Recursion and Dynamic Programming

CSE 2320 – Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Recursion

- Recursion is a fundamental concept in computer science.
- <u>**Recursive algorithms**</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- **<u>Recursive functions</u>**: functions that call themselves.
- <u>Recursive data types</u>: data types that are defined using references to themselves.
- Example?

Recursion

- Recursion is a fundamental concept in computer science.
- <u>**Recursive algorithms**</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- **<u>Recursive functions</u>**: functions that call themselves.
- <u>Recursive data types</u>: data types that are defined using references to themselves.
- Example? Nodes in the implementation of linked lists.
- In all recursive concepts, there is one or more <u>base cases</u>. No recursive concept can be understood without understanding its base cases.
- What is the base case for nodes?

Recursion

- Recursion is a fundamental concept in computer science.
- <u>**Recursive algorithms**</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- **<u>Recursive functions</u>**: functions that call themselves.
- <u>Recursive data types</u>: data types that are defined using references to themselves.
- Example? Nodes in the implementation of linked lists.
- In all recursive concepts, there is one or more <u>base cases</u>. No recursive concept can be understood without understanding its base cases.
- What is the base case for nodes?
 - A node pointing to NULL.

- <u>Recursive algorithms</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- A recursive algorithm can always be implemented both using recursive functions, and without recursive functions.
- Example of a recursive function:

- <u>Recursive algorithms</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- A recursive algorithm can always be implemented both using recursive functions, and without recursive functions.
- Example of a recursive function: the factorial.
 - Recursive definition?
 - Non-recursive definition?

- <u>Recursive algorithms</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- A recursive algorithm can always be implemented both using recursive functions, and without recursive functions.
- Example of a recursive function: the factorial.

```
Recursive Definition:
int factorial(int N)
{
    if (N == 0) return 1;
    return N*factorial(N-1);
}
```

```
Non-Recursive Definition :
int factorial(int N)
{
    int result = 1;
    int i;
    for (i = 2; i <= N; i++) result *= i;
    return result;
}</pre>
```

- <u>Recursive algorithms</u>: algorithms that solve a problem by solving one or more smaller instances of the same problem.
- A recursive algorithm can always be implemented both using recursive functions, and without recursive functions.
- Example of a recursive function: the factorial.
 - How is factorial(3) evaluated?

```
Recursive Definition:
```

```
int factorial(int N)
{
    if (N == 0) return 1;
    return N*factorial(N-1);
}
```

```
Non-Recursive Definition :
int factorial(int N)
{
    int result = 1;
    int i;
    for (i = 2; i <= N; i++) result *= i;
    return result;</pre>
```

Analyzing a Recursive Program

- Analyzing a recursive program involves answering two questions:
 - Does the program always terminate?
 - Does the program always compute the right result?
- Both questions are answered by induction.
- Example: does the factorial function on the right always compute the right result?
- Proof: by induction.

```
Recursive Definition:
int factorial(int N)
{
    if (N == 0) return 1;
    return N*factorial(N-1);
}
```

Analyzing a Recursive Program

- Proof: by induction.
- Step 1: (the base case)
 - For N = 0, factorial(0) returns 1, which is correct.
- Step 2: (using the inductive hypothesis)
 - Suppose that factorial(N) returns the right result for N = K, where K is an integer >= 0.
 - Then, for N = K+1, factorial(N) returns:
 N * factorial(K) = N * K! = N * (N-1)! = N!.
 - Thus, for N = K+1, factorial(N) also returns the correct result.
- Thus, by induction, factorial(N) computes the correct result for all N.

```
Recursive Definition:
```

```
int factorial(int N)
{
    if (N == 0) return 1;
```

```
return N*factorial(N-1);
```

}

Where precisely was the inductive hypothesis used?

Analyzing a Recursive Program

- Proof: by induction.
- Step 1: (the base case)
 - For N = 0, factorial(0) returns 1, which is correct.
- Step 2: (using the inductive hypothesis)
 - Suppose that factorial(N) returns the right result for N = K, where K is an integer >= 0.
 - Then, for N = K+1, factorial(N) returns:
 N * factorial(K) = N * K! = N * (N-1)! = N!.
 - Thus, for N = K+1, factorial(N) also returns the correct result.
- Thus, by induction, factorial(N) computes the correct result for all N.

```
Recursive Definition:
int factorial(int N)
{
if (N == 0) return 1;
```

```
return N*factorial(N-1);
```

}

Where precisely was the inductive hypothesis used?

In substituting K! for factorial(K).

Guidelines for Designing Recursive Functions

- We should design recursive functions so that it is easy to convince ourselves that they are correct.
 - Strictly speaking, the only way to convince ourselves is a mathematical proof.
 - Loosely speaking, we should follow some guidelines to make our life easier.
- So, it is a good idea for our recursive functions to follow these rules:
 - They must explicitly solve one or more base cases.
 - Each recursive call must involve smaller values of the arguments, or smaller sizes of the problem.

Example Violation of the Guidelines

```
int puzzle(int N)
{
    if (N == 1) return 1;
    if (N % 2 == 0)
        return puzzle(N/2);
    else return puzzle(3*N+1);
}
```

• How does this function violate the guidelines we just stated?

Example Violation of the Guidelines

```
int puzzle(int N)
{
    if (N == 1) return 1;
    if (N % 2 == 0)
        return puzzle(N/2);
    else return puzzle(3*N+1);
}
```

How is puzzle(3) evaluated?

- How does this function violate the guidelines we just stated?
- The function does NOT always call itself with smaller values.
- Consequence: it is hard to prove if this function always terminates.
- No one has actually been able to prove or disprove that!!!

Euclid's Algorithm

```
int gcd(int m, int n)
{
    if (n == 0) return m;
    return gcd(n, m % n);
}
```

- One of the most ancient algorithms.
- Computes the greatest common divisor of two numbers.
- It is based on the property that if T divides X and Y, then T also divides X mod Y.
- How is gcd(96, 36) evaluated?

Euclid's Algorithm

```
int gcd(int m, int n)
{
    if (n == 0) return m;
    return gcd(n, m % n);
}
```

- One of the most ancient algorithms.
- Computes the greatest common divisor of two numbers.
- It is based on the property that if T divides X and Y, then T also divides X mod Y.
- How is gcd(96, 36) evaluated?
- gcd(96, 36) = gcd(36, 24) = gcd(24, 12) = gcd(12, 0) = 12.

