
Radix Sorting 

CSE 2320 – Algorithms and Data Structures 

Vassilis Athitsos 

University of Texas at Arlington 

1 



Bits and Radixes 

• Every binary object is defined as a sequence of bits. 

• In many cases, the order in which we want to sort is 
identical to the alphabetical order of binary strings. 

• Examples: 

 

2 



Bits and Radixes 

• Every binary object is defined as a sequence of bits. 

• In many cases, the order in which we want to sort is 
identical to the alphabetical order of binary strings. 

• Examples: 

– Sorting positive integers (why only positive?). 

– Sorting regular strings of characters. 
• (If by alphabetical order we mean the order defined by the strcmp 

function, where "Dog" comes before "cat", because capital letters 
come before lowercase letters). 

 

 

3 



Bits and Radixes 

• Every binary object is defined as a sequence of bits. 

• In many cases, the order in which we want to sort is 
identical to the alphabetical order of binary strings. 

• Examples: 

– Sorting positive integers (why only positive?). 
• Negative integers may have a 1 at the most significant bit, thus 

coming "after" positive integers in alphabetical order binary 
strings 

– Sorting regular strings of characters. 
• (If by alphabetical order we mean the order defined by the strcmp 

function, where "Dog" comes before "cat", because capital letters 
come before lowercase letters). 

4 



Bits and Radixes 

• The word "radix" is used as a synonym for "base". 

• A radix-R representation is the same as a base-R 
representation. 

• For example: 

– What is a radix-2 representation? 

– What is a radix-10 representation? 

– What is a radix-16 representation? 

 

 

5 



Bits and Radixes 

• The word "radix" is used as a synonym for "base". 

• A radix-R representation is the same as a base-R 
representation. 

• For example: 

– What is a radix-2 representation? Binary. 

– What is a radix-10 representation? Decimal. 

– What is a radix-16 representation? Hexadecimal. 

– We often use radixes that are powers of 2, but not always. 

 

 

6 



MSD Radix Sort 

• MSD Radix sort is a sorting algorithm that has its own 
interesting characteristics. 

• If the radix is R, the first pass of radix sort works as follows: 
– Create R buckets. 

– In bucket M, store all items whose most significant digit (in R-based 
representation) is M. 

– Reorder the array by concatenating the contents of all buckets. 

• In the second pass, we sort each of the buckets separately. 
– All items in the same bucket have the same most significant digit. 

– Thus, we sort each bucket (by creating sub buckets of the bucket) 
based on the second most significant digit. 

• We keep doing passes until we have used all digits. 

 
 

 

 

7 



Example 

• Example: suppose our items are 3-letter words: 

– cat, dog, cab, ate, cow, dip, ago, cot, act, din, any. 

• Let R = 256. 

• This means that we will be creating 256 buckets at 
each pass. 

• What would be the "digits" of the items, that we use 
to assign them to buckets? 

 

8 



Example 

• Example: suppose our items are 3-letter words: 

– cat, dog, cab, ate, cow, dip, ago, cot, act, din, any. 

• Let R = 256. 

• This means that we will be creating 256 buckets at 
each pass. 

• What would be the "digits" of the items, that we use 
to assign them to buckets? 

• Each character is a digit in radix-256 representation, 
since each character is an 8-bit ASCII code. 

• What will the buckets look like after the first pass? 

 

 

9 



Example 

• Example: suppose our items are 3-letter words: 

– cat, dog, cab, ate, cow, dip, ago, cot, act, din, any. 

• What will the buckets look like after the first pass? 

• Bucket 'a' = ate, ago, act, any. 

• Bucket 'c' = cat, cab, cow, cot. 

• Bucket 'd' = dog, dip, din. 

• All other buckets are empty. 

• How do we rearrange the input array? 

– ate, ago, act, any, cat, cab, cow, cot, dog, dip, din. 

• What happens at the second pass? 

 

 

10 



Example 

• After first pass: 

– ate, ago, act, any, cat, cab, cow, cot, dog, dip, din. 

• What happens at the second pass? 

• Bucket 'a' = ate, ago, act, any. 

– subbucket 'c' = act. 

– subbucket 'g' = ago. 

– subbucket 'n' = any. 

– subbucket 't' = ate. 

• All other buckets are empty. 

• Bucket 'a' is rearranged as act, ago, any, ate. 

 

 
11 



Programming MSD Radix Sort 

• radixMSD_help(int * items, int left, int right, int * scratch, int digit_position) 

– If the digit position is greater than the number of digits in the items, 
return. 

– If right <= left, return. 

– Count number of items for each bucket. 

– Figure out where each bucket should be stored (positions of the first and 
last element of the bucket in the scratch array). 

– Copy each item to the corresponding bucket (in the scratch array). 

– Copy the scratch array back into items. 

– For each bucket: 

• new_left = leftmost position of bucket in items 

• new_right = rightmost position of bucket in items 

• radixMSD_help(items, new_left, new_right, scratch, digit_position+1) 

 
12 



Programming MSD Radix Sort 

• See file radix_sort.c. 

