
Shortest Paths

CSE 2320 – Algorithms and Data Structures

Vassilis Athitsos

University of Texas at Arlington

1

Terminology

• A network is a directed graph. We will use both
terms interchangeably.

• The weight of a path is the sum of weights of the
edges that make up the path.

• The shortest path between two vertices s and t in a
directed graph is a directed path from s to t with the
property that no other such path has a lower weight.

2

Shortest Paths

• Finding shortest paths is not a single problem, but
rather a family of problems.

• We will consider two of these problems:

– Single-source: find the shortest path from the source
vertex v to all other vertices in the graph.
• It turns out that these shortest paths form a tree, with v as the

root.

– All-pairs: find the shortest paths for all pairs of vertices in
the graph.

3

Assumptions

• Allow directed graphs.

– In all our shortest path algorithms, we will allow graphs to
be directed.

– Obviously, any algorithm that works on directed graphs will
also work on undirected graphs. Why?

• Negative edge weights are not allowed. Why?

4

Assumptions

• Allow directed graphs.

– In all our shortest path algorithms, we will allow graphs to
be directed.

– Obviously, any algorithm that works on directed graphs will
also work on undirected graphs. Why?
• Undirected graphs are a special case of directed graphs.

• Negative edge weights are not allowed. Why?

– With negative weights, "shortest paths" may not be
defined.

– If a cyclic path has negative weight, then repeating that
path infinitely will lead to "shorter" and "shorter" paths.

– If all weights are nonnegative, a shortest path never needs
to include a cycle.

5

Shortest-Paths Spanning Tree

• Given a network G and a designated vertex s, a
shortest-paths spanning tree (SPST) for s is a tree
that contains s and all vertices reachable from s, such
that:

– Vertex s is the root of this tree.

– Each tree path is a shortest path in G.

6

Computing SPSTs

• To compute an SPST, given a graph G and a vertex s,
we will design an algorithm that maintains and
updates the following two arrays:

– Array wt: wt[v] is the weight of the shortest path we have
found so far from s to v.
• At the beginning, wt[v] = infinity, except for s, where wt[s] = 0.

– Array st: st[v] is the parent vertex of v on the shortest path
found so far from s to v.
• At the beginning, st[v] = -1, except for s, where st[s] = s.

– Array in: in[v] is 1 if v has been already added to the SPST,
0 otherwise.
• At the beginning, in[v] = 0, except for s, where in[s] = 1.

7

Dijkstra's Algorithm

• Computes an SPST for a graph G and a source s.

• Very similar to Prim's algorithm, but:

– First vertex to add is the source.

– Works with directed graphs, whereas Prim's only works
with undirected graphs.

- Requires edge weights to be non-negative.

- The wt array behaves differently (see next slides).

• Time: O(V2), similar analysis to that of Prim's
algorithm.

• Time O(E lg V) using a priority-queue
implementation.

8

Dijkstra's Algorithm

Input: number of vertices V, VxV array weight, source vertex s.

1. For all v:
2. wt[v] = infinity.

3. st[v] = -1.

4. in[v] = 0.

5. wt[s] = 0, st[s] = s.

6. Repeat until all vertices have been added to the tree:
7. Find the v with the smallest wt[v], among all v such that in[v] = 0.

8. Add to the SPST vertex v and edge from st[v] to v.

9. in[v] = 1.

10. For each neighbor w of v, such that in[w] = 0:

11. If wt[w] > wt[v] + weight[v, w]:

12. wt[w] = wt[v] + weight[v, w],

13. st[w] = v. 9

Edge Relaxation

if (wt[w] > wt[v] + e.wt)

{

 wt[w] = wt[v] + e.wt;

 st[w] = v;

}

• wt[w]: current estimate of shortest distance from
source to w.

• st[w]: parent vertex of w on shortest found path
from source to w.

10

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• First, we initialize arrays wt, st,
in (steps 2, 3, 4).

11

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf inf inf inf inf

st -1 -1 -1 -1 -1 -1 -1 -1

in 0 0 0 0 0 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Step 5.

12

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf inf inf inf 0

st -1 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 7

13

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf inf inf inf 0

st -1 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 7

• Step 10: For w = {0, 4}
– Step 11: Compare inf with 15

– Steps 12, 13: wt[0] = wt[7] + 15, st[0] = 7.

14

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf inf inf inf inf 0

st 7 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 7

• Step 10: For w = {0, 4}
– Step 11: Compare inf with 10

– Steps 12, 13: wt[4] = wt[7] + 10, st[4] = 7.

15

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf inf 10 inf inf 0

st 7 -1 -1 -1 7 -1 -1 7

in 0 0 0 0 0 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 4

16

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf inf 10 inf inf 0

st 7 -1 -1 -1 7 -1 -1 7

in 0 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 4

• Step 10: For w = {3, 5, 6}
– Step 11: Compare inf with 10+25=35

– Steps 12, 13: wt[3] = wt[4] + 25, st[3] = 4.