- Prefix expressions: they place each operand BEFORE its two arguments.
- Example: * + 7 * * 4 6 + 8 9 5

• Code for evaluating prefix expressions:

}

```
char *a; int i;
                                                Example: * + 7 * * 4 6 + 8 9 5:
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^*x + (a[i++]-'0');
 return x;
```

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
    { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + wait wait
- 7

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * wait wait
- * wait wait
- 4

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * wait wait
- * 4 wait
- 6

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * wait wait
- * 4 6 = 24

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * 24 wait
- + wait wait

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * 24 wait
- + wait wait
- 8

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * 24 wait
- + 8 wait
- 9

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * 24 wait
- + 8 9 = 17

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^*x + (a[i++]-'0');
 return x;
```

}

- * wait wait
- + 7 wait
- * 24 17 = 408

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^*x + (a[i++]-'0');
 return x;
```

}

```
Example: * + 7 * * 4 6 + 8 9 5:
```

- * wait wait
- + 7 408 = 415

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^*x + (a[i++]-'0');
 return x;
```

}

- * 415 wait
- 5

• Code for evaluating prefix expressions:

```
char *a; int i;
int eval()
{
 int x = 0;
 while (a[i] == ' ') i++;
 if (a[i] == '+')
   { i++; return eval() + eval(); }
 if (a[i] == '*')
   { i++; return eval() * eval(); }
 while ((a[i] >= '0') && (a[i] <= '9'))
   x = 10^{*}x + (a[i++]-'0');
 return x;
```

}

```
Example: * + 7 * * 4 6 + 8 9 5:
```

• * 415 5 = 2075

- In some cases, recursive functions are much easier to read.
- They make crystal clear the mathematical structure of the algorithm.
- To process recursive data types, such as nodes, oftentimes it is easy to write recursive functions.
- Example: int count(link x)
 - count how many links there are between x and the end of the list.
 - Recursive solution?
 - Base case? Recursive function?

- In some cases, recursive functions are much easier to read.
- The make crystal clear the mathematical structure of the algorithm.
- To process recursive data types, such as nodes, oftentimes it is easy to write recursive functions.
- Example: int count(link x)
 - count how many links there are between x and the end of the list.
 - Recursive solution? count(x) = 1 + count(x->next)
 - Base case: x = NULL. Recursive function:

int count(link x)

```
{ if (x == NULL) return 0;
```

```
return 1 + count(x->next);
```

}

- In some cases, recursive functions are much easier to read.
 - They make crystal clear the mathematical structure of the algorithm.
- To process recursive data types, such as nodes, oftentimes it is easy to write recursive functions.
- However, any recursive function can also be written in a nonrecursive way.
- Oftentimes recursive functions run slower. Why?

- In some cases, recursive functions are much easier to read.
 - They make crystal clear the mathematical structure of the algorithm.
- To process recursive data types, such as nodes, oftentimes it is easy to write recursive functions.
- However, any recursive function can also be written in a nonrecursive way.
- Oftentimes recursive functions run slower. Why?
 - Recursive functions generate many function calls.
 - The CPU has to pay a price (perform a certain number of operations) for each function call.
- Non-recursive implementations are oftentimes somewhat uglier (and more buggy, harder to debug) but more efficient.
 - Compromise: make first version recursive, second non-recursive.

Fibonacci Numbers

- Fibonacci(0) = 0
- Fibonacci(1) = 1
- If N >= 2:
 - Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)
- How can we write a function that computes Fibonacci numbers?

Fibonacci Numbers

- Fibonacci(0) = 0
- Fibonacci(1) = 1
- If N >= 2:

– Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Consider this function: what is its running time?

```
int Fibonacci(int i)
{
    if (i < 1) return 0;
    if (i == 1) return 1;
    return F(i-1) + F(i-2);
}</pre>
```

Fibonacci Numbers

- Fibonacci(0) = 0
- Fibonacci(1) = 1
- If N >= 2:
 - Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)
- Consider this function: what is its running time?
 - g(N) = g(N-1) + g(N-2) + constant
 - g(N) = O(Fibonacci(N)) = O(1.618^N)
 - We cannot even compute Fibonacci(40) in a reasonable amount of time.

```
int Fibonacci(int i)
{
    if (i < 1) return 0;
    if (i == 1) return 1;
    return F(i-1) + F(i-2);
}</pre>
```

Fibonacci Numbers

- Fibonacci(0) = 0
- Fibonacci(1) = 1
- If N >= 2:
 - Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)
- Alternative: remember values we have already computed.

linear version:

```
int Fibonacci(int i)
{
    int * F = malloc(sizeof(int) * (i+1));
    F[0] = 0; F[1] = 1;
    int j;
    for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2];
    return F[i];
}</pre>
```

```
exponential version:
int Fibonacci(int i)
{
    if (i < 1) return 0;
    if (i == 1) return 1;
    return F(i-1) + F(i-2);
}</pre>
```

Bottom-up Dynamic Programming

- The technique we have just used is called <u>bottom-up</u> <u>dynamic programming</u>.
- It is widely applicable, in a large variety of problems.

Bottom-up Dynamic Programming

- Requirements for using dynamic programming:
 - The answer to our problem P can be easily obtained from answers to smaller problems.
 - We can order problems in a sequence (P₀, P₁, P₂, ..., P_K) of reasonable size, so that:
 - P_k is our original problem P.
 - The initial problems, P₀ and possibly P₁, P₂, ..., P_R up to some R, are easy to solve (they are **base cases**).
 - For i > R, each P_i can be easily solved using solutions to P_0 , ..., P_{i-1} .
- If these requirements are met, we solve problem P as follows:
 - Create the sequence of problems P_0 , P_1 , P_2 , ..., P_K , such that $P_k = P$.
 - For i = 0 to K, solve P_{K} .
 - Return solution for P_{κ} .

Bottom-up Dynamic Programming

- Requirements for using dynamic programming:
 - The answer to our problem P can be easily obtained from answers to smaller problems.
 - We can order problems in a sequence (P₀, P₁, P₂, ..., P_K) of reasonable size, so that:
 - P_k is our original problem P.
 - The initial problems, P₀ and possibly P₁, P₂, ..., P_R up to some R, are easy to solve (they are **base cases**).
 - For i > R, each P_i can be easily solved using solutions to P_0 , ..., P_{i-1} .
- If these requirements are met, we solve problem P as follows:
 - Create the sequence of problems P_0 , P_1 , P_2 , ..., P_K , such that $P_k = P$.
 - For i = 0 to K, solve P_{K} .
 - Return solution for P_{κ} .

How can we relate all this terminology to the problem of computing Fibonacci numbers? 41

Dynamic Programming for Fibonacci

- Requirements for using dynamic programming:
 - The answer to our problem P can be easily obtained from answers to smaller problems. Yes! Fib(N) = Fib(N-1) + Fib(N-2)
 - We can order problems in a sequence $(P_0, P_1, P_2, ..., P_K)$ of reasonable size, so that:
 - P_k is our original problem P.
 - The initial problems, P₀ and possibly P₁, P₂, ..., P_R up to some R, are easy to solve (they are base cases).
 - For i > R, each P_i can be easily solved using solutions to P_0 , ..., P_{i-1} .
 - Yes!
 - P_i is the problem of computing Fibonacci(i).
 - P_N is our problem, since we want to compute Fibonacci(N).
 - P₀, P₁ are base cases.
 - For i >= 2, Fib(i) is easy to solve given Fib(0), Fib(1), ..., Fib(i-1).

Dynamic Programming for Fibonacci

- If these requirements are met, we solve problem P as follows:
 - Create the sequence of problems P_0 , P_1 , P_2 , ..., P_K , such that $P_k = P$.
 - For i = 0 to K, solve P_{K} .
 - Return solution for P_{κ} .
- That is exactly what this function does.

