Trees and Graphs

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington

Graphs

A graph is formally defined as:
— A set V of vertices (also called nodes).

— A set E of edges. Each edge is a pair of two vertices in V.
Graphs can be directed or undirected.

In a directed graph, edge (A, B) means that we can go
(using that edge) from A to B, but not from B to A.

— We can have both edge (A, B) and edge (B, A) if we want to
show that A and B are linked in both directions.

In an undirected graph, edge (A, B) means that we
can go (using that edge) from both A to B and B to A.

Example: of an Undirected Graph

* A graphis formally defined as:
— A set V of vertices.

— A set E of edges. Each edge is
a pair of two vertices in V.

 What is the set of vertices
on the graph shown here?
—-{0,1,2,3,4,5,6, 7}
 What is the set
of edges?

—1(0,1), (0,2), (0,5), (0,6), (0, 7), (3, 4), (3, 5),
(4,5), (4, 6), (4,7)}.

Trees

* Trees are a natural data structure for representing
several types of data.
— Family trees.

— Organizational chart of a corporation, showing who
supervises who.

— Folder (directory) structure on a hard drive.
— Parsing an English sentence into its parts.

A Family Tree (from Wikipedia)

Fred Smith
Mary Grey -[

I_jzme Smith

| Sean Grey
{Joseph Wetter,
Lucas Grey |-
qlason Grey |jessica Grey John Wetter
Laura Wetter

H{Hannah Grey

- Peter Grey

Accoqnt Accognt mmm At/ Copy e Media e A CcCounting
Supervisor Supervisor

}—

An Organizational Chart
(from Wikipedia)

Agency Department System

President

Vice President Vice President Vice President Vice President
Account Creative Marketing Management
Services Services Services Services

| |

e Production e Research man PUrchasing
B Personnel

Account
Executive

Account
Executive

A Parse Tree (from Wikipedia)

A
¥ R
vV NP Constituencv-based parse tree

D N

.loim hit tlie bz‘xll.

Paths

 Apathinatreeis alist of distinct vertices, in which successive
vertices are connected by edges.

— No vertex is allowed to appear twice in a path.

 Example: ("Joseph Wetter", "Jessica Grey", "Jason Grey",
"Hanna Grey")

Fred Smith
Mary Grey -[

I_jzme Smith

1 5ean Grey

{Joseph Wetter,

Lucas Grey |-

'I_JEISL'JFI Grey —'I_JESSiCEI Grey [John Wetter

Laura Wetter

Hannah Grey

Peter Grey

Trees and Graphs

* Are trees graphs?
— Always?
— Sometimes?
— Never?

* Are graphs trees?
— Always?
— Sometimes?
— Never?

Trees and Graphs

All trees are graphs.

Some graphs are trees, some graphs are not trees.
What is the distinguishing characteristic of trees?
What makes a graph a tree?

Trees and Graphs

All trees are graphs.
Some graphs are trees, some graphs are not trees.

What is the distinguishing characteristic of trees?
— What makes a graph a tree?

A tree is a graph such that any two nodes (vertices)
are connected by precisely one path.

— If you can find two nodes that are not connected by any
path, then the graph is not a tree.

— If you can find two nodes that are connected to each other
by more than one path, then the graph is not a tree.

Example

* Are these graphs trees?

12

Example

* Are these graphs trees?

Yes, this is a tree. Any two No, this is not a tree. For
vertices are connected by example, there are two paths
exactly one path. connecting node 5 to node 4.

13

Example

* Are these graphs trees?

14

Example

* Are these graphs trees?

Yes, this is a tree. Any two No, this is not a tree. For
vertices are connected by example, there is no path
exactly one path. connecting node 7 to node 4.

Root of the Tree

* Arooted tree is a tree where one node is designated
as the root.

 Given a tree, ANY node can be the root.

16

Terminology

* Arooted tree is a tree where one node is explicitly
designated as the root.

— From now on, as is typical in computer science, all trees
will be rooted trees

— We will typically draw trees with the root placed at the
top.
 Each node has exactly one node directly above it,
which is called a parent.

* IfYisthe parent of X, then Y is the node right after X
on the path from X to the root.

Terminology

If Y is the parent of X, then X is called a child of Y.
— The root has no parents.

— Every other node, except for the root, has exactly one
parent.

A node can have O, 1, or more children.

Nodes that have children are called internal nodes or
non-terminal nodes.

Nodes that have no children are called leaves or
terminal nodes, or external nodes.

Terminology

The level of the root is defined to be 0.

The level of each node is defined to be 1+ the level
of its parent.

The height of a tree is the maximum of the levels of
all nodes in the tree.

M-ary Trees

An M-ary tree is a tree where every node is either a leaf or it
has exactly M children.

Example: binary trees, ternary trees, ...

©
ONRe6 © @
ONONGRG © @

@ Is this a binary tree?

Is this a binary tree?

20

M-ary Trees

 An M-ary tree is a tree where every node is either a leaf or it
has exactly M children.

 Example: binary trees, ternary trees, ...

