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Graphs 

• A graph is formally defined as: 

– A set V of vertices (also called nodes). 

– A set E of edges. Each edge is a pair of two vertices in V. 

• Graphs can be directed or undirected. 

• In a directed graph, edge (A, B) means that we can go 
(using that edge) from A to B, but not from B to A. 

– We can have both edge (A, B) and edge (B, A) if we want to 
show that A and B are linked in both directions. 

• In an undirected graph, edge (A, B) means that we 
can go (using that edge) from both A to B and B to A. 
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Example: of an Undirected Graph 

• A graph is formally defined as: 

– A set V of vertices. 

– A set E of edges. Each edge is  
a pair of two vertices in V. 

• What is the set of vertices 
on the graph shown here? 

– {0, 1, 2, 3, 4, 5, 6, 7} 

• What is the set 
of edges? 

– {(0,1), (0,2), (0,5), (0,6), (0, 7), (3, 4), (3, 5), 
 (4, 5), (4, 6), (4,7)}. 
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Trees 

• Trees are a natural data structure for representing 
several types of data. 

– Family trees. 

– Organizational chart of a corporation, showing who 
supervises who. 

– Folder (directory) structure on a hard drive. 

– Parsing an English sentence into its parts. 
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A Family Tree (from Wikipedia) 
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An Organizational Chart 
(from Wikipedia) 
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A Parse Tree (from Wikipedia) 
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Paths 

• A path in a tree is a list of distinct vertices, in which successive 
vertices are connected by edges. 
– No vertex is allowed to appear twice in a path. 

• Example: ("Joseph Wetter", "Jessica Grey", "Jason Grey", 
"Hanna Grey") 
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Trees and Graphs 

• Are trees graphs? 

– Always? 

– Sometimes? 

– Never? 

• Are graphs trees? 

– Always? 

– Sometimes? 

– Never? 

 

 

9 



Trees and Graphs 

• All trees are graphs. 

• Some graphs are trees, some graphs are not trees. 

• What is the distinguishing characteristic of trees? 

• What makes a graph a tree? 
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Trees and Graphs 

• All trees are graphs. 

• Some graphs are trees, some graphs are not trees. 

• What is the distinguishing characteristic of trees? 

– What makes a graph a tree?  

• A tree is a graph such that any two nodes (vertices) 
are connected by precisely one path. 

– If you can find two nodes that are not connected by any 
path, then the graph is not a tree. 

– If you can find two nodes that are connected to each other 
by more than one path, then the graph is not a tree. 
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Example 

• Are these graphs trees? 
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Example 

• Are these graphs trees? 
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No, this is not a tree. For 
example, there are two paths 
connecting node 5 to node 4. 

Yes, this is a tree. Any two  
vertices are connected by  
exactly one path. 



Example 

• Are these graphs trees? 
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Example 

• Are these graphs trees? 
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Yes, this is a tree. Any two  
vertices are connected by  
exactly one path. 

No, this is not a tree. For 
example, there is no path 
connecting node 7 to node 4. 
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Root of the Tree 

• A rooted tree is a tree where one node is designated 
as the root. 

• Given a tree, ANY node can be the root. 
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Terminology 

• A rooted tree is a tree where one node is explicitly 
designated as the root. 

– From now on, as is typical in computer science, all trees 
will be rooted trees 

– We will typically draw trees with the root placed at the 
top. 

• Each node has exactly one node directly above it, 
which is called a parent. 

• If Y is the parent of X, then Y is the node right after X 
on the path from X to the root. 
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Terminology 

• If Y is the parent of X, then X is called a child of Y. 

– The root has no parents. 

– Every other node, except for the root, has exactly one 
parent. 

• A node can have 0, 1, or more children. 

• Nodes that have children are called internal nodes or 
non-terminal nodes. 

• Nodes that have no children are called leaves or 
terminal nodes, or external nodes. 
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Terminology 

• The level of the root is defined to be 0. 

• The level of each node is defined to be 1+ the level 
of its parent. 

• The height of a tree is the maximum of the levels of 
all nodes in the tree. 
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M-ary Trees 

• An M-ary tree is a tree where every node is either a leaf or it 
has exactly M children. 

• Example: binary trees, ternary trees, ... 
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Is this a binary tree? 

Is this a binary tree? 



M-ary Trees 

• An M-ary tree is a tree where every node is either a leaf or it 
has exactly M children. 

• Example: binary trees, ternary trees, ... 
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This is not a binary tree, node 3 has 1 child. 

This is a binary tree. 



Ordered Trees 

• A rooted tree is called ordered if the order in which 
we list the children of each node is significant. 

• For example, if we have a binary ordered tree, we 
will refer to the left child and the right child of each 
node. 

