
Elementary Data Structures:
Part 2: Strings, 2D Arrays, Graphs

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Strings

• What are strings, in general (independent of C)?

• Why do we care about strings?

2

Strings

• What are strings, in general (independent of C)?

– Data structures that store text.

• Why do we care about strings?

– Indispensable for text processing.

– Ubiquitous in programming.

• Strings can be implemented in various ways.

3

Strings

• What are strings, in general (independent of C)?

– Data structures that store text.

• Why do we care about strings?

– Indispensable for text processing.

– Ubiquitous in programming.

• Strings can be implemented in various ways.

• For the purposes of the textbook and this course, we
will use a specific definition:

• A string is an array of characters, that contains the
NULL character (ASCII code 0) at the end.

– The NULL character can ONLY appear at the end.
4

Limitations of Definition

• Our definition of strings is limited.

• It only supports characters represented in ASCII.

– Multilingual character sets are not supported.

• Strings are arrays, meaning that their maximum size
has to be fixed when they are created.

• However, our definition is sufficient for the purposes
of this course.

– The basic algorithms remain the same if we extend the
definition to support larger alphabets.

5

Strings and Arrays

• Strings are arrays. However, logically, we treat strings
as different data structures.

• Why are strings different than arrays?

6

Strings and Arrays

• Strings are arrays. However, logically, we treat strings
as different data structures.

• Why are strings different than arrays?

– The length of an array is defined as the length that we
specify when we create the array.

– The length of a string is defined to be the position of the
first occurrence of the NULL character.

• Obviously, if a string is an array, the MAXIMUM size
of the string must still be declared at creation time.

• However, when we talk about the "length" of the
string, we only care about the position of the first
occurrence of the NULL character. 7

Some Strings in C

char * s1 = "Monday";

char * s2 = malloc(1000 * sizeof(char));

strcpy(s2, "hello");

s1[0] == ??? s2[4] = ??? s2[5] = ???

• What is the length of s1?

• What is the length of s2?

8

Some Strings in C

char * s1 = "Monday";

char * s2 = malloc(1000 * sizeof(char));

strcpy(s2, "hello");

s1[0] == 'M' s2[4] = 'o' s2[5] = '\0' = 0.

• What is the length of s1? 6

• What is the length of s2? 5

• The length of a string is the number of characters, up
to and not including the first occurrence of the NULL
character.

9

strlen: Counting String Length

Function strlen takes a string as an argument, and
returns the length of the string.

How do we implement strlen?

int strlen(char * s)

10

strlen: Counting String Length

int strlen(char * s)

{

 int counter = 0;

 while (s[counter] != 0)

 {

 counter++;

 }

 return counter;

}

What is the time complexity?

11

strlen: Counting String Length

int strlen(char * s)

{

 int counter = 0;

 while (s[counter] != 0)

 {

 counter++;

 }

 return counter;

}

What is the time complexity? O(N), where N is the
length of the string.

12

strcpy: Making a String Copy

• Function strcpy takes two arguments:

– a string called "target" and a string called "source".

• The function copies the contents of source onto
target.

– The previous contents of target are overwritten.

• It is assumed that target has enough memory
allocated, no error checking is done.

How do we implement strcpy?

void strcpy(char * target, char * source)
13

strcpy: Making a String Copy

void strcpy(char * target, char * source)

{

 int counter = 0;

 while (source[counter] != 0)

 {

 target[counter] = source[counter];

 counter++;

 }

}

What is the time complexity?

14

strcpy: Making a String Copy

void strcpy(char * target, char * source)

{

 int counter = 0;

 while (source[counter] != 0)

 {

 target[counter] = source[counter];

 counter++;

 }

}

What is the time complexity? O(N), where N is the
length of the string.

15

copy_string: Alternative for strcpy

• Function string_copy takes as argument a string
called "source".

• The function creates and returns a copy of source.

– Memory is allocated as needed.

– Somewhat safer than strcpy, as here we do not need to
worry if we have enough memory for the result.

char * copy_string(char * source)

16

copy_string: Alternative for strcpy

char * copy_string(char * source)

{

 int length = strlen(source);

 char * result = malloc(length+1);

 strcpy1(result, source);

 return result;

}

17

strcmp: Comparing Two Strings

• Function strcmp takes two arguments: s1 and s2.

• The function returns:

– 0 if the contents are equal, letter by letter.
• NOT case-insensitive, case matters.

– A negative integer (not necessarily -1) if s1 is smaller than s2 at
the first position where they differ.