17

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf 35 10 inf inf 0

st 7 -1 -1 4 7 -1 -1 7

in 0 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 4

• Step 10: For w = {3, 5, 6}
– Step 11: Compare inf with 10+20=30

– Steps 12, 13: wt[5] = wt[4] + 20, st[5] = 4.

18

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf 35 10 30 inf 0

st 7 -1 -1 4 7 4 -1 7

in 0 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 4

• Step 10: For w = {3, 5, 6}
– Step 11: Compare inf with 10+30=40

– Steps 12, 13: wt[6] = wt[4] + 30, st[6] = 4.

19

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf 35 10 30 40 0

st 7 -1 -1 4 7 4 4 7

in 0 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 0

20

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 inf inf 35 10 30 40 0

st 7 -1 -1 4 7 4 4 7

in 1 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 5, 6}
– Step 11: Compare inf with 15+20=35

– Steps 12, 13: wt[1] = wt[0] + 20, st[1] = 0.

21

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 inf 35 10 30 40 0

st 7 0 -1 4 7 4 4 7

in 1 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 5, 6}
– Step 11: Compare inf with 15+30=45

– Steps 12, 13: wt[2] = wt[0] + 30, st[2] = 0.

22

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 30 40 0

st 7 0 0 4 7 4 4 7

in 1 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 5, 6}
– Step 11: Compare 30 with 15+10=25

– Steps 12, 13: wt[5] = wt[0] + 10, st[5] = 0.

23

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 40 0

st 7 0 0 4 7 0 4 7

in 1 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 5, 6}
– Step 11: Compare 40 with 15+20=35

– Steps 12, 13: wt[6] = wt[0] + 20, st[6] = 0.

24

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 0 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 5

25

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 1 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 5

• Step 10: For w = {3}
– Step 11: Compare 35 with 25+15=40

NO UPDATE

26

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 1 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 1

• Step 10: For w = empty list

27

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 1 0 0 1 1 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 3

• Step 10: For w = empty list

28

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 1 0 1 1 1 0 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 6

• Step 10: For w = empty list

29

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 1 0 1 1 1 1 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 7.

• Steps 7, 8, 9: v = 6

• Step 10: For w = empty list

30

10

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

20

15 25

vertex 0 1 2 3 4 5 6 7

wt 15 35 45 35 10 25 35 0

st 7 0 0 4 7 0 0 7

in 1 1 1 1 1 1 1 1

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• First, we initialize arrays wt, st,
in (steps 2, 3, 4).

31

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf inf inf inf inf

st -1 -1 -1 -1 -1 -1 -1 -1

in 0 0 0 0 0 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Step 5.

32

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf 0 inf inf inf

st -1 -1 -1 -1 4 -1 -1 -1

in 0 0 0 0 0 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 4

33

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf inf 0 inf inf inf

st -1 -1 -1 -1 4 -1 -1 -1

in 0 0 0 0 1 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 4

• Step 10: For w = {3, 5, 6, 7}
– Step 11: Compare inf with 25

– Steps 12, 13: wt[3] = wt[4] + 25, st[3] = 4.

34

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf 25 0 inf inf inf

st -1 -1 -1 4 4 -1 -1 -1

in 0 0 0 0 1 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 4

• Step 10: For w = {3, 5, 6, 7}
– Steps 12, 13: update wt[w], st[w]

35

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

vertex 0 1 2 3 4 5 6 7

wt inf inf inf 25 0 20 30 10

st -1 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 0

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 7

36

vertex 0 1 2 3 4 5 6 7

wt inf inf inf 25 0 20 30 10

st -1 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 7

• Step 10: For w = {0}
– Step 11: Compare inf with 10+15 = 25.

– Steps 12, 13: wt[0] = wt[7] + 15, st[0] = 7.

37

vertex 0 1 2 3 4 5 6 7

wt 25 inf inf 25 0 20 30 10

st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 5

38

vertex 0 1 2 3 4 5 6 7

wt 25 inf inf 25 0 20 30 10

st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 5

• Step 10: For w = {0, 3}
– Step 11: Compare 25 with 20+10 = 25.

NO UPDATE

39

vertex 0 1 2 3 4 5 6 7

wt 25 inf inf 25 0 20 30 10

st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 5

• Step 10: For w = {0, 3}
– Step 11: Compare 25 with 20+15 = 35.

NO UPDATE

40

vertex 0 1 2 3 4 5 6 7

wt 25 inf inf 25 0 20 30 10

st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 0

41

vertex 0 1 2 3 4 5 6 7

wt 25 inf inf 25 0 20 30 10

st 7 -1 -1 4 4 4 4 4

in 1 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 6}
– Step 11: Compare inf with 25+20 = 45.

– Steps 12, 13: wt[1] = wt[0] + 20, st[1] = 0.

42

vertex 0 1 2 3 4 5 6 7

wt 25 45 inf 25 0 20 30 10

st 7 0 -1 4 4 4 4 4

in 1 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 6}
– Step 11: Compare inf with 25+30 = 55.