```
linear version:
int Fibonacci(int i)
{
    int * F = malloc(sizeof(int) * (i+1));
    F[0] = 0;
    F[1] = 1;
    int j;
    for (j = 2; j <= i; j++) F[j] = F[j-1] + F[j-2];
    return F[i];
}
```

Bottom-Up vs. Top Down

- When the conditions that we stated previously are satisfied, we can use dynamic programming.
- There are two versions of dynamic programming.
 - Bottom-up.
 - Top-down.
- We have already seen how bottom-up works.
 - It solves problems in sequence, from smaller to bigger.
- Top-down dynamic programming takes the opposite approach:
 - Start from the larger problem, solve smaller problems as needed.
 - For any problem that we solve, <u>store the solution</u>, so we never have to compute the same solution twice.
- This approach is also called **memoization**.

Top-Down Dynamic Programming

- Maintain an array where solutions to problems can be saved.
- To solve a problem P:
 - See if the solution has already been been stored in the array.
- If so, just return the solution.
- Otherwise:
 - Issue recursive calls to solve whatever smaller problems we need to solve.
 - Using those solutions obtain the solution to problem P.
 - Store the solution in the solutions array.
 - Return the solution.

Top-Down Solution for Fibonacci

• Textbook solution:

```
int F(int i)
{
    int t;
    if (knownF[i] != unknown) return knownF[i];
    if (i == 0) t = 0;
    if (i == 1) t = 1;
    if (i > 1) t = F(i-1) + F(i-2);
    return knownF[i] = t;
}
```

• This is a partial solution. Initialization of known is not shown.

Top-Down Solution for Fibonacci

- General strategy:
- Create a top-level function that:
 - Creates memory for the array of solutions.
 - Initializes the array by marking that all solutions are currently "unknown".
 - Calls a helper function, that takes the same arguments, plus the solutions array.
- The helper function:
 - If the solution it wants is already computed, returns the solution.
 - If we have a base case, computes the result directly.
 - Otherwise: computes the result using recursive calls.
 - Stores the result in the solutions array.
 - Returns the result.
- How do we write these two functions for Fibonacci?

Top-Level Function

```
int Fibonacci(int number)
```

}

```
{
    // Creating memory for the array of solutions.
    int * solutions = malloc(sizeof(int) * (number +1));
    int index;
```

```
// Marking the solutions to all cases as "unknown".
// We use the convention that -1 stands for "unknown".
for (index = 0; index <= number; index++) solutions[index] = -1;</pre>
```

```
int result = FibHelper(number, solutions);
free(solutions);
return result;
```

Helper Function

```
int FibHelper(int N, int * solutions)
{
    // if problem already solved, return stored solution.
    if (solutions[N] != -1) return solutions[N];
    int result;
```

```
if (N == 0) result = 0; // base case
else if (N == 1) result = 1; // base case
```

// recursive case

}

else result = FibHelper(N-1, solutions) + FibHelper(N-2, solutions);

```
solutions[N] = result; // memoization
return result;
```

The Knapsack Problem

- The Fibonacci numbers are just a toy example for dynamic programming, as they can be computed with a simple for loop.
- The classic problem for introducing dynamic programming is the **knapsack problem**.
 - A thief breaks in at the store.
 - The thief can only carry out of the store items with a total weight of W.
 - There are N types of items at the store. Each type T_i has a value V_i and a weight W_i.
 - What is the maximum total value items that the thief can carry out?
 - What items should the thief carry out to obtain this maximum value?
- We will make two important assumptions:
 - That the store has **unlimited quantities** of each item type.
 - That the weight of each item is an integer >= 1.

Example

item type:	Α	В	С	D	E
weight:	3	4	7	8	9
value	4	5	10	11	13

- For example, suppose that the table above describes the types of items available at the store.
- Suppose that the thief can carry out a maximum weight of 17.
- What are possible combinations of items that the thief can carry out?
 - Five A's: weight = 15, value = 20.
 - Two A's, a B, and a C: weight = 17, value = 23.
 - A D and an E: weight = 17, value = 24.
- The question is, what is the best combination?

item type:	A	В	С	D	E
weight:	3	4	7	8	9
value	4	5	10	11	13

- For example, suppose that the table above describes the types of items available at the store.
- The question is, what is the best combination?
- Can you propose any algorithm (even horribly slow) for finding the best combination?

item type:	Α	В	С	D	Ε
weight:	3	4	7	8	9
value	4	5	10	11	13

- One approach: consider all possible sets of items.
- Would that work?

item type:	A	В	С	D	Ε
weight:	3	4	7	8	9
value	4	5	10	11	13

- One approach: consider all possible sets of items.
- Would that work? **NO!!!**
 - We have unlimited quantities of each item.
 - Therefore the number of all possible set of items is infinite, so it takes infinite time to consider them.
- An algorithm that takes infinite time **IS NOT THE SAME THING** as an algorithm that is horribly slow.
 - Horribly slow algorithms <u>eventually terminate</u>, so mathematically they are <u>valid solutions</u>.
 - Algorithms that take infinite time <u>never terminate</u>, so they are mathematically <u>not valid solutions</u>.

- To use dynamic programming, we need to identify whether solving our problem can be done easily if we have already sold smaller problems.
- What would be a smaller problem?
 - Our original problem is: find the set of items with weight <= W that has the most value.

- To use dynamic programming, we need to identify whether solving our problem can be done easily if we have already sold smaller problems.
- What would be a smaller problem?
 - Our original problem is: find the set of items with weight <= W that has the most value.
- A smaller problem is: find the set of items with weight <= W' that has the most value, where W' < W.
- If we have solved the problem for all W' < W, how can we use those solutions to solve the problem for W?

- Our original problem is: find the set of items with weight <= W that has the most value.
- A smaller problem is: find the set of items with weight <= W' that has the most value, where W' < W.
- If we have solved the problem for all W' < W, how can we use those solutions to solve the problem for W?