©
ONRe6 © @
ONONGRG © @

@ This is a binary tree.

This is not a binary tree, node 3 has 1 child.

21

Ordered Trees

 Arooted tree is called ordered if the order in which
we list the children of each node is significant.

* For example, if we have a binary ordered tree, we

will refer to the left child and the right child of each
node.

* |f the tree is not ordered, then it does not make
sense to talk of a left child and a right child.

Properties of Binary Trees

* A binary tree with N internal notes has N+1 external
nodes.

* A binary tree with N internal notes has 2N edges
(links).

* The height of a binary tree with N internal nodes is at
least Ig N and at most N.

— Height = Ig N if all leaves are at the same level.
— Height = N if each internal node has one leaf child.

Defining Nodes for Binary Trees

typedef struct node *link;
struct node

{

tem item;

ink left;

ink right;

Traversing a Binary Tree

Traversing is the process of going through each node of a
tree, and doing something with that node. Examples:

— We can print the contents of the node.

— We can change the contents of the node.
— We can otherwise use the contents of the node in computing
something.
We have three choices about the order in which we visit
nodes when we traverse a binary tree.

— Preorder: we visit the node, then its left subtree, then its right
subtree.

— Inorder: we visit the left subtree, then the node, then the right
subtree.

— Postorder: we visit the left subtree, then the right subtree, then the
node.

Examples

* In what order will the values of the nodes be printed
if we print the tree by traversing it:

— Preorder?

— Inorder?
— Postorder?

26

Examples

* In what order will the values of the nodes be printed
if we print the tree by traversing it:

— Preorder?0,1, 2,6, 7.

— Inorder? 1, 0, 6, 2, 7.

— Postorder? 1, 6, 7, 2, 0. R
ONNO

(&) @

27

Recursive Tree Traversal

{

}

void traverse_preorder(link h)

if (h == NULL) return;
do_something_with(h);
traverse _preorder (h->l);
traverse _preorder (h->r);

void traverse_inorder(link h)
{
if (h == NULL) return;
traverse_inorder (h->l);
do_something_with(h);
traverse_inorder (h->r);

}

void traverse_postorder(link h)

{
if (h == NULL) return;
traverse_postorder (h->l);
traverse_postorder (h->r);
do_something_with(h);

}

Recursive Examples

Counting the number Computing the height

of nodes in the tree: of the tree:

int count(link h) int height(link h)

{ {
if (h == NULL) return O; if (h == NULL) return -1;
int c1 = count(h->left); int u = height(h->left);
int c2 = count(h->right); int v = height(h->right);
return cl +c2 + 1; if (u>v) return u+1;

} else return v+1;

}

Recursive Examples

void printnode(char c, int h)

{
orinting th int i;
rinting the for (i = 0; i < h; i++) printf(" "):
contents of : " Y
printf("%c\n", c);
each node: }

e temsin |10 showlimkx,nt
{

the nodes are if (x == NULL) { printnode("*", h); return; }
characters) printnode(x->item, h);

show(x->|, h+1);

show(x->r, h+1);

)

Recursive Graph Traversal

Recursive functions are also frequently used to
traverse graphs.

When traversing a tree, it is natural to start at the
root.

When traversing a graph, we must specify the node
with start from.

In the following examples we will assume that we
represent graphs using adjacency lists.

Reminder: Defining a Graph Using
Adjacency Lists

typedef struct struct graph * graph;

struct struct graph

{
int number of vertices;
list * adjacencies;

};

Graph Traversal - Graph Search

Overall, we will use the terms "graph traversal"” and
"graph search" almost interchangeably.

However, there is a small difference:

— "Traversal" implies we visit every node in the graph.

— "Search" implies we visit nodes until we find something we
are looking for.

For example:
— A node labeled "New York".
— A node containing integer 2014.

Graph Search in General

GraphSearch(graph, starting_node)
— Initialize list to_visit to a list with starting_node as its only element.
— While(to_visit is not empty):
 Remove a node N from list to_visit.
"Visit" that node.
If that node was what we were looking for, break.
Add the children of that node to the end of list to_visit.

The pseudocode is really a template.
It does not specify what we really want to do.

To fully specify an algorithm, we need to better define what
each of the red lines.

34

Graph Search in General

GraphSearch(graph, starting_node)

— Initialize list to_visit to a list with starting_node as its only element.

— While(to_visit is not empty):
 Remove a node N from list to_visit.
e "Visit" that node.
 If that node was what we were looking for, break.
e Add the children of that node to the end of list to_visit.

Depending on what we specify in those lines, this template
can produce a wide variety of applications:

— Printing each node of the graph.

— Driving directions.

— The best move for a board game like chess.

— A solution to a mathematical problem...

35

Specifying Graph Search Behavior

* GraphSearch(graph, starting_node)
— Initialize list to_visit to a list with starting_node as its only element.
— While(to_visit is not empty):
 Remove a node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
e Add the children of that node to the end of list to_visit.

 What do we do when visiting a node?

