + 1532.

We say that g(N) = O(N?).

Why is this mathematically correct?

— Why can we ignore the non-quadratic terms?

This is where the Big-Oh definition comes into play.
We can find an N, such that, for all N > N,;:
g(N) < 36N2.

— If you don't believe this, do the calculations for practice.

Simplifying Big-Oh Notation

Suppose that we are given this running time:
g(N) = 35N? + 41N + log(N) + 1532.

We say that g(N) = O(N?).

Why is this mathematically correct?

— Why can we ignore the non-quadratic terms?

Another way to show correctness: as N goes to
infinity, what is the limit of g(N) / N? ?

Simplifying Big-Oh Notation

Suppose that we are given this running time:
g(N) = 35N? + 41N + log(N) + 1532.

We say that g(N) = O(N?).

Why is this mathematically correct?

— Why can we ignore the non-quadratic terms?

Another way to show correctness: as N goes to
infinity, what is the limit of g(N) / N? ?
— 35.

— This shows that the non-quadratic terms become
negligible as N gets larger.

Trick Question

e Letg(N)=N log N.
* |sittrue that g(N) = O(N1%)?

Trick Question

Let g(N) = N log N.
s it true that g(N) = O(N1%9)?
Yes. Let's look again at the definition of Big-Oh:

A function g(N) is said to be O(f(N)) if there exist
constants c, and N, such that:

g(N) <c,f(N) forallN>N,.

Note the "<" sign to the right of g(N).

Thus, if g(N) = O(f(N)) and f(N) < h(N), it follows that
g(N) = O(h(N)).

Omega (QQ) and Theta (©) Notations

 Iff(N)=0(g(N)), then we also say that g(N) = Q(f(N)).

 Iff(N)=0(g(N)) and f(N)=Q(g(N)), then we say that
f(N) = ©(g(N)).

 The Theta notation is clearly stricter than the Big-Oh
notation:
— We can say that N? = O(N1%),
— We cannot say that N? = O(N1%?),

Using Limits

if i g(N)
|N1_)r£10()

— "Constant" includes zero, but does NOT include infinity.

is a constant, then g(N) = ???(f(N)).

JIN) _ =277
if 1\}1_)r£10 e oo then g(N) = ???(f(N)).

f(N)
if li
! N1—>nc}og()

— Again, "constant" includes zero, but not infinity.

is a constant, then g(N) = ???(f(N)).

f(N)
if li
! Nl—glog(N)

— In this definition, both zero and infinity are excluded.

is a non-zero constant, then g(N) = ???(f(N)).

Using Limits

if i g(N)
|N1_)r£10()

— "Constant" includes zero, but does NOT include infinity.

is a constant, then g(N) = O(f(N)).

FN) _ _
if A}l_)rglo i oo then g(N) = O(f(N)).
if lim —= () is a constant, then g(N) = Q(f(N)).
N-o0 g(N) ’

— Again, "constant" includes zero, but not infinity.

f(N)
if li
! Nl—glog(N)

— In this definition, both zero and infinity are excluded.

is a non-zero constant, then g(N) = ©(f(N)).

Using Limits - Comments

* The previous formulas relating limits to big-Oh
notation show once again that big-Oh notation
ignores:

— constants
— behavior for small values of N.

e How do we see that?

— In the previous formulas, it is sufficient that the limit is
equal to a constant. The value of the constant does not
matter.

— In the previous formulas, only the limit at infinity matters.
This means that we can ignore behavior up to any finite
value, if we need to.

Basic Recurrences

How do we compute the running time of an
algorithm in Big-Oh notation?

Sometimes it is easy, sometimes it is hard.

We will learn a few simple tricks that work in many
cases that we will encounter this semester.

Case 1: Check All Items, Eliminate One

* In this case, the algorithm proceeds in a sequence of
similar steps, where:

— each step loops through all items in the input, and
eliminates one item.

* Any examples of such an algorithm?

Case 1: Check All Items, Eliminate One

* In this case, the algorithm proceeds in a sequence of
similar steps, where:

— each step loops through all items in the input, and
eliminates one item.

* Any examples of such an algorithm?
— Selection Sort.

Case 1: Check All Items, Eliminate One

* Let g(N) be an approximate estimate of the running
time, measured in time units of our convenience.

— In this case, we choose as time unit the time that it takes
to examine one item.

— Obviously, this is a simplification, since there are other
things that such an algorithm will do, in addition to just
examining one item.

— That is one of the plusses of using Big-Oh notation. We can
ignore parts of the algorithm that take a relatively small
time to run, and focus on the part that dominates running
time.

