Radix Sorting

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington



Bits and Radixes

e Every binary object is defined as a sequence of bits.

* |In many cases, the order in which we want to sort is
identical to the alphabetical order of binary strings.

e Examples:



Bits and Radixes

e Every binary object is defined as a sequence of bits.

* |In many cases, the order in which we want to sort is
identical to the alphabetical order of binary strings.

e Examples:
— Sorting positive integers (why only positive?).

— Sorting regular strings of characters.

 (If by alphabetical order we mean the order defined by the strcmp
function, where "Dog" comes before "cat", because capital letters
come before lowercase letters).



Bits and Radixes

e Every binary object is defined as a sequence of bits.

* |In many cases, the order in which we want to sort is
identical to the alphabetical order of binary strings.

e Examples:
— Sorting positive integers (why only positive?).

* Negative integers may have a 1 at the most significant bit, thus
coming "after" positive integers in alphabetical order binary
strings

— Sorting regular strings of characters.

* (If by alphabetical order we mean the order defined by the strcmp
function, where "Dog" comes before "cat", because capital letters
come before lowercase letters).



Bits and Radixes

* The word "radix" is used as a synonym for "base".

* Aradix-R representation is the same as a base-R
representation.

* For example:

— What is a radix-2 representation?
— What is a radix-10 representation?
— What is a radix-16 representation?



Bits and Radixes

* The word "radix" is used as a synonym for "base".

* Aradix-R representation is the same as a base-R
representation.

* For example:

— What is a radix-2 representation? Binary.
— What is a radix-10 representation? Decimal.
— What is a radix-16 representation? Hexadecimal.

— We often use radixes that are powers of 2, but not always.



MSD Radix Sort

MSD Radix sort is a sorting algorithm that has its own
interesting characteristics.

If the radix is R, the first pass of radix sort works as follows:
— Create R buckets.

— In bucket M, store all items whose most significant digit (in R-based
representation) is M.

— Reorder the array by concatenating the contents of all buckets.
In the second pass, we sort each of the buckets separately.

— All items in the same bucket have the same most significant digit.

— Thus, we sort each bucket (by creating sub buckets of the bucket)
based on the second most significant digit.

We keep doing passes until we have used all digits.



Example

Example: suppose our items are 3-letter words:
— cat, dog, cab, ate, cow, dip, ago, cot, act, din, any.
Let R = 256.

This means that we will be creating 256 buckets at
each pass.

What would be the "digits" of the items, that we use
to assignh them to buckets?



Example

Example: suppose our items are 3-letter words:
— cat, dog, cab, ate, cow, dip, ago, cot, act, din, any.
Let R = 256.

This means that we will be creating 256 buckets at
each pass.

What would be the "digits" of the items, that we use
to assignh them to buckets?

Each character is a digit in radix-256 representation,
since each character is an 8-bit ASCII code.

What will the buckets look like after the first pass?



Example

Example: suppose our items are 3-letter words:

— cat, dog, cab, ate, cow, dip, ago, cot, act, din, any.
What will the buckets look like after the first pass?

Buc
Buc
Buc

ket 'a' = ate, ago, act, any.
ket 'c' = cat, cab, cow, cot.

ket 'd’' = dog, dip, din.

All other buckets are empty.

How do we rearrange the input array?

— ate, ago, act, any, cat, cab, cow, cot, dog, dip, din.

What happens at the second pass?



Example

After first pass:
— ate, ago, act, any, cat, cab, cow, cot, dog, dip, din.
What happens at the second pass?
Bucket 'a' = ate, ago, act, any.

— subbucket 'c' = act.

— subbucket 'g' = ago.

— subbucket 'n' = any.

— subbucket 't' = ate.

All other buckets are empty.
Bucket 'a’ is rearranged as act, ago, any, ate.



Programming MSD Radix Sort

radixMSD _help(int * items, int left, int right, int * scratch, int digit_position)

If the digit position is greater than the number of digits in the items,
return.

If right <= left, return.
Count number of items for each bucket.

Figure out where each bucket should be stored (positions of the first and
last element of the bucket in the scratch array).