• Note: the implementation of MSD radix sort in that file is not very 
efficient. 

• Certain quantities (like number of digits per item, number of bits 
per digit) get computed a lot of times. 
– You can definitely make the implementation a lot more efficient. 

• The goal was to have the code be as clear and easy to read as 
possible. 
– I avoided optimizations that would make the code harder to read. 

13 



Programming MSD Radix Sort 

• File radix_sort.c provides two implementations of MSD 
radix sort. 

• First implementation: radix equals 2 (each digit is a 
single bit). 

• Second implementation: radix can be specified as an 
argument. 

– But, bits per digit have to divide the size of the integer in bits. 

– If an integer is 32 bits: 

– Legal bits for digit are 1, 2, 4, 8, 16, 32. 

– Legal radixes are: 2, 4, 16, 256, 65536, 232. 

– 232 takes too much memory… 
14 



Getting a Digit 

// Digit 0 is the least significant digit 

int get_digit(int number, int bits_per_digit, int digit_position) 

{ 

  int mask = get_mask(bits_per_digit); 

  int digits_per_int = sizeof(int)*8 / bits_per_digit; 

  int left_shift = (digits_per_int - digit_position - 1) * bits_per_digit; 

  int right_shift = (digits_per_int - 1) * bits_per_digit; 

 

  unsigned int result = number << left_shift; 

  result = result >> right_shift; 

  return result; 

} 

15 

If result is signed, shifting to the right 
preserves the sign (i.e., a -1 as most s 
significant digit). 



LSD Radix Sort 

• The previous version of radix sort is called MSD radix 
sort. 

– It goes through the data digit by digit, starting at the most 
significant digit (MSD). 

• LSD stands for least significant digit. 

• LSD radix sort goes through data starting at the least 
significant digit. 

• It is somewhat counterintuitive, but: 

– It works. 

– It is actually simpler to implement than the MSD version. 

 
16 



LSD Radix Sort 

void radixLSD(int * items, int length) 

{ 

  int bits_per_item = sizeof(int) * 8;   

 

  int bit; 

  for (bit = 0; bit < bits_per_item; bit++) 

  { 

    radixLSD_help(items, length, bit); 

    printf("done with bit %d\n", bit); 

    print_arrayb(items, length); 

  } 

} 17 



LSD Radix Sort 

• void radixLSD_help(int * items, int length, int bit) 

– Count number of items for each bucket. 

– Figure out where each bucket should be stored (positions 
of the first and last element of the bucket in the scratch 
array). 

– Copy each item to the corresponding bucket (in the scratch 
array). 

– Copy the scratch array back into items. 

18 



MSD versus LSD: Differences 

• The MSD helper function is recursive. 

– The MSD top-level function makes a single call to the MSD 
helper function. 

– Each recursive call works on an individual bucket, and uses 
the next digit. 

– The implementation is more complicated. 

• The LSD helper function is not recursive. 

– The LSD top-level function calls the helper function once 
for each digit. 

– Each call of the helper function works on the entire data. 

 

19 



LSD Radix Sort Implementation 

• File radix_sort.c provides an implementations of LSD 
radix sort, for radix = 2 (single-bit digits). 

• The implementation prints outs the array after 
processing each bit. 

 

 

20 



LSD Radix Sort Implementation 

before radix sort: 

 0: 4 

 1: 93 

 2: 5 

 3: 104 

 4: 53 

 5: 90 

 6: 208 

 

 
21 



LSD Radix Sort Implementation 

done with bit 0 

 0:          4 00000000000000000000000000000100 

 1:        104 00000000000000000000000001101000 

 2:         90 00000000000000000000000001011010 

 3:        208 00000000000000000000000011010000 

 4:         93 00000000000000000000000001011101 

 5:          5 00000000000000000000000000000101 

 6:         53 00000000000000000000000000110101 

 

 

22 



LSD Radix Sort Implementation 

done with bit 1 

 0:          4 00000000000000000000000000000100 

 1:        104 00000000000000000000000001101000 

 2:        208 00000000000000000000000011010000 

 3:         93 00000000000000000000000001011101 

 4:          5 00000000000000000000000000000101 

 5:         53 00000000000000000000000000110101 

 6:         90 00000000000000000000000001011010 

23 



LSD Radix Sort Implementation 

done with bit 2 

 0:        104 00000000000000000000000001101000 

 1:        208 00000000000000000000000011010000 

 2:         90 00000000000000000000000001011010 

 3:          4 00000000000000000000000000000100 

 4:         93 00000000000000000000000001011101 

 5:          5 00000000000000000000000000000101 

 6:         53 00000000000000000000000000110101 

24 



LSD Radix Sort Implementation 

done with bit 3 

 0:        208 00000000000000000000000011010000 

 1:          4 00000000000000000000000000000100 

 2:          5 00000000000000000000000000000101 

 3:         53 00000000000000000000000000110101 

 4:        104 00000000000000000000000001101000 

 5:         90 00000000000000000000000001011010 

 6:         93 00000000000000000000000001011101 

25 



LSD Radix Sort Implementation 

done with bit 4 

 0:          4 00000000000000000000000000000100 

 1:          5 00000000000000000000000000000101 

 2:        104 00000000000000000000000001101000 

 3:        208 00000000000000000000000011010000 

 4:         53 00000000000000000000000000110101 

 5:         90 00000000000000000000000001011010 

 6:         93 00000000000000000000000001011101 

 