 Whatever we want. For example:
— Print the contents of the node.
— Use the contents in some computation (min, max, sum, ...).
— See if the node has a value we care about ("New York", 2014, ...).

— These are all reasonable topics for assignments/exams.

Specifying Graph Search Behavior

* GraphSearch(graph, starting_node)
— Initialize list to_visit to a list with starting_node as its only element.
— While(to_visit is not empty):
 Remove a node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end of list to_visit.

* Inserting children of a node to the to_visit list:

* We have a choice: insert a child even if it already is included in

that list, or not?
— In some cases we should not. Example: ???

— In some cases we should, but we may not see such cases in this
course.

Specifying Graph Search Behavior

* GraphSearch(graph, starting_node)
— Initialize list to_visit to a list with starting_node as its only element.
— While(to_visit is not empty):
 Remove a node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end of list to_visit.

* Inserting children of a node to the to_visit list:

* We have a choice: insert a child even if it already is included in

that list, or not?
— In some cases we should not. Example: printing each node.

— In some cases we should, but we may not see such cases in this
course.

Specifying Graph Search Behavior

* GraphSearch(graph, starting_node)
— Initialize list to_visit to a list with starting_node as its only element.
— While(to_visit is not empty):
 Remove a node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
e Add the children of that node to the end of list to_visit.

 Most important question (for the purposes of this course):

— Removing a node from list to_visit: Which node? The first, the last,
some other one?

* The answer has profound implications for time complexity,
space complexity, other issues you may see later or in other
courses...

Depth-First Search

* DepthFirstSearch(graph, starting_node)

— Initialize list to_visit to a list with starting_node as its only
element.

— While(to_visit is not empty):
* Remove the last node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end
of list to_visit.
* In depth-first search, the list of
nodes to visit is treated as a LIFO
(last-in, first-out) queue.

* DepthFirstSearch(graph, 5):
 |n what order does it visit nodes?

Depth-First Search

* DepthFirstSearch(graph, starting_node)

— Initialize list to_visit to a list with starting_node as its only
element.

— While(to_visit is not empty):
* Remove the last node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end
of list to_visit.

* DepthFirstSearch(graph, 5):
 |n what order does it visit nodes?

 The answer is not unique.
— One possibility: 5,4,3, 7,0,1, 2, 6.
— Another possibility: 5, 3,4,7,0,6, 1, 2.
— Another possibility: 5,0, 6, 4, 3,7, 1, 2.

Depth-First Search

void depth_first(Graph g, int start)

{
int * visited = malloc(sizeof(int) * g->number_of vertices);
inti;
for (i =0; i < g->number_of vertices; i++) visited[i] = 0;
depth_first_helper(g, start, visited);

} This code assumes that
each link item is an int.

void depth_first_helper (Graph g, int k, int * visited) Note: no need to

{ link t; explicitly maintain a
do_something_with(k); // Thisis just a placeholder. | list of nodes to visit.
visited[k] = 1;
for (t = listFirst(g->adjacencies[k]); t != NULL; t = t->next)

if (Ivisited[linkltem(t)]) depth_first_helper(g, linkltem(t), visited);

Breadth-First Search

* BreadthFirstSearch(graph, starting_node)

— Initialize list to_visit to a list with starting_node as its only
element.

— While(to_visit is not empty):
 Remove the first node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end
of list to_visit.
* In breadth-first search, the list of
nodes to visit is treated as a LIFO
(last-in, first-out) queue.

e BreadthFirstSearch(graph, 5):
 |n what order does it visit nodes?

Breadth-First Search

* BreadthFirstSearch(graph, starting_node)

— Initialize list to_visit to a list with starting_node as its only
element.

— While(to_visit is not empty):
 Remove the first node N from list to_visit.
* "Visit" that node.
 If that node was what we were looking for, break.
* Add the children of that node to the end
of list to_visit.

e BreadthFirstSearch(graph, 5):
 |n what order does it visit nodes?

 The answer is not unique.
— One possibility: 5,4,3, 0,7,1, 2, 6.
— Another possibility: 5, 3,4,0, 7,6, 1, 2.
— Another possibility: 5,0, 4, 3,6, 1, 2, 7.

Breadth-First Search

void breadth_first(Graph g, int k)

{
inti; linkt;

This pseudocode uses the
textbook's implementation
of queues.

int * visited = malloc(sizeof(int) * g->number_of vertices);

for (i =0; i < g->number_of vertices; i++) visited[i] = 0;

QUEUEInit(V);, QUEUEput(k);
while (IQUEUEempty())

if (visited[k = QUEUEget()] == 0)

{

do something with(k); // This is just a placeholder.

visited[k] = 1;

for (t = g->adjacencies[k]; t |= NULL; t = t->next)
if (visited[linkltem(t)] == 0) QUEUEput(linkltem(t));

45

Note

 The previous examples should be treated as very
detailed C-like pseudocode, not as ready-to-run
code.

 We have seen several different implementations of
graphs, lists, queues.

 To make the code actually work, you will need to
make sure it complies with specific implementations.