Copy each item to the corresponding bucket (in the scratch array).
Copy the scratch array back into items.
For each bucket:
* new_left = leftmost position of bucket in items
* new_right = rightmost position of bucket in items
* radixMSD_help(items, new_left, new_right, scratch, digit_position+1)



Programming MSD Radix Sort

See file radix_sort.c.

Note: the implementation of MSD radix sort in that file is not very
efficient.

Certain quantities (like number of digits per item, number of bits
per digit) get computed a lot of times.

— You can definitely make the implementation a lot more efficient.

The goal was to have the code be as clear and easy to read as
possible.

— | avoided optimizations that would make the code harder to read.



Programming MSD Radix Sort

* File radix_sort.c provides two implementations of MSD
radix sort.

* First implementation: radix equals 2 (each digit is a
single bit).
* Second implementation: radix can be specified as an
argument.
— But, bits per digit have to divide the size of the integer in bits.
— If an integer is 32 bits:
— Legal bits for digitare 1, 2, 4, 8, 16, 32.
— Legal radixes are: 2, 4, 16, 256, 65536, 232
— 23?2 takes too much memory...



Getting a Digit

// Digit 0 is the least significant digit
int get_digit(int number, int bits_per_digit, int digit_position)
{
int mask = get_mask(bits_per_digit);
int digits_per_int = sizeof(int)*8 / bits_per_digit;
int left_shift = (digits_per_int - digit_position - 1) * bits_per_digit;
int right_shift = (digits_per_int - 1) * bits_per_digit;

unsigned int result = number << left_shift;

result = result >> right_shift;

If result is signed, shifting to the right
preserves the sign (i.e., a -1 as most s
} significant digit).

return result;



LSD Radix Sort

The previous version of radix sort is called MSD radix
sort.

— It goes through the data digit by digit, starting at the most
significant digit (MSD).

LSD stands for least significant digit.

LSD radix sort goes through data starting at the least
significant digit.

It is somewhat counterintuitive, but:

— It works.

— It is actually simpler to implement than the MSD version.



LSD Radix Sort

void radixLSD(int * items, int length)
{

int bits_per_item = sizeof(int) * §;

int bit;

for (bit = 0; bit < bits_per_item; bit++)

{
radixLSD _help(items, length, bit);
printf("done with bit %d\n", bit);
print_arrayb(items, length);

}

}



LSD Radix Sort

e void radixLSD help(int * items, int length, int bit)

— Count number of items for each bucket.

— Figure out where each bucket should be stored (positions
of the first and last element of the bucket in the scratch
array).

— Copy each item to the corresponding bucket (in the scratch
array).

— Copy the scratch array back into items.



MSD versus LSD: Differences

 The MSD helper function is recursive.

— The MSD top-level function makes a single call to the MSD
helper function.

— Each recursive call works on an individual bucket, and uses
the next digit.

— The implementation is more complicated.

 The LSD helper function is not recursive.

— The LSD top-level function calls the helper function once
for each digit.

— Each call of the helper function works on the entire data.



LSD Radix Sort Implementation

* File radix_sort.c provides an implementations of LSD
radix sort, for radix = 2 (single-bit digits).

 The implementation prints outs the array after
processing each bit.



LSD Radix Sort Implementation

before radix sort:
0:4

1:93

2:5

3:104

4:.53

5:90

6: 208



LSD Radix Sort Implementation

done with bit 0
0: 4 00000000000000000000000000000100
104 00000000000000000000000001101000
90 00000000000000000000000001011010
208 00000000000000000000000011010000
93 00000000000000000000000001011101
5 00000000000000000000000000000101
53 00000000000000000000000000110101

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 1
0: 4 00000000000000000000000000000100
104 00000000000000000000000001101000
208 00000000000000000000000011010000
93 00000000000000000000000001011101
5 00000000000000000000000000000101
53 00000000000000000000000000110101
90 00000000000000000000000001011010

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 2
0: 104 00000000000000000000000001101000
208 00000000000000000000000011010000
90 00000000000000000000000001011010
4 00000000000000000000000000000100
93 00000000000000000000000001011101
5 00000000000000000000000000000101
53 00000000000000000000000000110101

