
Minimum Spanning Trees

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Weighted Graphs

• Each edge has a weight.

• Example: a transportation
network (roads, railroads,
subway). The weight of each
road can be:
– The length.

– The expected time to traverse.

– The expected cost to build.

• Example: in a computer network,
the weight of each edge (direct
link) can be:
– Latency.

– Expected cost to build.

2

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Minimum-Cost
Spanning Tree (MST)

• Important problem in
weighted graphs: finding
a minimum-cost
spanning tree:

• A tree that:

– Connects all vertices of
the graph.

– Has the smallest possible
total weight of edges.

3

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

10 15

Minimum-Cost
Spanning Tree (MST)

• We will only consider
algorithms that compute the
MST for undirected graphs.

• We will allow edges to have
negative weights.

• Warning: later in the course
(when we discuss Dijkstra's
algorithm) we will need to
make opposite assumptions:
– Allow directed graphs.

– Not allow negative weights.

4

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

10 15

Prim's Algorithm - Overview

• Prim's algorithm:

– Start from an tree that contains a single vertex.

– Keep growing that tree, by adding at each step the
shortest edge connecting a vertex in the tree to a vertex
outside the tree.

• As you see, it is a very simple algorithm, when stated
abstractly.

• However, we have several choices regarding how to
implement this algorithm.

• We will see three implementations, with significantly
different properties from each other.

 5

Prim's Algorithm - Simple Version

• Assume an adjacency matrix representation.

– Each vertex is a number from 0 to V-1.

– We have a V*V adjacency matrix ADJ, where:
ADJ[v][w] is the weight of the edge connecting v and w.

– If v and w are not connected, ADJ[v][w] = infinity.

6

Prim's Algorithm - Simple Version

1. Start by adding vertex 0 to the MST (minimum-cost
spanning tree).

2. Repeat until all vertices have been added to the
tree:

3. From all edges connecting vertices from the current tree
to vertices outside the current tree, select the smallest
edge.

4. Add that edge to the tree, and also add to the tree the
non-tree vertex of that edge.

7

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

8

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

9

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

11

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

12

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

13

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

14

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

15

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

16

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Example

1. Start by adding vertex 0
 to the MST (minimum-cost
 spanning tree).

2. Repeat until all
vertices have been
added to the tree:

3. From all edges connecting vertices from
the current tree to vertices outside the
current tree, select the smallest edge.

4. Add that edge to the tree, and also add to
the tree the non-tree vertex of that edge.

17

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

10 15

Prim's Algorithm - Simple Version

1. Start by adding vertex 0 to the MST (minimum-cost
spanning tree).

2. Repeat until all vertices have been added to the
tree:

3. From all edges connecting vertices from the current tree
to vertices outside the current tree, select the smallest
edge.

4. Add that edge to the tree, and also add to the tree the
non-tree vertex of that edge.

• Running time?

18

Prim's Algorithm - Simple Version

1. Start by adding vertex 0 to the MST (minimum-cost
spanning tree).

2. Repeat until all vertices have been added to the
tree:

3. From all edges connecting vertices from the current tree
to vertices outside the current tree, select the smallest
edge.

4. Add that edge to the tree, and also add to the tree the
non-tree vertex of that edge.

• Most naive implementation: time ???

– Every time we add a new vertex and edge, go through all
edges again, to identify the next edge (and vertex) to add.

19

Prim's Algorithm - Simple Version

1. Start by adding vertex 0 to the MST (minimum-cost
spanning tree).

2. Repeat until all vertices have been added to the
tree:

3. From all edges connecting vertices from the current tree
to vertices outside the current tree, select the smallest
edge.

4. Add that edge to the tree, and also add to the tree the
non-tree vertex of that edge.

• Most naive implementation: time O(VE).

– Every time we add a new vertex and edge, go through all
edges again, to identify the next edge (and vertex) to add.

20

Prim's Algorithm - Dense Graphs

• A dense graph is nearly full, and thus has O(V2)
edges.

– For example, think of a graph where each vertex has at
least V/2 neighbors.

• Just reading the input (i.e., looking at each edge of
the graph once) takes O(V2) time.

• Thus, we cannot possibly compute a minimum-cost
spanning tree for a dense graph in less than O(V2)
time.

• Prim's algorithm can be implemented so as to take
O(V2) time, which is optimal for dense graphs.

21

Prim's Algorithm - Dense Graphs

• Again, assume an adjacency matrix representation.

• Every time we add a vertex to the MST, we need to update,
for each vertex W not in the tree:
– The smallest edge wt[W] connecting it to the tree.

– If no edge connects W to the tree, wt[W] = infinity.

– The tree vertex fr[W] associated with the edge whose weight is wt[W].

• These quantities can be updated in O(V) time when adding a
new vertex to the tree.