```
int knap(int W, int * weights, int * values):
{
    max_value = 0;
    For each type of item i:
        value = values[i] + knap(W - weights[i]);
        if (value > max_value) max_value = value.
}
```

How Does This Work?

{

}

- We want to compute: knap(17).
- knap(17) can be computed from which values?
- val_A = ???
- val_B = ???
- val_C = ???
- val_D = ???
- val_E = ???

item type:	A	В	С	D	E
weight:	3	4	7	8	9
value	4	5	10	11	13

int knap(int W, int * weights, int * values):

```
max_value = 0;
For each type of item i:
 value = values[i] + knap(W - weights[i]);
 if (value > max_value)
 max_value = value;
```

How Does This Work?

{

- We want to compute: knap(17).
- knap(17) will be the maximum of these five values:
- val_A = 4 + knap(14)
- val_B = 5 + knap(13)
- val_C = 10 + knap(10)
- val_D = 11 + knap(9)
- val_E = 13 + knap(8)

item type:	A	В	С	D	E
weight:	3	4	7	8	9
value	4	5	10	11	13

int knap(int W, int * weights, int * values):

```
max_value = 0;
```

```
For each type of item i:
```

```
value = values[i] + knap(W - weights[i]);
```

```
if (value > max_value)
```

```
max_value = value;
```

```
pseudocode:
```

```
int knap(int W, int * weights, int * values):
{
    max_value = 0;
    For each type of item i:
        value = values[i] + knap(W - weights[i], weights, values);
        if (value > max_value)
            max_value = value;
        return max_value;
}
```

What is missing from this pseudocode if we want a complete solution?

```
pseudocode:
```

```
int knap(int W, int * weights, int * values):
{
    max_value = 0;
    For each type of item i:
        value = values[i] + knap(W - weights[i], weights, values);
        if (value > max_value)
            max_value = value;
        return max_value;
}
```

What is missing from this pseudocode if we want a complete solution?

The base case: knap(0) = 0

struct Items

{

int number; char ** types; int * weights; int * values; };

```
int knapsack(int max_weight, struct Items items)
 if (max_weight == 0) return 0;
 int max_value = 0;
 int i;
 for (i = 0; i < items.number; i++)</pre>
 {
   int rem = max_weight - items.weights[i];
   if (rem < 0) continue;
   int value = items.values[i] + knapsack(rem, items);
   if (value > max_value) max_value = value;
 }
 return max value;
```

running time?

```
int knapsack(int max_weight, struct Items items)
 if (max_weight == 0) return 0;
 int max_value = 0;
 int i;
 for (i = 0; i < items.number; i++)</pre>
  {
   int rem = max_weight - items.weights[i];
   if (rem < 0) continue;
   int value = items.values[i] + knapsack(rem, items);
   if (value > max_value) max_value = value;
 }
 return max value;
```

running time?

very slow (exponential)

How can we make it faster?

