Elementary Data Structures:
Part 2: Strings, 2D Arrays, Graphs

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Strings
 What are strings, in general (independent of C)?

* Why do we care about strings?

Strings

 What are strings, in general (independent of C)?
— Data structures that store text.

* Why do we care about strings?
— Indispensable for text processing.
— Ubiquitous in programming.

e Strings can be implemented in various ways.

Strings

What are strings, in general (independent of C)?
— Data structures that store text.

Why do we care about strings?

— Indispensable for text processing.

— Ubiquitous in programming.

Strings can be implemented in various ways.

For the purposes of the textbook and this course, we
will use a specific definition:

A string is an array of characters, that contains the
NULL character (ASCII code 0) at the end.

— The NULL character can ONLY appear at the end.

Limitations of Definition

Our definition of strings is limited.

It only supports characters represented in ASCII.
— Multilingual character sets are not supported.

Strings are arrays, meaning that their maximum size
has to be fixed when they are created.

However, our definition is sufficient for the purposes
of this course.

— The basic algorithms remain the same if we extend the
definition to support larger alphabets.

Strings and Arrays

e Strings are arrays. However, logically, we treat strings
as different data structures.

* Why are strings different than arrays?

Strings and Arrays

Strings are arrays. However, logically, we treat strings
as different data structures.

Why are strings different than arrays?

— The length of an array is defined as the length that we
specify when we create the array.

— The length of a string is defined to be the position of the
first occurrence of the NULL character.

Obviously, if a string is an array, the MAXIMUM size

of the string must still be declared at creation time.

However, when we talk about the "length" of the
string, we only care about the position of the first
occurrence of the NULL character.

Some Strings in C

char * s1 = "Monday";
char * s2 = malloc(1000 * sizeof(char));

strcpy(s2, "hello");

s1[0] == 27?7 s2[4] = 2?27 s2[5] = 7?7?27

* What is the length of s1?
* What is the length of s2?

Some Strings in C

char * s1 = "Monday";
char * s2 = malloc(1000 * sizeof(char));

strcpy(s2, "hello");

sl[0] == 'M' s2[4] = 'o' s2[5] = '\0' = 0.

* What is the length of s1? 6
* What is the length of s2? 5

* The length of a string is the number of characters, up
to and not including the first occurrence of the NULL
character.

strlen: Counting String Length

Function strlen takes a string as an argument, and
returns the length of the string.

How do we implement strlen?

int strlen(char * s)

strlen: Counting String Length

int strlen(char * s)

{

int counter = 0;
while (s[counter] != 0)
{

counter++;

}

return counter;

}

What is the time complexity?

strlen: Counting String Length

int strlen(char * s)

{

int counter = 0;
while (s[counter] != 0)

{

counter++;

}

return counter;

}

What is the time complexity? O(N), where N is the
length of the string.

strcpy: Making a String Copy

* Function strcpy takes two arguments:
— a string called "target" and a string called "source".

* The function copies the contents of source onto
target.
— The previous contents of target are overwritten.

e |tis assumed that target has enough memory
allocated, no error checking is done.

How do we implement strcpy?

void strcpy(char * target, char * source)

strcpy: Making a String Copy

void strcpy(char * target, char * source)

{

int counter = 0;

while (source[counter] != 0)

{
target[counter] = source[counter];
counter++;

}

What is the time complexity?

strcpy: Making a String Copy

void strcpy(char * target, char * source)

{

int counter = 0;

while (source[counter] != 0)

{
target[counter] = source[counter];
counter++;

}

What is the time complexity? O(N), where N is the
length of the string.

copy string: Alternative for strcpy

* Function string_copy takes as argument a string
called "source".
* The function creates and returns a copy of source.

— Memory is allocated as needed.

— Somewhat safer than strcpy, as here we do not need to
worry if we have enough memory for the result.

char * copy string(char * source)

copy string: Alternative for strcpy

char * copy string(char * source)

{

int length = strlen(source) ;
char * result = malloc(length+l);

strcpyl (result, source);

return result;

strcmp: Comparing Two Strings

* Function strcmp takes two arguments: s1 and s2.

* The function returns:
— 0 if the contents are equal, letter by letter.

* NOT case-insensitive, case matters.

— A negative integer (not necessarily -1) if s1 is smaller than s2 at
the first position where they differ.