• Then, the next vertex to add is the one with the smallest
wt[W].

22

Example

• Every time we add a vertex
to the MST, we need to
update, for each vertex W
not in the tree:
– The smallest edge wt[W]

connecting it to the tree.

– If no edge connects W to the
tree, wt[W] = infinity.

– The tree vertex fr[W]
associated with the edge
whose weight is wt[W].

• When we add a vertex to the
MST, we mark it as
"processed" by setting:
 st[W] = fr[W]. 23

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Prim's Algorithm: Dense Graphs
void GRAPHmstV(Graph G, int st[], double wt[])

 { int v, w, min;

 for (v = 0; v < G->V; v++)

 { st[v] = -1; fr[v] = v; wt[v] = maxWT; }

 st[0] = 0; wt[G->V] = maxWT;

 for (min = 0; min != G->V;)

 {

 v = min; st[min] = fr[min];

 for (w = 0, min = G->V; w < G->V; w++)

 if (st[w] == -1)

 {

 if (G->adj[v][w] < wt[w])

 { wt[w] = G->adj[v][w]; fr[w] = v; }

 if (wt[w] < wt[min]) min = w;

 }}}

24

Prim's Algorithm - Dense Graphs

• Running time: ???

25

Prim's Algorithm - Dense Graphs

• Running time: O(V2)

• Optimal for dense graphs.

26

Prim's Algorithm for Sparse Graphs

• A sparse graph is one that is not dense.

• This is somewhat vague.

• If you want a specific example, think of a case where
the number of edges is linear to the number of
vertices.

– For example, if each vertex can only have between 1 and
10 neighbors, than the number of edges can be at most
???

27

Prim's Algorithm for Sparse Graphs

• A sparse graph is "one that is not dense".

• This is somewhat vague.

• If you want a specific example, think of a case where
the number of edges is linear to the number of
vertices.

– For example, if each vertex can only have between 1 and
10 neighbors, than the number of edges can be at most
10*V.

28

Prim's Algorithm for Sparse Graphs

• If we use an adjacency matrix representation, then
we can never do better than O(V2) time.

• Why?

29

Prim's Algorithm for Sparse Graphs

• If we use an adjacency matrix representation, then
we can never do better than O(V2) time.

• Why?

– Because just scanning the adjacency matrix to figure out
where the edges are takes O(V2) time.

– The adjacency matrix itself has size V*V.

30

Prim's Algorithm for Sparse Graphs

• If we use an adjacency matrix representation, then
we can never do better than O(V2) time.

• Why?

– Because just scanning the adjacency matrix to figure out
where the edges are takes O(V2) time.

– The adjacency matrix itself has size V*V.

• We have already seen an implementation of Prim's
algorithm, using adjacency matrices, which achieves
O(V2) running time.

• For sparse graphs, if we want to achieve better
running time than O(V2), we have to switch to an
adjacency lists representation. 31

Prim's Algorithm for Sparse Graphs

• Quick review: what exactly is an adjacency lists
representation?

32

Prim's Algorithm for Sparse Graphs

• Quick review: what exactly is an adjacency lists
representation?

– Each vertex is a number between 0 and V (same as for
adjacency matrices).

– The adjacency information is stored in an array ADJ of lists.

– ADJ[w] is a list containing all neighbors of vertex w.

• What is the sum of length of all lists in the ADJ array?

33

Prim's Algorithm for Sparse Graphs

• Quick review: what exactly is an adjacency lists
representation?

– Each vertex is a number between 0 and V (same as for
adjacency matrices).

– The adjacency information is stored in an array ADJ of lists.

– ADJ[w] is a list containing all neighbors of vertex w.

• What is the sum of length of all lists in the ADJ array?

– 2*E (each edge is included in two lists).

34

Prim's Algorithm for Sparse Graphs

• For sparse graphs, we will use an implementation of
Prim's algorithm based on:

– A graph representation using adjacency lists.

– A priority queue (heap) containing the set of edges on the
fringe.

• An edge F will be included in this priority queue if:
for some vertex w NOT in the tree yet, F is the
shortest edge connecting w to vertex in the tree.

35

Prim's Algorithm - PQ Version

• Initialize a priority queue P.

• v = vertex 0

• While (true)

– Add v to the spanning tree.

– Let S = set of edges of v:

– If S is empty, exit.

– For each F = (v, w) in S
• if w is already in the spanning tree, continue.

• If another edge F' in P also connects to w, keep the smallest of F and F'.

• Else insert F to P.

– F = remove_minimum(P)

– v = vertex of F not yet in the tree.

36

Prim's Algorithm - PQ Version

• Running time???

37

Prim's Algorithm - PQ Version

• Running time? O(E lg V).

• Why?