Case 1: Check All Items, Eliminate One

e Let g(N) be the running time.
 Then, g(N) =7?7??

Case 1: Check All Items, Eliminate One

e Let g(N) be the running time.
 Then, g(N) = g(N-1) + N. Why?
— Because we need to examine all items (N units of time),
and then we need to run the algorithm on N-1 items.
* g(N) g(N-1) + N
g(N-2) + (N-1) + N
g(N-3) + (N-2) + (N-1) + N

1 +2+3+ ... + (N-1) + N

N(N + 1) / 2
O (N?)

* Conclusion: The algorithm takes quadratic time.

Case 2: Halve the Problem in
Constant Time

* |In this case, each step of the algorithm consists of:

— performing a constant number of operations, and then
reducing the size of the input by half.

* Any example of such an algorithm?

Case 2: Halve the Problem in
Constant Time

* |In this case, each step of the algorithm consists of:

— performing a constant number of operations, and then
reducing the size of the input by half.

* Any example of such an algorithm?
— Binary Search.

e What is a convenient unit of time to use here?

Case 2: Halve the Problem in
Constant Time

* |In this case, each step of the algorithm consists of:

— performing a constant number of operations, and then
reducing the size of the input by half.

* Any example of such an algorithm?
— Binary Search.

e What is a convenient unit of time to use here?

— The time it takes to do the constant number of operations
to halve the input.

Case 2: Halve the Problem in
Constant Time

* |In this case, each step of the algorithm consists of:

— performing a constant number of operations, and then
reducing the size of the input by half.

¢ g(2n) = 2727

Case 2: Halve the Problem in

Constant Time

In this case, each step of the algorithm consists of:

— performing a constant number of operations, and then
reducing the size of the input by half.

1
2
3

g(27)

n
n

+ g(271)
+ g(277?)
+ g(277)

+ g(2°)
+ 1.

O(n) time for N = 2",
Substituting n for log N: O(log N) time.

Case 3: Halve the Input in
Linear Time

* |In this case, each step of the algorithm consists of:

— Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.

¢ g(N) = 2?27

Case 3: Halve the Input in
Linear Time

* |In this case, each step of the algorithm consists of:

— Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.
e g(N) g(N/2) + N
g(N/4) + N/2 + N
g(N/8) + N/4 + N/2 + N

1 +2+4+ ... +N/4 +N/2 + N
2?7

Case 3: Halve the Input in
Linear Time

* |In this case, each step of the algorithm consists of:

— Performing a linear (i.e., O(N)) number of operations, and
then reducing the size of the input by half.
e g(N) g(N/2) + N
g(N/4) + N/2 + N
g(N/8) + N/4 + N/2 + N

1 +2+4+ ... +N/4 +N/2 + N
about 2N

* O(N) time.

Case 4: Break Problem Into Two
Halves in Linear Time

* |In this case, each step of the algorithm consists of:
— Doing O(N) operations to split the problem into two halves.
— Calling the algorithm recursively on each half.
— Doing O(N) operations to combine the two answers.
¢ g(N) = 2?77

Case 4: Break Problem Into Two
Halves in Linear Time

* |In this case, each step of the algorithm consists of:
— Doing O(N) operations to split the problem into two halves.
— Calling the algorithm recursively on each half.

— Doing O(N) operations to combine the two answers.
* g(N) 2g(N/2) + N
4g(N/4) + N + N
8g(N/8) + N + N + N

N log N

Case 4: Break Problem Into Two
Halves in Linear Time

* |In this case, each step of the algorithm consists of:
— Doing O(N) operations to split the problem into two halves.
— Calling the algorithm recursively on each half.
— Doing O(N) operations to combine the two answers.

* Note: we have not seen any examples of this case yet,
but we will see several such examples when we study
sorting algorithms.

Case 5: Break Problem Into Two
Halves in Constant Time

* |In this case, each step of the algorithm consists of:
— Doing O(1) operations to split the problem into two halves.
— Calling the algorithm recursively on each half.
— Doing O(1) operations to combine the two answers.
¢ g(N) = 2?77

Case 5: Break Problem Into Two
Halves in Constant Time

* |In this case, each step of the algorithm consists of:
— Doing O(1) operations to split the problem into two halves.
— Calling the algorithm recursively on each half.

— Doing O(1) operations to combine the two answers.
* g(N) 2g(N/2) + 1
4g(N/4) + 2 + 1
8g(N/8) + 4 + 2 + 1

about N