```
int knapsack(int max_weight, struct Items items)
 if (max_weight == 0) return 0;
 int max_value = 0;
 int i;
 for (i = 0; i < items.number; i++)</pre>
 {
   int rem = max_weight - items.weights[i];
   if (rem < 0) continue;
   int value = items.values[i] + knapsack(rem, items);
   if (value > max_value) max_value = value;
 }
 return max value;
```

Bottom-Up Dynamic Programming for the Knapsack Problem

- Requirements for using dynamic programming:
 - The answer to our problem P can be easily obtained from answers to smaller problems.
 - We can order problems in a sequence (P₀, P₁, P₂, ..., P_K) of reasonable size, so that:
 - P_k is our original problem P.
 - The initial problems, P₀ and possibly P₁, P₂, ..., P_R up to some R, are easy to solve (they are **base cases**).
 - For i > R, each P_i can be easily solved using solutions to P_0 , ..., P_{i-1} .
- If these requirements are met, we solve problem P as follows:
 - Create the sequence of problems P_0 , P_1 , P_2 , ..., P_K , such that $P_k = P$.
 - For i = 0 to K, solve P_{K} .
 - Return solution for P_{K} .

How can we relate all this terminology to the Knapsack Problem?

Bottom-Up Dynamic Programming for the Knapsack Problem

- Requirements for using dynamic programming:
 - The answer to our problem P can be easily obtained from answers to smaller problems. Yes! Knapsack(W) uses answers for W-1, W-2, ..., W-max_weight.
 - We can order problems in a sequence (P₀, P₁, P₂, ..., P_K) of reasonable size, so that:
 - P_k is our original problem P.
 - The initial problems, P₀ and possibly P₁, P₂, ..., P_R up to some R, are easy to solve (they are base cases).
 - For i > R, each P_i can be easily solved using solutions to P_0 , ..., P_{i-1} .
 - Yes!
 - P_i is the problem of computing Knapsack(i).
 - P_w is our original problem, since we want to compute Knapsack (W).
 - P₀, P₁ are base cases.
 - For i >= 2, Knapsack(i) is easy to solve given Knapsack (0), Knapsack(1), ..., Knapsack(i-1).

Bottom-Up Solution

int knapsack(int max_weight, Items items)

- Create array of solutions.
- Base case: solutions[0] = 0.
- For each weight in {1, 2, ..., max_weight}
 - max_value = 0.
 - For each item in items:
 - remainder = weight item.weight.
 - if (remainder < 0) continue;
 - value = item.value + solutions[remainder].
 - If (value > max_value) max_value = value.
 - solutions[weight] = max_value.
- Return solutions[max_weight].

Top-Down Solution

Top-level function (almost identical to helper function for Fibonacci top-down solution):

int knapsack(int max_weight, Items items)

- Create array of solutions.
- Initialize all values in solutions to "unknown".
- result = helper_function(max_weight, items, solutions)
- Free up the array of solutions.
- Return result.

Top-Down Solution: Helper Function

int helper_function(int weight, Items items, int * solutions)

- // Check if this problem has already been solved.
- if (solutions[weight] != "unknown") return solutions[weight].
- If (weight == 0) result = 0. // Base case
- Else:
 - result = 0.
 - For each item in items:
 - remainder = weight item.weight.
 - if (remainder < 0) continue;
 - value = item.value + helper_function(remainder, items, solutions).
 - If (value > result) result = value.
- solutions[weight] = result. // Memoization
- Return result.

Performance Comparison

- Recursive version: (knapsack_recursive.c)
 - Runs reasonably fast for max_weight <= 60.
 - Starts getting noticeably slower after that.
 - For max_weight = 70 I gave up waiting.
- Bottom-up version: (knapsack_bottom_up.c)
 - Tried up to max_weight = 100 million.
 - No problems, very fast.
 - Took 4 seconds for max_weight = 100 million.
- Top-down version: (knapsack_top_down.c)
 - Very fast, but crashes around max_weight = 97,000.
 - The system cannot handle that many recursive function calls.

Limitation of All Three Solutions

- Each of the solutions returns a number.
- Is a single number all we want to answer our original problem?

Limitation of All Three Solutions

- Each of the solutions returns a number.
- Is a single number all we want to answer our original problem?
 - No. Our original problem was to find the best set of items.
 - It is nice to know the best possible value we can achieve.
 - But, we also want to know the actual set of items that achieves that value.
- This will be left as a homework for you.

Weighted Interval Scheduling (WIS)

- Suppose you are a plumber.
- You are offered N jobs.
- Each job has the following attributes:
 - **start**: the start time of the job.
 - **finish**: the finish time of the job.
 - value: the amount of money you get paid for that job.
- What is the best set of jobs you can take up?
 - You want to make the most money possible.
- Why can't you just take up all the jobs?

Weighted Interval Scheduling (WIS)

- Suppose you are a plumber.
- You are offered N jobs.
- Each job has the following attributes:
 - **start**: the start time of the job.
 - **finish**: the finish time of the job.
 - value: the amount of money you get paid for that job.
- What is the best set of jobs you can take up?
 - You want to make the most money possible.
- Why can't you just take up all the jobs?
- Because you cannot take up two jobs that are overlapping.

- We assume, for simplicity, that jobs have been sorted in ascending order of the finish time.
 - We have not learned yet good methods for sorting that we can use.
- If we take job A, we cannot take any other job that starts BEFORE job A finishes.
- Can we do both job 0 and job 1?
- Can we do both job 0 and job 2?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- We assume, for simplicity, that jobs have been sorted in ascending order of the finish time.
 - We have not learned yet good methods for sorting that we can use.
- If we take job A, we cannot take any other job that starts BEFORE job A finishes.
- Can we do both job 0 and job 1?
 Yes.
- Can we do both job 0 and job 2?
 - No (they overlap).

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- A possible set of jobs we could take: 0, 1, 5, 10, 13.