• If the tree is not ordered, then it does not make 
sense to talk of a left child and a right child. 
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Properties of Binary Trees 

• A binary tree with N internal notes has N+1 external 
nodes. 

• A binary tree with N internal notes has 2N edges 
(links). 

• The height of a binary tree with N internal nodes is at 
least lg N and at most N. 

– Height = lg N if all leaves are at the same level. 

– Height = N if each internal node has one leaf child. 
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Defining Nodes for Binary Trees 

typedef struct node *link;  

struct node  

{  

  Item item;  

  link left; 

  link right; 

}; 
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Traversing a Binary Tree 

• Traversing is the process of going through each node of a 
tree, and doing something with that node. Examples: 
– We can print the contents of the node. 

– We can change the contents of the node. 

– We can otherwise use the contents of the node in computing 
something. 

• We have three choices about the order in which we visit 
nodes when we traverse a binary tree. 
– Preorder: we visit the node, then its left subtree, then its right 

subtree. 

– Inorder: we visit the left subtree, then the node, then the right 
subtree. 

– Postorder: we visit the left subtree, then the right subtree, then the 
node. 
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Examples 

• In what order will the values of the nodes be printed 
if we print the tree by traversing it: 

– Preorder? 

– Inorder? 

– Postorder? 
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Examples 

• In what order will the values of the nodes be printed 
if we print the tree by traversing it: 

– Preorder? 0, 1, 2, 6, 7 . 

– Inorder? 1, 0, 6, 2, 7. 

– Postorder? 1, 6, 7, 2, 0. 
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Recursive Tree Traversal 

28 

void traverse_inorder(link h) 
{  
    if (h == NULL) return; 
    traverse_inorder (h->l); 
    do_something_with(h); 
    traverse_inorder (h->r); 
} 

void traverse_preorder(link h) 
{  
    if (h == NULL) return; 
    do_something_with(h); 
    traverse_preorder (h->l); 
    traverse_preorder (h->r); 
} 

void traverse_postorder(link h) 
{  
    if (h == NULL) return; 
    traverse_postorder (h->l); 
    traverse_postorder (h->r); 
    do_something_with(h); 
} 



Recursive Examples 
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int count(link h) 
{  
    if (h == NULL) return 0; 
    int c1 = count(h->left); 
    int c2 = count(h->right); 
    return c1 + c2 + 1; 
} 

int height(link h) 
{  
    if (h == NULL) return -1; 
    int u = height(h->left);  
    int v = height(h->right); 
    if (u > v) return u+1;  
    else return v+1; 
} 

Counting the number  
of nodes in the tree: 

Computing the height 
 of the tree: 



Recursive Examples 
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void printnode(char c, int h) 
{  
    int i; 
    for (i = 0; i < h; i++) printf("  "); 
    printf("%c\n", c); 
} 
 
void show(link x, int h) 
{  
    if (x == NULL) { printnode("*", h); return; } 
    printnode(x->item, h); 
    show(x->l, h+1);     
    show(x->r, h+1);     
} 

Printing the 
contents of 
each node: 
 
(assuming that 
the items in 
the nodes are 
characters) 



Recursive Graph Traversal 

• Recursive functions are also frequently used to 
traverse graphs. 

• When traversing a tree, it is natural to start at the 
root. 

• When traversing a graph, we must specify the node 
with start from. 

• In the following examples we will assume that we 
represent graphs using adjacency lists. 
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Reminder: Defining a Graph Using 
Adjacency Lists 

 

 

typedef struct struct_graph * graph;  

 

struct struct_graph 

{ 

   int number_of_vertices; 

   list * adjacencies; 

}; 
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Graph Traversal - Graph Search 

• Overall, we will use the terms "graph traversal" and 
"graph search" almost interchangeably. 

• However, there is a small difference: 

– "Traversal" implies we visit every node in the graph. 

– "Search" implies we visit nodes until we find something we 
are looking for.  

• For example: 

– A node labeled "New York". 

– A node containing integer 2014. 
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Graph Search in General 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• The pseudocode is really a template. 

• It does not specify what we really want to do. 

• To fully specify an algorithm, we need to better define what 
each of the red lines. 
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Graph Search in General 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• Depending on what we specify in those lines, this template 
can produce a wide variety of applications: 
– Printing each node of the graph. 

– Driving directions. 

– The best move for a board game like chess. 

– A solution to a mathematical problem… 
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Specifying Graph Search Behavior 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• What do we do when visiting a node? 

• Whatever we want. For example: 
– Print the contents of the node. 

– Use the contents in some computation (min, max, sum, ...). 

– See if the node has a value we care about ("New York", 2014, ...). 