— A positive integer (not necessarily 1) if s1 is larger than s2 at at
the first position where they differ.

How do we implement strcemp?

int strcmp(char * sl, char * s2)

strcmp: Comparing Two Strings

int strcmp(char * sl, char * s2)

{

int i = 0;

while ((s1l[i] !'= 0) && (s2[i] !'= 0))

{
if (s1l[1i] '= s2[i]) return sl[i] - s2[i];
i++;

}

return sl[i] - s2[1i];

}

What is the time complexity?

strcmp: Comparing Two Strings

int strcmp(char * sl, char * s2)

{

int i = 0;

while ((s1l[i] !'= 0) && (s2[i] !'= 0))

{
if (sl[i] '= s2[i]) return sl[i] - s2[i];
i++;

}

return sl[i] - s2[1i];

}

What is the time complexity? O(N), where N is the
length of the shortest among the two strings.

String Equality

* People may mean several different things when they talk

about two strings being "equal".
* The convention that we follow in this course is that two
strings are equal if their contents are equal.

— The two strings must have the same length.

— The two strings must have the same letters (i.e., same ASCII codes) at
all positions up to the end (the first occurrence of the NULL character).

* Equivalent definition: two strings s1 and s2 are equal if and
only if strcmp(s1, s2) returns 0.

* This convention is different than:
— pointer equality: checking if the two strings point to the same location

in memory.
— case-insensitive equality, where lower-case letters and upper-case

letters are considered to be equal.

strncmp: Fixed-Length Comparisons

* Function strncmp takes three arguments: s1, s2, N

e The function returns:

— O if the first N letters are equal, letter by letter.
* Orif both strings are equal and their length is shorter than N.

— -1 if s1is smaller than s2 at the first position where they differ.
— 1if slislarger than s2 at at the first position where they differ.

How do we implement strncmp?

int strncmp(char * sl, char * s2, int N)

strncmp: Fixed-Length Comparisons

int strncmp(char * sl, char * s2, int N)
{

int 1i;

for (1 = 0; i < N; i++)

{

if ((s1[1i]==0) || (s2[1i]==0) || (s1l[i]'=s2[i]))
return sl[i] - s2[i];
}
return 0O;

}

What is the time complexity?

strncmp: Fixed-Length Comparisons

int strncmp(char * sl, char * s2, int N)
{

int 1i;

for (1 = 0; i < N; i++)

{

if ((s1[1i]==0) || (s2[1i]==0) || (s1l[i]'=s2[i]))
return sl[i] - s2[i];
}
return 0O;

}

What is the time complexity? O(N).

strcat: String Concatenation

* Function strcat takes two arguments: a, b.

 The function writes the contents of string b at the end of
string a.

* The new contents of string a are the concatenation of
the old contents of string a and the contents of string b.

* |tis assumed that a has enough free memory to receive
the new contents, no error checking is done.

How do we implement strcat?

char * strcat(char * a, char * b)

strcat: String Concatenation

char * strcat(char * a, char * b)

{
int a_index = strlen(a);

int b index = 0;

for (b_index = 0; b[b index] !'= 0; b index++)
a[a index+b index] = b[b index];
a[a index+b index] = 0;

return a;

}

What is the time complexity?

strcat: String Concatenation

char * strcat(char * a, char * b)

{
int a_index = strlen(a);

int b index = 0;

for (b_index = 0; b[b index] !'= 0; b index++)
a[a index+b index] = b[b index];
a[a index+b index] = 0;

return a;

}

What is the time complexity? O(N), where N is the sum
of the lengths of the two strings.

Implementations

* The implementations of these functions are posted
on the course website, as files:
— basic_strings.h
— basic_strings.c

* No error checking is done, the goal has been to keep
the implementations simple.

* The function names have been changed to strlenl,
strcpyl, and so on, because functions strlen, strcpy
and so on are already defined in C.

— Only copy_string is not already defined in C.

Example Function: String Search

void string search(char * P, char * A)

* |nput: two strings, P and A.

e QOutput: prints out the starting positions of all
occurrences of P in A.

e Examples:
— string_search("e", "Wednesday") prints: 1 4.

— string_search("ti", "initiation") prints: 3 6.