– A positive integer (not necessarily 1) if s1 is larger than s2 at at
the first position where they differ.

How do we implement strcmp?

int strcmp(char * s1, char * s2)

18

strcmp: Comparing Two Strings

int strcmp(char * s1, char * s2)

{

 int i = 0;

 while ((s1[i] != 0) && (s2[i] != 0))

 {

 if (s1[i] != s2[i]) return s1[i] - s2[i];

 i++;

 }

 return s1[i] - s2[i];

}

What is the time complexity?

19

strcmp: Comparing Two Strings

int strcmp(char * s1, char * s2)

{

 int i = 0;

 while ((s1[i] != 0) && (s2[i] != 0))

 {

 if (s1[i] != s2[i]) return s1[i] - s2[i];

 i++;

 }

 return s1[i] - s2[i];

}

What is the time complexity? O(N), where N is the
length of the shortest among the two strings.

20

String Equality

• People may mean several different things when they talk
about two strings being "equal".

• The convention that we follow in this course is that two
strings are equal if their contents are equal.
– The two strings must have the same length.

– The two strings must have the same letters (i.e., same ASCII codes) at
all positions up to the end (the first occurrence of the NULL character).

• Equivalent definition: two strings s1 and s2 are equal if and
only if strcmp(s1, s2) returns 0.

• This convention is different than:
– pointer equality: checking if the two strings point to the same location

in memory.

– case-insensitive equality, where lower-case letters and upper-case
letters are considered to be equal.

21

strncmp: Fixed-Length Comparisons

• Function strncmp takes three arguments: s1, s2, N

• The function returns:

– 0 if the first N letters are equal, letter by letter.
• Or if both strings are equal and their length is shorter than N.

– -1 if s1 is smaller than s2 at the first position where they differ.

– 1 if s1 is larger than s2 at at the first position where they differ.

How do we implement strncmp?

int strncmp(char * s1, char * s2, int N)

22

int strncmp(char * s1, char * s2, int N)

{

 int i;

 for (i = 0; i < N; i++)

 {

 if ((s1[i]==0) || (s2[i]==0) || (s1[i]!=s2[i]))

 return s1[i] - s2[i];

 }

 return 0;

}

What is the time complexity?

23

strncmp: Fixed-Length Comparisons

int strncmp(char * s1, char * s2, int N)

{

 int i;

 for (i = 0; i < N; i++)

 {

 if ((s1[i]==0) || (s2[i]==0) || (s1[i]!=s2[i]))

 return s1[i] - s2[i];

 }

 return 0;

}

What is the time complexity? O(N).

24

strncmp: Fixed-Length Comparisons

strcat: String Concatenation

• Function strcat takes two arguments: a, b.

• The function writes the contents of string b at the end of
string a.

• The new contents of string a are the concatenation of
the old contents of string a and the contents of string b.

• It is assumed that a has enough free memory to receive
the new contents, no error checking is done.

How do we implement strcat?

char * strcat(char * a, char * b)

25

char * strcat(char * a, char * b)

{

 int a_index = strlen(a);

 int b_index = 0;

 for (b_index = 0; b[b_index] != 0; b_index++)

 a[a_index+b_index] = b[b_index];

 a[a_index+b_index] = 0;

 return a;

}

What is the time complexity?

26

strcat: String Concatenation

char * strcat(char * a, char * b)

{

 int a_index = strlen(a);

 int b_index = 0;

 for (b_index = 0; b[b_index] != 0; b_index++)

 a[a_index+b_index] = b[b_index];

 a[a_index+b_index] = 0;

 return a;

}

What is the time complexity? O(N), where N is the sum
of the lengths of the two strings.

27

strcat: String Concatenation

Implementations

• The implementations of these functions are posted
on the course website, as files:

– basic_strings.h

– basic_strings.c

• No error checking is done, the goal has been to keep
the implementations simple.

• The function names have been changed to strlen1,
strcpy1, and so on, because functions strlen, strcpy
and so on are already defined in C.

– Only copy_string is not already defined in C.

28

Example Function: String Search

void string_search(char * P, char * A)

• Input: two strings, P and A.

• Output: prints out the starting positions of all
occurrences of P in A.

• Examples:

– string_search("e", "Wednesday") prints: 1 4.

– string_search("ti", "initiation") prints: 3 6.

29

Example Function: String Search

void string_search(char * P, char * A)

{

 int p_length = strlen1(P);

 int i;

 for (i = 0; A[i] != 0; i++)

 if (strncmp1(P, &(A[i]), p_length) == 0)

 printf("position %d\n", i);

}

• What is the time complexity of this function?