– These are all reasonable topics for assignments/exams. 
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Specifying Graph Search Behavior 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• Inserting children of a node to the to_visit list: 

• We have a choice: insert a child even if it already is included in 
that list, or not? 
– In some cases we should not. Example: ??? 

– In some cases we should, but we may not see such cases in this 
course. 
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Specifying Graph Search Behavior 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• Inserting children of a node to the to_visit list: 

• We have a choice: insert a child even if it already is included in 
that list, or not? 
– In some cases we should not. Example: printing each node. 

– In some cases we should, but we may not see such cases in this 
course. 
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Specifying Graph Search Behavior 

• GraphSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only element. 

– While(to_visit is not empty): 

• Remove a node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end of list to_visit. 

• Most important question (for the purposes of this course): 
– Removing a node from list to_visit: Which node? The first, the last, 

some other one? 

• The answer has profound implications for time complexity,  
space complexity, other issues you may see later or in other 
courses… 
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Depth-First Search 

• DepthFirstSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only 

element. 

– While(to_visit is not empty): 

• Remove the last node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end  
of list to_visit. 

• In depth-first search, the list of  
nodes to visit is treated as a LIFO  
(last-in, first-out) queue. 

• DepthFirstSearch(graph, 5): 

• In what order does it visit nodes? 
40 
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Depth-First Search 

• DepthFirstSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only 

element. 

– While(to_visit is not empty): 

• Remove the last node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end  
of list to_visit. 

• DepthFirstSearch(graph, 5): 

• In what order does it visit nodes? 

• The answer is not unique. 
– One possibility: 5, 4, 3,  7, 0, 1, 2, 6. 

– Another possibility: 5, 3, 4, 7, 0, 6, 1, 2. 

– Another possibility: 5, 0, 6, 4, 3, 7, 1, 2. 41 
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Depth-First Search 

void depth_first(Graph g, int start) 

{ 

    int * visited = malloc(sizeof(int) * g->number_of_vertices); 

    int i; 

    for (i = 0; i < g->number_of_vertices; i++)  visited[i] = 0; 

    depth_first_helper(g, start, visited); 

} 

 

void depth_first_helper (Graph g, int k, int * visited) 

{  link t; 

    do_something_with(k);   // This is just a placeholder. 

    visited[k] = 1; 

    for (t = listFirst(g->adjacencies[k]); t != NULL; t = t->next) 

        if (!visited[linkItem(t)])    depth_first_helper(g, linkItem(t), visited); 

} 42 

This code assumes that  
each link item is an int. 

Note: no need to 
explicitly maintain a  
list of nodes to visit. 



Breadth-First Search 

• BreadthFirstSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only 

element. 

– While(to_visit is not empty): 

• Remove the first node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end  
of list to_visit. 

• In breadth-first search, the list of  
nodes to visit is treated as a LIFO  
(last-in, first-out) queue. 

• BreadthFirstSearch(graph, 5): 

• In what order does it visit nodes? 
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Breadth-First Search 

• BreadthFirstSearch(graph, starting_node) 
– Initialize list to_visit to a list with starting_node as its only 

element. 

– While(to_visit is not empty): 

• Remove the first node N from list to_visit. 

• "Visit" that node. 

• If that node was what we were looking for, break. 

• Add the children of that node to the end  
of list to_visit. 

• BreadthFirstSearch(graph, 5): 

• In what order does it visit nodes? 

• The answer is not unique. 
– One possibility: 5, 4, 3,  0, 7, 1, 2, 6. 

– Another possibility: 5, 3, 4, 0, 7, 6, 1, 2. 

– Another possibility: 5, 0, 4, 3, 6, 1, 2, 7. 
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Breadth-First Search 

void breadth_first(Graph g, int k)  

{  

    int i;   link t;  

    int * visited = malloc(sizeof(int) * g->number_of_vertices); 

    for (i = 0; i < g->number_of_vertices; i++)  visited[i] = 0;     

    QUEUEinit(V);   QUEUEput(k);  

    while (!QUEUEempty())  

        if (visited[k = QUEUEget()] == 0)  

        {  

            do_something_with(k);   // This is just a placeholder. 

            visited[k] = 1;  

            for (t = g->adjacencies[k]; t != NULL; t = t->next)  

            if (visited[linkItem(t)] == 0)   QUEUEput(linkItem(t));  

        } 

}  45 

This pseudocode uses the 
textbook's implementation  
of queues. 



Note 

• The previous examples should be treated as very 
detailed C-like pseudocode, not as ready-to-run 
code. 

• We have seen several different implementations of 
graphs, lists, queues. 

• To make the code actually work, you will need to 
make sure it complies with specific implementations. 
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