Example Function: String Search

void string search(char * P, char * A)

{
int p length = strlenl (P);

int 1i;
for (i = 0; A[i] '= 0; i++)
if (strncmpl (P, &(A[i]), p_length) == 0)

printf ("position %d\n", i);

 What is the time complexity of this function?

Example Function: String Search

void string search(char * P, char * A)

{
int p length = strlenl (P);

int 1i;
for (i = 0; A[i] '= 0; i++)
if (strncmpl (P, &(A[i]), p_length) == 0)

printf ("position %d\n", i);

 What is the time complexity of this function?
O(length(P) * length(A)).

Example of Uncessesarily Bad

Performance

void string search(char * P, char * A)

{ int p length = strlenl(P); previous
int 1; version
for (1 = 0; A[i] '= 0; i++)

if (strncmpl (P, &(A[i]), p_length) == 0)

printf ("position %d\n", i);

void string search slow(char * P, char * A) new
{ int i; version:
for (i = 0; i < strlen(d); i++) what is
if (strncmpl (P, &(A[i]), strlen(P)) == 0) wrong

printf ("position %d\n", 1i); with it?

Example of Uncessesarily Bad
Performance

Let M be the length of string A, and N be the length of
string P.

The first version of string search has running time
O(MN).

The second version of string search has running time
O(M*(M+N)). Assuming M > N, this is O(M?).

— That is a huge difference over ©(MN), when M >> N.

If M =1 million (size of a book), N = 10 (size of a word):

— The second version is 1 million times slower.

— If the first version takes 0.1 seconds to run, the second
version takes 100,000 seconds, which is about 28 hours.

The Need for 2D Arrays

* Arrays, lists, and strings are data types appropriate
for storing sequences of values.

 Some times, the data is more naturally organized in
two dimensions, and want to access each value by
specifying the row and column.

* For example:

— Mathematical matrices of M rows and N columns..

— A course gradebook may have one column per assighnment
and one row per student.

— A black-and-white (also called grayscale) image is specified
as a 2D array of numbers between 0 and 255. Each number
specifies the brightness at a specific image location (pixel).

Allocating Memory for a 2D Array in C

 We want to write a function malloc2d that is the
equivalent of malloc for 2D arrays.

 What should the function take as input, what should
it return as result?

Allocating Memory for a 2D Array in C

 We want to write a function malloc2d that is the
equivalent of malloc for 2D arrays.

 What should the function take as input, what should
it return as result?

int ** malloc2d(int rows, int columns)

Allocating Memory for a 2D Array in C

int ** malloc2d(int rows, int columns)

{

int row;
int ** result = malloc(rows * sizeof(int *));
for (row = 0; row < rows; row++)

result[row] = malloc(columns * sizeof (int))

return result;

* What is the time complexity of this?

Allocating Memory for a 2D Array in C

int ** malloc2d(int rows, int columns)

{

int row;
int ** result = malloc(rows * sizeof(int *));
for (row = 0; row < rows; row++)

result[row] = malloc(columns * sizeof (int))

return result;

* What is the time complexity of this?

— Linear to the number of rows. In other word, O(rows).

Deallocating Memory for a 2D Array

 We want to write a function free2d that is the
equivalent of free for 2D arrays.

 What should the function take as input, what should
it return as result?

Deallocating Memory for a 2D Array

 We want to write a function free2d that is the
equivalent of free for 2D arrays.

 What should the function take as input, what should
it return as result?

void free2d(int ** array, int rows, int columns)

Deallocating Memory for a 2D Array

void free2d(int ** array, int rows, int columns)

{
int row;

for (row = 0; row < rows; row++)

free (array[row]) ;

free (array) ;

* Note: the columns argument is not used. Why pass it as an
argument then?

 What is the time complexity of this?

Deallocating Memory for a 2D Array

void free2d(int ** array, int rows, int columns)

{
int row;

for (row = 0; row < rows; row++)

free (array[row]) ;

free (array) ;

* Note: the columns argument is not used. However, by passing
it as an argument we allow different implementations later
(e.g., indexing first by column and second by row).

 What is the time complexity of this? O(rows) again.