- What is the value?
 3 + 5.5 + 4.5 + 6 + 6 = 25.
- Can you propose any algorithm (even horribly slow) for finding the best set of jobs?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- Simplest algorithm for finding the best subset of jobs:
 - Consider all possible subsets of jobs.
 - Ignore subsets with overlapping jobs.
 - Find the subset with the best total value.
- Time complexity? If we have N jobs, what is the total number of subsets of jobs?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- Simplest algorithm for finding the best subset of jobs:
 - Consider all possible subsets of jobs.
 - Ignore subsets with overlapping jobs.
 - Find the subset with the best total value.
- Time complexity? If we have N jobs, what is the total number of subsets of jobs?
 - Total number of subsets: 2^{N} .
 - Exponential time complexity.

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- To use dynamic programming, we must relate the solution to our problem to solutions to smaller problems.
- For example, consider job 14.
- What kind of problems that exclude job 14 would be relevant in solving the original problem, that includes job 14?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- We can easily solve the problem for jobs 0-14, given solutions to these two smaller problems:
- Problem 1: best set using jobs 0-13.
 - When job 14 is available, the best set using jobs 0-13 is still an option to us, although not necessarily the best one.
- Problem 2: best set using jobs 0-10.
 - Why is this problem relevant?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- We can easily solve the problem for jobs 0-14, given solutions to these two smaller problems:
- Problem 1: best set using jobs 0-13.
 - When job 14 is available, the best set using jobs 0-13 is still an option to us, although not necessarily the best one.
- Problem 2: best set using jobs 0-10.
 - Why is this problem relevant?
 - Because job 10 is the last job before job
 14 that does NOT overlap with job 14.
 - Thus, job 14 can be ADDED to the solution for jobs 0-10.

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

- We can easily solve the problem for jobs 0-14, given solutions to these two smaller problems:
- Problem 1: best set using jobs 0-13.
- Problem 2: best set using jobs 0-10.
- The solution for jobs 0-14 is simply the best of these two options:
 - Best set using jobs 0-13.
 - Best set using jobs 0-10, plus job 14.
- How can we write this solution in pseudocode?

job ID	start	finish	value
0	1	4.5	3
1	5.3	6.1	5.5
2	3	7.2	2
3	6	8	10
4	0.5	10	7
5	7	12.5	4.5
6	8.2	13	3
7	9	15.3	7
8	10.5	16	2
9	9	17.5	9
10	13	19	6
11	16	20.5	8
12	17	23	12
13	20.2	24.1	6
14	19	25	10

		job ID	start	finish	value
•	Step 1: to make our life	0	0	0	0
	easier, we will insert a zero	1	1	4.5	3
	job at the beginning. The	2	5.3	6.1	5.5
		3	3	7.2	2
	zero job:	4	6	8	10
	 Starts at time zero 	5	0.5	10	7
	 Finishes at time zero. 	6	7	12.5	4.5
	 Has zero value. 	7	8.2	13	3
		8	9	15.3	7
•	Step 2: we need to	9	10.5	16	2
	preprocess jobs, so that for	10	9	17.5	9
	each job i we compute:	11	13	19	6
	— last [i] = the index of the last	12	16	20.5	8
	job preceding job i that does	13	17	23	12
	NOT overlap with job i.	14	20.2	24.1	6
		15	19	25	10

		last	job ID	start	finish	value
•	Step 1: to make our life	0	0	0	0	0
	easier, we will insert a zero	0	1	1	4.5	3
	,	1	2	5.3	6.1	5.5
	job at the beginning. The	0	3	3	7.2	2
	zero job:	1	4	6	8	10
	 Starts at time zero 	0	5	0.5	10	7
	 Finishes at time zero. 	2	6	7	12.5	4.5
	 Has zero value. 	4	7	8.2	13	3
		4	8	9	15.3	7
•	Step 2: we need to	5	9	10.5	16	2
	preprocess jobs, so that for	4	10	9	17.5	9
	each job i we compute:	7	11	13	19	6
	— last [i] = the index of the last	9	12	16	20.5	8
	job preceding job i that does	9	13	17	23	12
	NOT overlap with job i.	11	14	20.2	24.1	6
		11	15	19	25	10

		last	job ID	start	finish	value
flo	pat wis(jobs, last)	0	0	0	0	0
•	N = number of jobs.	0	1	1	4.5	3
•	N – Humber of Jobs.	1	2	5.3	6.1	5.5
•	Initialize solutions array.	0	3	3	7.2	2
•	solutions[0] = 0.	1	4	6	8	10
		0	5	0.5	10	7
•	For (i = 1 to N)	2	6	7	12.5	4.5
	— S1 = solutions[i-1].	4	7	8.2	13	3
	-L = last[i].	4	8	9	15.3	7
		5	9	10.5	16	2
	— SL = solutions[L].	4	10	9	17.5	9
	— S2 = SL + jobs[i].value.	7	11	13	19	6
	— solutions[i] = max(S1, S2).	9	12	16	20.5	8
•	Return solutions[N];	9	13	17	23	12
		11	14	20.2	24.1	6
		11	15	19	25	10

Backtracking

- As in our solution to the knapsack problem, the pseudocode we just saw returns a number:
 - The best total value we can achieve.
- In addition to the best value, we also want to know the set of jobs that achieves that value.
- This is a general issue in dynamic programming.
- How can we address it?

Backtracking

- As in our solution to the knapsack problem, the pseudocode we just saw returns a number:
 - The best total value we can achieve.
- In addition to the best value, we also want to know the set of jobs that achieves that value.
- This is a general issue in dynamic programming.
- There is a general solution, called backtracking.
- The key idea is:
 - In DP the final solution is always built from smaller solutions.
 - At each smaller problem, we have to choose which (even smaller) solutions to use for solving that problem.
 - We must record, for each smaller problem, the choice we made.
 - At the end, we backtrack and recover the individual decisions that led to the best solution.

Backtracking for the WIS Solution

• First of all, what should the function return?

Backtracking for the WIS Solution

- First of all, what should the function return?
 - The best value we can achieve.
 - The set of intervals that achieves that value.
- How can we make the function return both these things?
- The solution that will be preferred throughout the course:
 - Define a Result structure containing as many member variables as we need to store in the result.
 - Make the function return an object of that structure.

Backtracking for the WIS Solution

- First of all, what should the function return?
 - The best value we can achieve.
 - The set of intervals that achieves that value.