 

26 



LSD Radix Sort Implementation 

done with bit 5 

 0:          4 00000000000000000000000000000100 

 1:          5 00000000000000000000000000000101 

 2:        208 00000000000000000000000011010000 

 3:         90 00000000000000000000000001011010 

 4:         93 00000000000000000000000001011101 

 5:        104 00000000000000000000000001101000 

 6:         53 00000000000000000000000000110101 

27 



LSD Radix Sort Implementation 

done with bit 6 

 0:          4 00000000000000000000000000000100 

 1:          5 00000000000000000000000000000101 

 2:         53 00000000000000000000000000110101 

 3:        208 00000000000000000000000011010000 

 4:         90 00000000000000000000000001011010 

 5:         93 00000000000000000000000001011101 

 6:        104 00000000000000000000000001101000 

28 



LSD Radix Sort Implementation 

done with bit 7 

 0:          4 00000000000000000000000000000100 

 1:          5 00000000000000000000000000000101 

 2:         53 00000000000000000000000000110101 

 3:         90 00000000000000000000000001011010 

 4:         93 00000000000000000000000001011101 

 5:        104 00000000000000000000000001101000 

 6:        208 00000000000000000000000011010000 

29 



LSD Radix Sort Implementation 

done with bit 8 

 0:          4 00000000000000000000000000000100 

 1:          5 00000000000000000000000000000101 

 2:         53 00000000000000000000000000110101 

 3:         90 00000000000000000000000001011010 

 4:         93 00000000000000000000000001011101 

 5:        104 00000000000000000000000001101000 

 6:        208 00000000000000000000000011010000 

30 



MSD Radix Sort Complexity 

N is the number of items to sort. 

R is the radix. 

w is the number of digits in the radix-R representation of 
each item.  

• The time complexity is difficult to analyze. 

– We need up to Rw-1 recursive calls.  

– Each such call takes at least O(R) time. 

• The time complexity is at least O(Nw + Rw). 

• O(N + R) space. 

– O(N) space for input array and scratch array. 

– O(R) space for counters and indices. 
31 



LSD Radix Sort Complexity 

• Here the time complexity is easy to analyze: 

• O(Nw + Rw) time. 

• As fast or faster than the MSD version!!! 

• O(N + R) space. 

– O(N) space for input array and scratch array. 

– O(R) space for counters and indices. 

32 



MSD Radix Sort Complexity 

• Suppose we have 1 billion numbers between 1 and 
1000. 

• Then, make radix equal to 1001 (max item + 1). 

• What is the number of digits per item in radix-1001 
representation? 

 

• What would be the time and space complexity of 
MSD and LSD radix sort in that case? 

 

 

33 



Radix Sort Complexity 

• Suppose we have 1 billion numbers between 1 and 
1000. 

• Then, make radix equal to 1001 (max item + 1). 

• What is the number of digits per item in radix-1001 
representation? 

– 1 digit! So, both MSD and LSD make only one pass. 

• What would be the time and space complexity of 
MSD and LSD radix sort in that case? 

– O(N+R) time. N dominates R, so we get linear time for 
sorting, best choice in this case. 

– O(N+R) extra space (in addition to space taken by the 
input). OK (not great). 

 

 

34 



MSD Radix Sort Complexity 

• Suppose we have 1000 numbers between 1 and 1 
billion. 

• If radix equal to 1 billion + 1 (max item + 1): 

• What would be the time and space complexity of 
MSD and LSD radix sort in that case? 

 

 

35 



MSD Radix Sort Complexity 

• Suppose we have 1000 numbers between 1 and 1 
billion. 

• If radix equal to 1 billion + 1 (max item + 1): 

• What would be the time and space complexity of 
MSD and LSD radix sort in that case? 

– O(N+R) time. R dominates, pretty bad time performance. 

– O(N+R) space. Again, R dominates, pretty bad space 
requirements. 

 

 

36 



Radix Sort Complexity 

• Radix sort summary: 

• Great if range of values is smaller than number of items 
to sort. 

• Great if we can use a radix R such that: 

– R is much smaller than the number of items we need to sort. 

– Each item has a small number of digits in radix-R 
representation, so that we can sort the data with only a few 
passes. 

– Best cases: 1 or 2 passes. 

• Becomes less attractive as the range of digits gets larger 
and the number of items to sort gets smaller. 

 

 

 

37 