30

Example Function: String Search

void string_search(char * P, char * A)

{

 int p_length = strlen1(P);

 int i;

 for (i = 0; A[i] != 0; i++)

 if (strncmp1(P, &(A[i]), p_length) == 0)

 printf("position %d\n", i);

}

• What is the time complexity of this function?
O(length(P) * length(A)).

31

Example of Uncessesarily Bad
Performance

void string_search(char * P, char * A)

{ int p_length = strlen1(P);

 int i;

 for (i = 0; A[i] != 0; i++)

 if (strncmp1(P, &(A[i]), p_length) == 0)

 printf("position %d\n", i);

}

void string_search_slow(char * P, char * A)

{ int i;

 for (i = 0; i < strlen(A); i++)

 if (strncmp1(P, &(A[i]), strlen(P)) == 0)

 printf("position %d\n", i);

} 32

new
version:
what is
wrong
with it?

previous
version

Example of Uncessesarily Bad
Performance

• Let M be the length of string A, and N be the length of
string P.

• The first version of string search has running time
Θ(MN).

• The second version of string search has running time
Θ(M*(Μ+N)). Assuming M > N, this is Θ(Μ2).

– That is a huge difference over Θ(MN), when M >> N.

• If M = 1 million (size of a book), N = 10 (size of a word):

– The second version is 1 million times slower.

– If the first version takes 0.1 seconds to run, the second
version takes 100,000 seconds, which is about 28 hours.

33

The Need for 2D Arrays

• Arrays, lists, and strings are data types appropriate
for storing sequences of values.

• Some times, the data is more naturally organized in
two dimensions, and want to access each value by
specifying the row and column.

• For example:

– Mathematical matrices of M rows and N columns..

– A course gradebook may have one column per assignment
and one row per student.

– A black-and-white (also called grayscale) image is specified
as a 2D array of numbers between 0 and 255. Each number
specifies the brightness at a specific image location (pixel).

34

Allocating Memory for a 2D Array in C

• We want to write a function malloc2d that is the
equivalent of malloc for 2D arrays.

• What should the function take as input, what should
it return as result?

35

Allocating Memory for a 2D Array in C

• We want to write a function malloc2d that is the
equivalent of malloc for 2D arrays.

• What should the function take as input, what should
it return as result?

int ** malloc2d(int rows, int columns)

36

Allocating Memory for a 2D Array in C

int ** malloc2d(int rows, int columns)

{

 int row;

 int ** result = malloc(rows * sizeof(int *));

 for (row = 0; row < rows; row++)

 result[row] = malloc(columns * sizeof(int));

 return result;

}

• What is the time complexity of this?

37

Allocating Memory for a 2D Array in C

int ** malloc2d(int rows, int columns)

{

 int row;

 int ** result = malloc(rows * sizeof(int *));

 for (row = 0; row < rows; row++)

 result[row] = malloc(columns * sizeof(int));

 return result;

}

• What is the time complexity of this?
– Linear to the number of rows. In other word, O(rows).

38

Deallocating Memory for a 2D Array

• We want to write a function free2d that is the
equivalent of free for 2D arrays.

• What should the function take as input, what should
it return as result?

39

Deallocating Memory for a 2D Array

• We want to write a function free2d that is the
equivalent of free for 2D arrays.

• What should the function take as input, what should
it return as result?

void free2d(int ** array, int rows, int columns)

40

Deallocating Memory for a 2D Array

void free2d(int ** array, int rows, int columns)

{

 int row;

 for (row = 0; row < rows; row++)

 free(array[row]);

 free(array);

}

• Note: the columns argument is not used. Why pass it as an
argument then?

• What is the time complexity of this?

41

Deallocating Memory for a 2D Array

void free2d(int ** array, int rows, int columns)

{

 int row;

 for (row = 0; row < rows; row++)

 free(array[row]);

 free(array);

}

• Note: the columns argument is not used. However, by passing
it as an argument we allow different implementations later
(e.g., indexing first by column and second by row).

• What is the time complexity of this? O(rows) again.