```
struct WIS_result
{
  float value;
  list set;
};
```

struct WIS_result wis(struct Intervals intervals)

Result wis(jobs, last)	last	job ID	start	finish	value
 N = number of jobs. 	0	0	0	0	0
n – number of jobs.	0	1	1	4.5	3
 solutions[0] = 0. 	1	2	5.3	6.1	5.5
 For (i = 1 to N) 	0	3	3	7.2	2
· · ·	1	4	6	8	10
- L = last[i].	0	5	0.5	10	7
— SL = solutions[L].	2	6	7	12.5	4.5
— S1 = solutions[i-1].	4	7	8.2	13	3
— S2 = SL + jobs[i].value.	4	8	9	15.3	7
— solutions[i] = max(S1, S2).	5	9	10.5	16	2
SOUCHOUS[1] = IIIdX(ST, SZ).	4	10	9	17.5	9
 How can we keep track of 	7	11	13	19	6
the decisions we make?	9	12	16	20.5	8
	9	13	17	23	12
	11	14	20.2	24.1	6
	11	15	19	25	10

Result wis(jobs, last)	last	job ID	start	finish	value
 N = number of jobs. 	0	0	0	0	0
n – number of jobs.	0	1	1	4.5	3
 solutions[0] = 0. 	1	2	5.3	6.1	5.5
 For (i = 1 to N) 	0	3	3	7.2	2
	1	4	6	8	10
- L = last[i].	0	5	0.5	10	7
SL = solutions[L].	2	6	7	12.5	4.5
— S1 = solutions[i-1].	4	7	8.2	13	3
— S2 = SL + jobs[i].value.	4	8	9	15.3	7
- solutions[i] = max(S1, S2).	5	9	10.5	16	2
	4	10	9	17.5	9
 How can we keep track of 	7	11	13	19	6
the decisions we make?	9	12	16	20.5	8
THE DECISIONS WE MAKE!	9	13	17	23	12
 Remember the last job of 	11	14	20.2	24.1	6
each solution.	11	15	19	25	10

Result wis(jobs, last)	last	job ID	start	finish	value
 N = number of jobs. 	0	0	0	0	0
N – Humber of jobs.	0	1	1	4.5	3
 solutions[0] = 0. 	1	2	5.3	6.1	5.5
• used[0] = 0.	0	3	3	7.2	2
	1	4	6	8	10
 For (i = 1 to N) 	0	5	0.5	10	7
— L = last[i].	2	6	7	12.5	4.5
— SL = solutions[L].	4	7	8.2	13	3
- S1 = solutions[i-1].	4	8	9	15.3	7
	5	9	10.5	16	2
- S2 = SL + jobs[i].value.	4	10	9	17.5	9
— solutions[i] = max(S1, S2).	7	11	13	19	6
— If S2 > S1 then used[i] = i.	9	12	16	20.5	8
— Else used[i] = used[i-1].	9	13	17	23	12
	11	14	20.2	24.1	6
	11	15	19	25	10

 // backtracking part 	last	job ID	start	finish	value
 list set = new List. 	0	0	0	0	0
	0	1	1	4.5	3
 counter = used[N]. 	1	2	5.3	6.1	5.5
 while(counter != 0) 	0	3	3	7.2	2
	1	4	6	8	10
– job = jobs[counter].	0	5	0.5	10	7
 insertAtBeginning(set, job). 	2	6	7	12.5	4.5
– counter = ???	4	7	8.2	13	3
	4	8	9	15.3	7
WIS result result.	5	9	10.5	16	2
—	4	10	9	17.5	9
 result.value = solutions[N]. 	7	11	13	19	6
 result.set = set. 	9	12	16	20.5	8
	9	13	17	23	12
 return result. 	11	14	20.2	24.1	6
	11	15	19	25	10

 // backtracking part 	last	job ID	start	finish	value
 list set = new List. 	0	0	0	0	0
	0	1	1	4.5	3
 counter = used[N]. 	1	2	5.3	6.1	5.5
 while(counter != 0) 	0	3	3	7.2	2
	1	4	6	8	10
– job = jobs[counter].	0	5	0.5	10	7
 insertAtBeginning(set, job). 	2	6	7	12.5	4.5
— counter = used[last[counter]].	4	7	8.2	13	3
	4	8	9	15.3	7
 WIS result result. 	5	9	10.5	16	2
—	4	10	9	17.5	9
 result.value = solutions[N]. 	7	11	13	19	6
 result.set = set. 	9	12	16	20.5	8
	9	13	17	23	12
 return result. 	11	14	20.2	24.1	6
	11	15	19	25	10

Matrix Multiplication: Review

- Suppose that A₁ is of size S₁ x S₂, and A₂ is of size S₂ x S₃.
- What is the time complexity of computing $A_1 * A_2$?
- What is the size of the result?

Matrix Multiplication: Review

- Suppose that A₁ is of size S₁ x S₂, and A₂ is of size S₂ x S₃.
- What is the time complexity of computing $A_1 * A_2$?
- What is the size of the result? $S_1 \times S_3$.
- Each number in the result is computed in O(S₂) time by:
 - multiplying S_2 pairs of numbers.
 - adding S_2 numbers.
- Overall time complexity: $O(S_1 * S_2 * S_3)$.

Optimal Ordering for Matrix Multiplication

• Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- The number of columns for A_i must equal the number of rows for A_{i+1}.
- What is the time complexity for performing this sequence of multiplications?

Optimal Ordering for Matrix Multiplication

• Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- The number of columns for A_i must equal the number of rows for A_{i+1}.
- What is the time complexity for performing this sequence of multiplications?
- The answer is: it depends on the order in which we perform the multiplications.

An Example

- Suppose:
 - $A_1 is 17x2.$
 - A_2 is 2x35.
 - A_3 is 35x4.
- (A₁ * A₂) * A₃:

• A₁ * (A₂ * A₃):

An Example

- Suppose:
 - $A_1 is 17x2.$
 - A_2 is 2x35.
 - A_3 is 35x4.
- (A₁ * A₂) * A₃:
 - 17*2*35 = 1190 multiplications and additions to compute $A_1 * A_2$.
 - 17*35*4 = 2380 multiplications and additions to compute multiplying the result of (A₁ * A₂) with A₃.
 - Total: 3570 multiplications and additions.
- $A_1 * (A_2 * A_3)$:
 - 2*35*4 = 280 multiplications and additions to compute $A_2 * A_3$.
 - 17*2*4 = 136 multiplications and additions to compute multiplying A₁ with the result of (A₂ * A₃).
 - Total: 416 multiplications and additions.

Adaptation to Dynamic Programming

• Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- To figure out if and how we can use dynamic programming, we must address the standard two questions we always need to address for dynamic programming:
- Can we define a set of smaller problems, such that the solutions to those problems make it easy to solve the original problem?
- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?

- 1. Can we define a set of smaller problems, whose solutions make it easy to solve the original problem?
 - Original problem: optimal ordering for $A_1 * A_2 * A_3 * \dots * A_K$
- Yes! Suppose that, for every i between 1 and K-1 we know:
 - The best order (and best cost) for multiplying matrices $A_1, ..., A_i$.
 - The best order (and best cost) for multiplying matrices A_{i+1} , ..., A_{K} .
- Then, for every such i, we obtain a possible solution for our original problem:
 - Multiply matrices $A_1, ..., A_i$ in the best order. Let C_1 be the cost of that.
 - Multiply matrices A_{i+1} , ..., A_K in the best order. Let C_2 be the cost of that.
 - Compute $(A_1 * ... * A_i) * (A_{i+1} * ... * A_K)$. Let C_3 be the cost of that.
 - C₃ = rows of (A₁ * ... * A_i) * cols of (A₁ * ... * A_i) * cols of (A_{i+1} * ... * A_K).
 = rows of A₁ * cols of A_i * cols of A_K

- Total cost of this solution = $C_1 + C_2 + C_3$.

- 1. Can we define a set of smaller problems, whose solutions make it easy to solve the original problem?
 - Original problem: optimal ordering for $A_1 * A_2 * A_3 * \dots * A_K$
- Yes! Suppose that, for every i between 1 and K-1 we know:
 - The best order (and best cost) for multiplying matrices $A_1, ..., A_i$.
 - The best order (and best cost) for multiplying matrices A_{i+1} , ..., A_{K} .
- Then, for every such i, we obtain a possible solution.
- We just need to compute the cost of each of those solutions, and choose the smallest cost.
- Next question:
- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?

- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?
- To compute answer for A₁ * A₂ * A₃ * ... * A_κ: For i = 1, ..., K-1, we had to consider solutions for:

• So, what is the set of all problems we must solve?

- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?
- To compute answer for A₁ * A₂ * A₃ * ... * A_κ: For i = 1, ..., K-1, we had to consider solutions for:
 - A₁, ..., A_i.

- So, what is the set of all problems we must solve?
- For M = 1, ..., K.
 - For N = 1, ..., M.
 - Compute the best ordering for $A_N * ... * A_M$.
- What this the number of problems we need to solve? Is the size reasonable?
 - We must solve $\Theta(K^2)$ problems. We consider this a reasonable number. 107

- The set of all problems we must solve:
- For M = 1, ..., K.
 - For N = 1, ..., M.
 - Compute the best ordering for $A_N * ... * A_M$.
- What is the order in which we must solve these problems?

Defining Smaller Problems

- The set of all problems we must solve, in the correct order:
- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- N must go from M to 1, NOT the other way around.
- Why? Because, given M, the larger the N is, the smaller the problem is of computing the best ordering for $A_N * ... * A_M$.

Solving These Problems

- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- What are the base cases?