38

Prim's Algorithm - PQ Version

• Running time? O(E lg V).

• Why? Let's look at this piece of the pseudocode:

– For each F = (v, w) in S
• if w is already in the spanning tree, continue.

• If another edge F' in P also connects to w, keep the smallest of F and F'.

• Else insert F to P.

• The number of iterations for this for loop will be 2*E
(each edge is considered twice).

• At each iteration, we spend at most log(v) time.

39

Kruskal's Algorithm: Overview

• Prim's algorithm works with a single tree, such that:

– First, the tree contains a single vertex.

– The tree keeps growing, until it spans the whole tree.

• Kruskal's algorithm works with a forest (a set of
trees).

– Initially, each tree in this forest is a single vertex.

– Each vertex in the graph is its own tree.

– We keep merging trees together, until we end up with a
single tree.

40

Kruskal's Algorithm: Overview

1. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

4. Connect those two trees into a single tree using edge F.

• As in Prim's algorithm, the abstract description is
simple, but we need to think carefully about how
exactly to implement these steps.

41

Kruskal's Algorithm: An Example

42

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

Kruskal's Algorithm: An Example

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

43

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

Kruskal's Algorithm: An Example

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

44

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

Kruskal's Algorithm: An Example

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

45

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

Kruskal's Algorithm: An Example

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

46

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

Kruskal's Algorithm: An Example

1. Initialize a forest (a
collection of trees), by
defining each vertex to be
its own separate tree.

2. Repeat until the forest
contains a single tree:

3. Find the shortest edge F
connecting two trees in the
forest.

4. Connect those two trees
into a single tree using
edge F.

47

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

15

Kruskal's Algorithm: Simple
Implementation

Assume graphs are represented usind adjacency lists.

1. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

– How? We will use the same representation for forests that
we used for union-find.

– We will have an id array, where each vertex will point to its
parent.

– The root of each tree will be the ID for that tree.

• Time it takes for this step ???
 48

Kruskal's Algorithm: Simple
Implementation

Assume graphs are represented usind adjacency lists.

1. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

– How? We will use the same representation for forests that
we used for union-find.

– We will have an id array, where each vertex will point to its
parent.

– The root of each tree will be the ID for that tree.

• Time it takes for this step? O(V)
 49

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

– Initialize F to some edge with infinite weight.

– For each edge F' connecting any two vertices (v, w):
• Determine if v and w belong to two different trees in the forest.

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.

50

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

– Initialize F to some edge with infinite weight.

– For each edge F' connecting (v, w):
• Determine if v and w belong to two different trees in the forest.

HOW?

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.
HOW?

51

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

– Initialize F to some edge with infinite weight.

– For each edge F' connecting (v, w):
• Determine if v and w belong to two different trees in the forest.

HOW? By comparing find(v) with find(w). Time:

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.
HOW? By calling union(v, w). Time:

52

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

– Initialize F to some edge with infinite weight.

– For each edge F' connecting (v, w):
• Determine if v and w belong to the same tree in the forest.

HOW? By comparing find(v) with find(w). Time: O(lg V)

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.
HOW? By calling union(v, w). Time: O(1)

53

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:
Total time for all iterations:

3. Find the shortest edge F connecting two trees in the
forest. Time:

– Initialize F to some edge with infinite weight.

– For each edge F' connecting (v, w):
• Determine if v and w belong to the same tree in the forest.

HOW? By comparing find(v) with find(w). Time: O(lg V)

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.
HOW? By calling union(v, w). Time: O(1)

54

Kruskal's Algorithm: Simple
Implementation

2. Repeat until the forest contains a single tree:
Total time for all iterations: O(V*E*lg(V))

3. Find the shortest edge F connecting two trees in the
forest. Time: O(E*lg(V))

– Initialize F to some edge with infinite weight.

– For each edge F' connecting (v, w):
• Determine if v and w belong to the same tree in the forest.

HOW? By comparing find(v) with find(w). Time: O(lg V)

• If so, update F to be the shortest of F and F'.

4. Connect those two trees into a single tree using edge F.
HOW? By calling union(v, w). Time: O(1)

55

Running Time for Simple
Implementation

1. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

2. Repeat until the forest contains a single tree:

3. Find the shortest edge F connecting two trees in the
forest.

4. Connect those two trees into a single tree using edge F.

• Running time for simple implementation:
O(V*E*lg(V)).

56

Kruskal's Algorithm: Faster Version

57

1. Sort all edges, save result in array K.

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

3. For each edge F in K (in ascending order).

4. If F is connecting two trees in the forest:
5. Connect the two trees with F.

6. If the forest is left with a single tree, break (we are done).

Kruskal's Algorithm: Faster Version

58

1. Sort all edges, save result in array K. Time?

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree. Time?