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 3
0: 208 00000000000000000000000011010000
4 00000000000000000000000000000100
5 00000000000000000000000000000101
53 00000000000000000000000000110101
104 00000000000000000000000001101000
90 00000000000000000000000001011010
93 00000000000000000000000001011101

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 4
0: 4 00000000000000000000000000000100
5 00000000000000000000000000000101
104 00000000000000000000000001101000
208 00000000000000000000000011010000
53 00000000000000000000000000110101
90 00000000000000000000000001011010
93 00000000000000000000000001011101

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 5
0: 4 00000000000000000000000000000100
5 00000000000000000000000000000101
208 00000000000000000000000011010000
90 00000000000000000000000001011010
93 00000000000000000000000001011101
104 00000000000000000000000001101000
53 00000000000000000000000000110101

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 6
0: 4 00000000000000000000000000000100
5 00000000000000000000000000000101
53 00000000000000000000000000110101
208 00000000000000000000000011010000
90 00000000000000000000000001011010
93 00000000000000000000000001011101
104 00000000000000000000000001101000

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 7
0: 4 00000000000000000000000000000100
5 00000000000000000000000000000101
53 00000000000000000000000000110101
90 00000000000000000000000001011010
93 00000000000000000000000001011101
104 00000000000000000000000001101000
208 00000000000000000000000011010000

o U1 & W DN PR



LSD Radix Sort Implementation

done with bit 8
0: 4 00000000000000000000000000000100
5 00000000000000000000000000000101
53 00000000000000000000000000110101
90 00000000000000000000000001011010
93 00000000000000000000000001011101
104 00000000000000000000000001101000
208 00000000000000000000000011010000

o U1 & W DN PR



MSD Radix Sort Complexity

N is the number of items to sort.

R is the radix.

w is the number of digits in the radix-R representation of
each item.

* The time complexity is difficult to analyze.
— We need up to R%! recursive calls.
— Each such call takes at least O(R) time.

* The time complexity is at least O(Nw + Rw).
* O(N + R) space.

— O(N) space for input array and scratch array.

— O(R) space for counters and indices.



LSD Radix Sort Complexity

Here the time complexity is easy to analyze:
O(Nw + Rw) time.
As fast or faster than the MSD version!!!
O(N + R) space.

— O(N) space for input array and scratch array.

— O(R) space for counters and indices.



MSD Radix Sort Complexity

Suppose we have 1 billion numbers between 1 and
1000.

Then, make radix equal to 1001 (max item + 1).

What is the number of digits per item in radix-1001
representation?

What would be the time and space complexity of
MSD and LSD radix sort in that case?



Radix Sort Complexity

Suppose we have 1 billion numbers between 1 and
1000.

Then, make radix equal to 1001 (max item + 1).

What is the number of digits per item in radix-1001
representation?

— 1 digit! So, both MSD and LSD make only one pass.
What would be the time and space complexity of
MSD and LSD radix sort in that case?

— O(N+R) time. N dominates R, so we get linear time for
sorting, best choice in this case.

— O(N+R) extra space (in addition to space taken by the
input). OK (not great).



MSD Radix Sort Complexity

Suppose we have 1000 numbers between 1 and 1
billion.

If radix equal to 1 billion + 1 (max item + 1):

What would be the time and space complexity of
MSD and LSD radix sort in that case?



MSD Radix Sort Complexity

Suppose we have 1000 numbers between 1 and 1
billion.

If radix equal to 1 billion + 1 (max item + 1):

What would be the time and space complexity of
MSD and LSD radix sort in that case?
— O(N+R) time. R dominates, pretty bad time performance.

— O(N+R) space. Again, R dominates, pretty bad space
requirements.



Radix Sort Complexity

e Radix sort summary:
* Great if range of values is smaller than number of items

to sort.
e Great if we can use a radix R such that:
— R is much smaller than the number of items we need to sort.

— Each item has a small number of digits in radix-R
representation, so that we can sort the data with only a few

passes.
— Best cases: 1 or 2 passes.
* Becomes less attractive as the range of digits gets larger
and the number of items to sort gets smaller.