- N = M.
 - costs[N][M] = 0.
- N = M 1.
 - $costs[N][M] = rows(A_N) * cols(A_N) * cols(A_M)$.
- Solution for the recursive case:

Solving These Problems

- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- Solution for the recursive case:
- minimum_cost = 0
- For R = N, ..., M-1:
 - cost1 = costs[N][R]
 - $\cos t2 = \cos ts[R+1][M]$
 - cost3 = rows(A_N) * cols(A_R) * cols(A_M)
 - $\cos t = \cos t1 + \cos t2 + \cos t3$
 - if (cost < minimum_cost) minimum_cost = cost</pre>
- costs[N][M] = minimum_cost

The Edit Distance

- Suppose A and B are two strings.
- By applying insertions, deletions, and substitutions, we can always convert A to B.
- Insertion example: we insert an 'r' at position 2, to convert "cat" to "cart".
- Deletion example: we delete the 'r' at position 2, to convert "cart" to "cat".
- Substitution example: we replace the 'o' at position 1 with an 'i', to convert "dog" to "dig".
- Note: each insertion/deletion/substitution inserts, deletes, or changes <u>only one</u> character, NOT multiple characters.

The Edit Distance

- For example, to convert "chicken" to "ticket":
- One solution:
 - Substitute 'c' with 't'.
 - Delete 'h'.
 - Replace 'n' with 't'.
 - Total: three operations.
- Another solution:
 - Delete 'c'.
 - Substitute 'h' with 't'.
 - Replace 'n' with 't'.
 - Total: three operations.

The Edit Distance

- Question: given two strings A and B, what is the smallest number of operations we need in order to convert A to B?
- The answer is called the **<u>edit distance</u>** between A and B.
- This distance, and variations, have significant applications in various fields, including bioinformatics and pattern recognition.

- Assignment preview: you will have to write code that produces such output.
- Edit distance between "chicken" and "ticket" = ?

- Assignment preview: you will have to write code that produces such output.
- Edit distance between "chicken" and "ticket" = 3
- c h i c k e n
- t i c k e t
- x x x
- Three operations:
 - Substitution: 'c' with 't'.
 - Insertion: 'h'.
 - Substitution: 'n' with 't'.

• Edit distance between "lazy" and "crazy" = ?

- Edit distance between "lazy" and "crazy" = 2
- 1 a z y
- c r a z y
- x x . . .
- Two operations:
 - Substitution: 'l' with 'c'.
 - Insertion: 'r'.

 Edit distance between "intimidation" and "immigration" = ?

- Edit distance between "intimidation" and "immigration" = 5
- intimid-ation
- i - m m i g r a t i o n
- . x x x . . x x
- Five operations:
 - Deletion: 'n'.
 - Deletion: 't'.
 - Substitution: 'i' with 'm'.
 - Substitution: 'd' with 'g'.
 - Insertion: 'r'.

- Assignment preview: you will have to implement this.
- What is the edit distance between:
 - GATTACACCGTCTCGGGCATCCATAATGG
 - CATTTATAGGTGAACTTGCGCGTTATGC
- Unlike previous examples, here the answer is not obvious.
- The two strings above are (very small) examples of DNA sequences, using the four DNA letters: ACGT.
- In practice, the sequences may have thousands or millions of letters.
- We need an algorithm for computing the edit distance between two strings.

- To find a dynamic programming solution, we must find a sequence of problems such that:
 - Each problem in the sequence can be easily solved given solutions to the previous problems.
 - The number of problems in the sequence is not too large (e.g., not exponential).
- Any ideas?
- Given strings A and B, can you identify smaller problems that are related to computing the edit distance between A and B?

- Notation:
 - S[i, ..., j] is the substring of S that includes all letters from position i to position j.
 - |S| indicates the length of string S.
- Using this notation:
 - A = A[0, ..., |A|-1]
 - B = B[0, ..., |B|-1]
- The solution for edit_distance(A, B) depends on the solutions to three smaller problems:
 - edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2])
 - edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1])
 - edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])

- The solution for edit_distance(A, B) depends on the solutions to three smaller problems:
- Problem 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2])
 - Edit distance from A to B, excluding the last letter of B.
 - We can insert the last letter of B to that solution.
- Example:
 - A = "intimidation". |A| = 12.
 - B = "immigration". |B| = 11.
- edit_distance(A[0, ..., 11], B[0, ..., 9]) = 6
- intimid-ation
- i - m m i g r a t i o -
- From this, we obtain a solution with cost 7.

- Problem 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1])
 - Edit distance from A to B, excluding the last letter of A.
 - We can insert the last letter of A to that solution.
- Example:
 - A = "intimidation". |A| = 12.
 - B = "immigration". |B| = 11.
- edit_distance(A[0, ..., 10], B[0, ..., 10]) = 6
- intimid-atio-
- i - m m i g r a t i o n
- This solution converts "intimidatio" to "immigration".
- Using one more deletion (of the final 'n' of "intimidation"), we convert "intimidation" to "immigration" with cost 7.

- Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])
 - Edit distance from A to B, excluding the last letter of both A and B.
- Example:
 - A = "intimidation". |A| = 12.
 - B = "immigration". |B| = 11.
- edit_distance(A[0, ..., 10], B[0, ..., 9]) = 5
- intimid-atio
- i – m m i g r a t i o
- This solution converts "intimidatio" to "immigratio".
- The same solution converts "intimidation" to "immigration", because both words have the same last letter.

- Problem 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2])
 - Edit distance from A to B, excluding the last letter of both A and B.
- Example:
 - A = "nation". |A| = 6.
 - B = "patios". |B| = 6.
- edit_distance(A[0, ..., 10], B[0, ..., 9]) = 1
- n a t i o
- patio
- This solution converts "natio" to " patio".
- The same solution, plus one substitution ('n' with 's') converts "nation" to "patios", with cost 2.

- Summary: edit_distance(A, B) is the smallest of the following three:
 - 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + ?
 - 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + ?
 - 3: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + ?

- Summary: edit_distance(A, B) is the smallest of the following three:
 - 1: edit_distance(A[0, ..., |A|-1], B[0, ..., |B|-2]) + 1
 - 2: edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-1]) + 1
 - 3: either edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]).
 - If the last letter of A is **the same** as the last letter of B.
 - or edit_distance(A[0, ..., |A|-2], B[0, ..., |B|-2]) + 1.
 - If the last letter of A is **not the same** as the last letter of B.

 What sequence of problems do we need to solve in order to compute edit_distance(A, B)?

- What sequence of problems do we need to solve in order to compute edit_distance(A, B)?
- For each i in 0, ..., |A|-1
 - For each j in 0, …, |B|-1
 - Compute edit_distance(A[0, ..., i], B[0, ..., j]).
- The total number of problems we need to to solve is |A| * |B|, which is manageable.
- What are the base cases?

Base case 1: edit_distance("", "") = 0.

The edit distance between two empty strings.

- Base case 2: edit_distance("", B[0, ..., j]) = j+1.
- Base case 3: edit_distance(A[0, ..., i], "") = i+1.

- For convenience, we define A[0, -1] = "", B[0, -1] = "".
- Then, we can rewrite the previous base cases like this:
- Base case 1: edit_distance(A[0, -1], B[0, -1]) = 0.
 The edit distance between two empty strings.
- Base case 2: edit_distance(A[0, -1], B[0, ..., j]) = j+1.
- Base case 3: edit_distance(A[0, ..., i], B[0, -1]) = i+1.

- Recursive case: if i >= 0, j >= 0:
- edit_distance(A[0, ..., i], B[0, ..., j]) = smallest of these three values:
 - 1: edit_distance(A[0, ..., i-1], B[0, ..., j) + 1
 - 2: edit_distance(A[0, ..., i], B[0, ..., j-1]) + 1
 - 3: either edit_distance(A[0, ..., i-1], B[0, ..., j-1]).
 - If A[i] == B[j].
 - or edit_distance(A[0, ..., i-1], B[0, ..., j-1]) + 1.
 - If A[i] != B[j].