42

Using 2D Arrays: Print

void printMatrix(int ** array, int rows, int cols)

{

 int row, col;

 for (row = 0; row < rows; row++)

 {

 for (col = 0; col < cols; col++)

 {

 printf("%5d", array[row][col]);

 }

 printf("\n");

 }

 printf("\n");

}

43

Using 2D Arrays: Adding Matrices

int ** addMatrices(int ** A, int ** B, int rows, int cols)

{

 int ** result = malloc2d(rows, cols);

 int row, col;

 for (row = 0; row < rows; row++)

 {

 for (col = 0; col < columns; col++)

 {

 result[row][col] = A[row][col] + B[row][col];

 }

 }

 return result;

}

44

More Complicated Data Structures

• Usign arrays, lists and strings, we can build an infinite
variety of more complicated data structures.

• Examples:

– N-dimensional arrays (for any integer N > 1).

– arrays of strings.

– arrays of lists.

– lists of lists of lists of lists of strings.

– lists of arrays.

– …

45

Graphs

• A graph is a fundamental data type.

• Graphs are at the core of many algorithms we will
cover in this course.

• We already saw an example with the Union-Find
program.

• Other examples:

– road networks

– computer networks

– social networks

– game-playing algorithms (e.g., for chess).

– problem-solving algorithms (e.g., for automated proofs).
46

Graphs

• A graph is formally defined as:

– A set V of vertices.

– A set E of edges. Each edge is a pair of two vertices in V.

• Graphs can be directed or undirected.

• In a directed graph, edge (A, B) means that we can go
(using that edge) from A to B, but not from B to A.

– We can have both edge (A, B) and edge (B, A) if we want to
show that A and B are linked in both directions.

• In an undirected graph, edge (A, B) means that we
can go (using that edge) from both A to B and B to A.

47

Example: of an Undirected Graph

• A graph is formally defined as:

– A set V of vertices.

– A set E of edges. Each edge is
a pair of two vertices in V.

• What is the set of vertices
on the graph shown here?

• What is the set
of edges?

48

 0

 1

 7

 2

 5

 3

 4

 6

Example: of an Undirected Graph

• A graph is formally defined as:

– A set V of vertices.

– A set E of edges. Each edge is
a pair of two vertices in V.

• What is the set of vertices
on the graph shown here?

– {0, 1, 2, 3, 4, 5, 6, 7}

• What is the set
of edges?

– {(0,1), (0,2), (0,5), (0,6), (0, 7), (3, 4), (3, 5),
 (4, 5), (4, 6), (4,7)}.

49

 0

 1

 7

 2

 5

 3

 4

 6

Designing a Data Type for Graphs

• If we want to design a data type for graphs, the key
questions are:

– How do we represent vertices?

– How do we represent edges?

• There are multiple ways to answer these questions.

• Can you think of some ways to represent vertices
and edges?

50

Representing Vertices

• In the most general solution, we could make a new
data type for vertices.

• Each vertex would be a struct (object), containing
fields such as:

– ID (a description of the vertex that can be an int, string,
etc.).

– A list of neighboring vertices.

• Then, each vertex would be represented as an object
of that type.

• The graph would need store the list of vertices that it
contains.

51

Representing Vertices as Integers

• We can also use a much more simple approach, that
is sufficient in many cases:

• Vertices are integers from 0 to V - 1 (where V is the
number of vertices in the graph).

– More complicated approaches have their own advantages
and disadvantages.

• This way, the graph object just needs to know how
many vertices it contains.

– If graph G has 10 vertices, we know that those vertices are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

52

Representing Edges

• Two vertices at opposite ends of an edge are called
neighbors.

• Knowing the edges of a graph is the same thing as
knowing, for each vertex V of the graph, who the
neighbors of V are.

• The list of neighbors of vertex V is called the
adjacency list of V.

• How can we represent adjacency lists?

– Assume that we represent vertices as integers from 1 to V-
1.

53

Adjacency Matrix

• Suppose we have V vertices, represented as integers
from 0 to V-1.

• We can represent adjacencies using a 2D binary
matrix A, of size V*V.

• A[V1][V2] = 1 if and only if there is an edge
connecting vertices V1 and V2.

• A[V1][V2] = 0 otherwise (if V1 and V2 are not
connected by an edge).

• How much memory does that take?

• How much time does it take to add, remove, or
check the status of an edge?

54

Adjacency Matrix

• Suppose we have V vertices, represented as integers
from 0 to V-1.

• We can represent adjacencies using a 2D binary
matrix A, of size V*V.

• A[V1][V2] = 1 if and only if there is an edge
connecting vertices V1 and V2.

• A[V1][V2] = 0 otherwise (if V1 and V2 are not
connected by an edge).

• How much memory does that take? O(V2).

• How much time does it take to add, remove, or
check the status of an edge? O(1).