3. For each edge in K (in ascending order). Time?

4. If F is connecting two trees in the forest:
Time?

5. Connect the two trees with F. Time?

6. If the forest is left with a single tree, break (we are done).

Kruskal's Algorithm: Faster Version

59

1. Sort all edges, save result in array K. Time: O(E lg E)

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree. Time: O(V)

3. For each edge in K (in ascending order). Time: O(E lg V)

4. If F is connecting two trees in the forest:
Time? O(lg V), two find operations

5. Connect the two trees with F. Time: O(1), union operation

6. If the forest is left with a single tree, break (we are done).

• Overall running time???

Kruskal's Algorithm: Faster Version

60

1. Sort all edges, save result in array K. Time: O(E lg E)

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree. Time: O(V)

3. For each edge in K (in ascending order). Time: O(E lg V)

4. If F is connecting two trees in the forest:
Time? O(lg V), two find operations

5. Connect the two trees with F. Time: O(1), union operation

6. If the forest is left with a single tree, break (we are done).

• Overall running time: O(E lg E).

Kruskal's Algorithm - PQ Version

• In the previous implementation, we sort edges at the
beginning.

– This takes O(E lg E) time, which dominates the running
time of the algorithm.

– Thus, the entire algorithm takes O(E lg E) time.

• We can do better if, instead of sorting all edges at the
beginning, we instead insert all edges into a priority
queue.

– How long does that take, if we use a heap?

61

Kruskal's Algorithm - PQ Version

• In the previous implementation, we sort edges at the
beginning.
– This takes O(E lg E) time, which dominates the running time of the

algorithm.

– Thus, the entire algorithm takes O(E lg E) time.

• We can do better if, instead of sorting all edges at the
beginning, we instead insert all edges into a priority queue.
– How long does that take, if we use a heap?

– O(E) time.

• We can also do better if, for the find operation, we use the
most efficient version discussed in the textbook.
– That version flattens paths that it traverses.

– Running time: O(lg* V).

– lg*(V) is the number of times we need to apply lg to V to obtain 1. 62

Detour: lg*

• lg*(2) = ?

• lg*(4) = ?

• lg*(16) = ?

63

Detour: lg*

• lg*(2) = 1, because lg(2) = 1.

• lg*(4) = 2, because lg(lg(4)) = 1.

• lg*(16) = 3, because lg(lg(lg(16))) = 1.

• lg*(???) = 4

• lg*(???) = 5

64

Detour: lg*

• lg*(2) = 1, because lg(2) = 1.

• lg*(4) = 2, because lg(lg(4)) = 1.

• lg*(16) = 3, because lg(lg(lg(16))) = 1.

• lg*(65536) = 4, because lg(65536) = 16.

• lg*(265536) = 5, because lg(265536) = 65536.

• I don't expect we will get to deal with data sizes
larger than 265536 in our lifetime.

• Thus, lg* effectively has 5 as an upper bound, so for
practical purposes we can treat it as a constant.

65

Kruskal's Algorithm - PQ Version

66

1. Initialize a heap with the edges (using weight as key).

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

3. While (true).

4. F = remove_mininum(heap).

5. If F is connecting two trees in the forest:

6. Connect the two trees with F.

7. If the forest is left with a single tree, break (we are done).

Kruskal's Algorithm - PQ Version

67

1. Initialize a heap with the edges (using weight as key).
Time?

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree. Time?

3. While (true). Time?

4. F = remove_mininum(heap). Time?

5. If F is connecting two trees in the forest:
Time?

6. Connect the two trees with F. Time?

7. If the forest is left with a single tree, break (we are done).

• Overall running time?

Kruskal's Algorithm - PQ Version

68

1. Initialize a heap with the edges (using weight as key).
Time? O(E)

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree. Time? O(V)

3. While (true). Time? X lg V. X: number of iterations.

4. F = remove_mininum(heap). Time? O(lg E)

5. If F is connecting two trees in the forest:
Time? O(lg* V), find operation

6. Connect the two trees with F. Time? O(1)

7. If the forest is left with a single tree, break (we are done).

• Overall running time? E + X lg V.

Kruskal's Algorithm - PQ Version

69

1. Initialize a heap with the edges (using weight as key).

2. Initialize a forest (a collection of trees), by defining
each vertex to be its own separate tree.

3. While (true). Time? X lg V. X: number of iterations.

4. F = remove_mininum(heap). Time? O(lg E)

5. If F is connecting two trees in the forest:
6. Connect the two trees with F. Time? O(1)

7. If the forest is left with a single tree, break (we are done).

• Overall running time? E + X lg V.

– X is the number of edges in the graph with weight <= the
maximum weight of an edge in the final MST.

– E < V2, so lg E < 2 lg V, so O(lg E) = O(lg V).