Using 2D Arrays: Print

void printMatrix(int ** array, int rows, int cols)
{

int row, col;

for (row = 0; row < rows; row+t+)

{
for (col = 0; col < cols; col++)

{
printf ("%$5d", array[row] [col]);

}
printf ("\n") ;

}
printf ("\n") ;

Using 2D Arrays: Adding Matrices

int ** addMatrices(int ** A, int ** B, int rows, int cols)
{
int ** result = malloc2d(rows, cols);
int row, col;
for (row = 0; row < rows; row++)
{
for (col = 0; col < columns; col++)

{

result[row] [col] = A[row] [col] + B[row] [col];

return result;

More Complicated Data Structures

e Usign arrays, lists and strings, we can build an infinite
variety of more complicated data structures.

 Examples:
— N-dimensional arrays (for any integer N > 1).
— arrays of strings.
— arrays of lists.
— lists of lists of lists of lists of strings.
— lists of arrays.

Graphs

A graph is a fundamental data type.

Graphs are at the core of many algorithms we will
cover in this course.

We already saw an example with the Union-Find
program.

Other examples:

— road networks

— computer networks

— social networks

— game-playing algorithms (e.g., for chess).
— problem-solving algorithms (e.g., for automated proofs).

Graphs

A graph is formally defined as:
— A set V of vertices.

— A set E of edges. Each edge is a pair of two vertices in V.
Graphs can be directed or undirected.

In a directed graph, edge (A, B) means that we can go
(using that edge) from A to B, but not from B to A.

— We can have both edge (A, B) and edge (B, A) if we want to
show that A and B are linked in both directions.

In an undirected graph, edge (A, B) means that we
can go (using that edge) from both A to B and B to A.

Example: of an Undirected Graph

* A graphis formally defined as:
— A set V of vertices.

— A set E of edges. Each edge is
a pair of two vertices in V.

 What is the set of vertices
on the graph shown here?

 What is the set
of edges?

48

Example: of an Undirected Graph

* A graphis formally defined as:
— A set V of vertices.

— A set E of edges. Each edge is
a pair of two vertices in V.

 What is the set of vertices
on the graph shown here?
—-{0,1,2,3,4,5,6, 7}
 What is the set
of edges?

—1(0,1), (0,2), (0,5), (0,6), (0, 7), (3, 4), (3, 5),
(4,5), (4, 6), (4,7)}.

49

Designing a Data Type for Graphs

If we want to design a data type for graphs, the key
guestions are:

— How do we represent vertices?

— How do we represent edges?

There are multiple ways to answer these questions.

Can you think of some ways to represent vertices
and edges?

Representing Vertices

In the most general solution, we could make a new
data type for vertices.

Each vertex would be a struct (object), containing
fields such as:

— ID (a description of the vertex that can be an int, string,
etc.).

— A list of neighboring vertices.

Then, each vertex would be represented as an object
of that type.

The graph would need store the list of vertices that it
contains.

Representing Vertices as Integers

* We can also use a much more simple approach, that
is sufficient in many cases:

* Vertices are integers from 0toV - 1 (where V is the
number of vertices in the graph).

— More complicated approaches have their own advantages
and disadvantages.

* This way, the graph object just needs to know how
many vertices it contains.

— If graph G has 10 vertices, we know that those vertices are
0,1,23,4,5,6,7,8,09.

Representing Edges

Two vertices at opposite ends of an edge are called
neighbors.

Knowing the edges of a graph is the same thing as
knowing, for each vertex V of the graph, who the
neighbors of V are.

The list of neighbors of vertex V is called the
adjacency list of V.

How can we represent adjacency lists?

— Assume that we represent vertices as integers from 1 to V-
1.

Adjacency Matrix

Suppose we have V vertices, represented as integers
from O to V-1.

We can represent adjacencies using a 2D binary
matrix A, of size V*V.

A[V,][V,] = 1 if and only if there is an edge
connecting vertices V, and V,.

A[V,][V,] = 0 otherwise (if V, and V, are not
connected by an edge).

How much memory does that take?

How much time does it take to add, remove, or
check the status of an edge?

Adjacency Matrix

Suppose we have V vertices, represented as integers
from O to V-1.

We can represent adjacencies using a 2D binary
matrix A, of size V*V.

A[V,][V,] = 1 if and only if there is an edge
connecting vertices V, and V,.

A[V,][V,] = 0 otherwise (if V, and V, are not
connected by an edge).

How much memory does that take? O(V?).

How much time does it take to add, remove, or
check the status of an edge? O(1).