55

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency matrix representation?

typedef struct struct_graph * graph;

struct struct_graph

{

...

};

int edgeExists(graph g, int v1, int v2) ...

void addEdge(graph g, int v1, int v2) ...

void removeEdge(graph g, int v1, int v2) ...

56

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency matrix representation?

typedef struct struct_graph * graph;

struct struct_graph

{

 int number_of_vertices;

 int ** adjacencies;

};

int edgeExists(graph g, int v1, int v2)

{

 return g->adjacencies[v1][v2];

}
57

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency matrix representation?

void addEdge(graph g, int v1, int v2)

{

 g->adjacencies[v1][v2] = 1;

 g->adjacencies[v2][v1] = 1;

}

void removeEdge(graph g, int v1, int v2)

{

 g->adjacencies[v1][v2] = 0;

 g->adjacencies[v2][v1] = 0;

}

58

Adjacency Lists

• An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

• A[V1] is a list containing the neighbors of vertex V1.

• How much space does this take?

59

Adjacency Lists

• An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

• A[V1] is a list containing the neighbors of vertex V1.

• How much space does this take?

– O(E), where E is the number of edges.

• If the graph is relatively sparse, and E << V2, this can
be a significant advantage.

60

Adjacency Lists

• An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

• A[V1] is a list containing the neighbors of vertex V1.

• How much time does it take to check if an edge
exists or not?

– Worst case: O(V). Each vertex can have up to V-1
neighbors, and we may need to go through all of them to
see if an edge exists.

– For sparse graphs, the behavior can be much better. If let’s
say each vertex has at most 10 neighbors, then we can
check if an edge exists much faster.

– Either way, slower than using adjacency matrices.
61

Adjacency Lists

• An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

• A[V1] is a list containing the neighbors of vertex V1.

• How much time does it take to remove an edge?

• How much time does it take to add an edge?

62

Adjacency Lists

• An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

• A[V1] is a list containing the neighbors of vertex V1.

• How much time does it take to remove an edge?

– Same as for checking if an edge exists.

• How much time does it take to add an edge?

– Same as for checking if an edge exists.

– Why? Because if the edge already exists, we should not
duplicate it.

63

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency list representation?

typedef struct struct_graph * graph;

struct struct_graph

{

...

};

int edgeExists(graph g, int v1, int v2) ...

void addEdge(graph g, int v1, int v2) ...

void removeEdge(graph g, int v1, int v2) ...
64

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency list representation?

• Defining the object type itself:

typedef struct struct_graph * graph;

struct struct_graph

{

 int number_of_vertices;

 list * adjacencies;

};

65

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency list representation?

• Checking if an edge exists:

int edgeExists(graph g, int v1, int v2)

{

 link n;

 for (n = g->adjacencies[v1]->first);

 n != NULL; n = linkNext(n))

 {

 if (linkItem(n) == v2) return 1;

 }

 return 0;

} 66

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency list representation?

• Adding a new edge:

void addEdge(graph g, int v1, int v2)

{

 if !(edgeExists(g, v1, v2))

 {

 insertAtBeginning(g->adjacencies[v1], newLink(v2));

 insertAtBeginning(g->adjacencies[v2], newLink(v1));

 }

}

67

Defining a Graph

• How do we define in C a data type for a graph, using
the adjacency list representation?

• Removing an edge: see posted file graph_lists.c

• Pseudocode: removeEdge(V1, V2)

– Go through adjacency list of V1, remove link corresponding
to V2

– Go through adjacency list of V2, remove link corresponding
to V1.

68

Adjacency Matrices vs. Adjacency
Lists

• Suppose we have a graph with:

– 10 million vertices.

– Each vertex has at most 20 neighbors.

• Which of the two graph representations would you
choose?

69

Adjacency Matrices vs. Adjacency
Lists

• Suppose we have a graph with:

– 10 million vertices.

– Each vertex has at most 20 neighbors.

• Adjacency matrices: we need at least 100 trillion bits
of memory, so at least 12.5TB of memory.

• Adjacency lists: in total, they would store at most
200 million items. With 8 bytes per item (as an
example), this takes 1.6 Gigabytes.

70

Check Out Posted Code

• graphs.h: defines an abstract interface for basic
graph functions.

• graphs_matrix.c: implements the abstract interface
of graphs.h, using an adjacency matrix.

• graphs_list.c: also implements the abstract interface
of graphs.h, using adjacency lists.

• graphs_main: a test program, that can be compiled
with either graphs_matrix.c or graphs_list.c.

71