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency matrix representation?

typedef struct struct graph * graph;
struct struct graph

{

o

int edgeExists (graph g, int vl, int v2)
void addEdge (graph g, int vl, int v2)

void removeEdge (graph g, int vl, int v2)

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency matrix representation?

typedef struct struct graph * graph;
struct struct graph

{

int number of vertices;
int ** adjacencies;

};

int edgeExists (graph g, int v1l, int v2)
{

return g->adjacencies([vl] [v2];

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency matrix representation?

void addEdge (graph g, int vl1l, int v2)
{
g->adjacencies|[vl] [v2] = 1;

g->adjacencies[v2] [vl] = 1;

void removeEdge (graph g, int vl, int v2)

{
g->adjacencies|[vl] [v2] = O;
g->adjacencies|[v2] [vl] = O;

Adjacency Lists

* An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

* A[V,] is a list containing the neighbors of vertex V,.
e How much space does this take?

Adjacency Lists

An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

A[V,] is a list containing the neighbors of vertex V,.
How much space does this take?

— O(E), where E is the number of edges.

If the graph is relatively sparse, and E << V?, this can
be a significant advantage.

Adjacency Lists

An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

A[V,] is a list containing the neighbors of vertex V,.

How much time does it take to check if an edge
exists or not?

— Worst case: O(V). Each vertex can have up to V-1
neighbors, and we may need to go through all of them to
see if an edge exists.

— For sparse graphs, the behavior can be much better. If let’s
say each vertex has at most 10 neighbors, then we can
check if an edge exists much faster.

— Either way, slower than using adjacency matrices.

Adjacency Lists

An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

A[V,] is a list containing the neighbors of vertex V,.
How much time does it take to remove an edge?

How much time does it take to add an edge?

Adjacency Lists

An alternative to representing adjacencies using a 2D
array is to save adjacencies as an array A of lists.

A[V,] is a list containing the neighbors of vertex V,.

How much time does it take to remove an edge?
— Same as for checking if an edge exists.

How much time does it take to add an edge?
— Same as for checking if an edge exists.

— Why? Because if the edge already exists, we should not
duplicate it.

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency list representation?

typedef struct struct graph * graph;
struct struct graph

{

o

int edgeExists (graph g, int vl, int v2)
void addEdge (graph g, int vl, int v2)

void removeEdge (graph g, int vl, int v2)

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency list representation?

* Defining the object type itself:

typedef struct struct graph * graph;

struct struct graph

int number_pf_vertices;

list * adjacencies;

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency list representation?

* Checking if an edge exists:

int edgeExists (graph g, int v1l, int v2)
{

link n;

for (n = g->adjacencies[vl]->first);

n !'= NULL; n = linkNext(n))
{
if (linkItem(n) == v2) return 1;
}

return 0;

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency list representation?

 Adding a new edge:

void addEdge (graph g, int vl, int v2)
{
if ! (edgeExists (g, v1, v2))
{
insertAtBeginning (g->adjacencies[vl], newLink (v2)) ;
insertAtBeginning (g->adjacencies[v2], newLink(vl));

Defining a Graph

* How do we define in C a data type for a graph, using
the adjacency list representation?

* Removing an edge: see posted file graph_lists.c

* Pseudocode: removeEdge(V1, V2)

— Go through adjacency list of V1, remove link corresponding
to V2

— Go through adjacency list of V2, remove link corresponding
to V1.

Adjacency Matrices vs. Adjacency
Lists

e Suppose we have a graph with:
— 10 million vertices.

— Each vertex has at most 20 neighbors.

 Which of the two graph representations would you
choose?

Adjacency Matrices vs. Adjacency
Lists

e Suppose we have a graph with:
— 10 million vertices.
— Each vertex has at most 20 neighbors.

* Adjacency matrices: we need at least 100 trillion bits
of memory, so at least 12.5TB of memory.

* Adjacency lists: in total, they would store at most
200 million items. With 8 bytes per item (as an
example), this takes 1.6 Gigabytes.

Check Out Posted Code

graphs.h: defines an abstract interface for basic
graph functions.

graphs_matrix.c: implements the abstract interface
of graphs.h, using an adjacency matrix.

graphs_list.c: also implements the abstract interface
of graphs.h, using adjacency lists.

graphs_main: a test program, that can be compiled
with either graphs_matrix.c or graphs_list.c.