– Steps 12, 13: wt[2] = wt[0] + 30, st[2] = 0.

43

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 0

• Step 10: For w = {1, 2, 6}
– Step 11: Compare 30 with 25+20 = 45.

NO UPDATE

44

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 0 0 0 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 3

45

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 3

• Step 10: empty list

46

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 0 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 6

• Step 10: empty list

47

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 1 1

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 1

• Step 10: empty list

48

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 1 0 1 1 1 1 1

15

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

30

10

20

15 25

Dijkstra Example

• Suppose we want to compute
the SPST for vertex 4.

• Steps 7, 8, 9: v = 2

• Step 10: empty list

49

vertex 0 1 2 3 4 5 6 7

wt 25 45 55 25 0 20 30 10

st 7 0 0 4 4 4 4 4

in 1 1 1 1 1 1 1 1

15

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

30

10

20

15 25

All-Pairs Shortest Paths

• Before we describe an algorithm for computing the
shortest paths among all pairs of vertices, we should
agree on what this algorithm should return.

• We need to compute two V x V arrays:

– dist[v][w] is the distance of the shortest path from v to w.

– path[v][w] is the vertex following v, on the shortest path
from v to w.

• Given these two arrays (after our algorithm has
completed), how can we recover the shortest path
between some v and w?

 50

All-Pairs Shortest Paths

• We need to compute two V x V arrays:
– dist[v][w] is the distance of the shortest path from v to w.

– path[v][w] is the vertex following v, on the shortest path from v to w.

• Given these two arrays (after our algorithm has completed),
how can we recover the shortest path between some v and
w?

• path = empty list

• c = v

• while(true)
– insert_to_end(path, c)

– if (c == w) break

– c = path[c][w]

51

Computing Shortest Paths

• Overview: we can simply call Dijkstra's algorithm on
each vertex.

• Time: V times the time of running Dijkstra's
algorithm once.

– O(E lg V) for one vertex.

– O(VE lg V) for all vertices.

– O(V3 lg V) for dense graphs.

• There is a better algorithm for dense graphs, Floyd's
algorithm, with O(V3) complexity, but we will not
cover it.

52

All-Pairs Shortest Paths
Using Dijkstra

• The complete all-pairs
algorithm is more complicated
than simply calling Dijkstra's
algorithm V times.

• Here is why:

• Suppose we call Dijkstra's algorithm on vertex 1.

• The algorithm computes arrays wt and st:
– wt[v]: weight of shortest path from vertex 1 to v.

– st[v]: parent vertex of v on shortest path from vertex 1 to v.

• How do arrays wt and st correspond to arrays dist and path?
– dist[v][w] is the distance of the shortest path from v to w.

– path[v][w] is the vertex following v, on the shortest path from v to w.

• No useful correspondence!!! 53

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Using Reverse Graphs

• Suppose that G is the graph
you see on the right.

• Suppose that H is the reverse
graph, obtained by switching
the direction of every single
edge in G.

54

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Graph G

Graph H

Using Reverse Graphs

• Suppose that G is the graph
you see on the right.

• Suppose that H is the reverse
graph, obtained by switching
the direction of every single
edge in G.

• Then, for any vertices v and w, the shortest path from w to v in H
is simply the reverse of the shortest path from v to w in G.

• For example:
– Shortest path from 1 to 4 in G:

– Shortest path from 4 to 1 in H:

55

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Using Reverse Graphs

• Suppose that G is the graph
you see on the right.

• Suppose that H is the reverse
graph, obtained by switching
the direction of every single
edge in G.

• Then, for any vertices v and w, the shortest path from w to v in H
is simply the reverse of the shortest path from v to w in G.

• For example:
– Shortest path from 1 to 4 in G: 1, 0, 7, 4

– Shortest path from 4 to 1 in H: 4, 7, 0, 1.

– These two paths are just reversed forms of each other, and they have the
same weights.

56

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Using Reverse Graphs

• Suppose that we call Dijkstra's
 algorithm with source = vertex 1,
on graph H (the reverse graph
of what you see on the right).

• Consider the arrays wt and st
we get as a result of that.

• These arrays are related to arrays dist and path on the original
graph G (what you actually see on the right) as follows:
– dist[v][1] = wt[v].

– path[v][1] = st[v].

• Why?

 57

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Using Reverse Graphs

• Suppose that we call Dijkstra's
 algorithm with source = vertex 1,
on graph H (the reverse graph
of what you see on the right).

• Consider the arrays wt and st
we get as a result of that.

• wt[v] is the weight of the shortest path from 1 to v in H.
– Therefore, wt[v] is the weight of the shortest path from v to 1 in G.

– Therefore, dist[v][1] = wt[v].

• st[v] is the parent of v on the shortest path from 1 to v in H.
– Therefore, st[v] is the vertex following v on the shortest path from v to 1

in G.

– Therefore, path[v][1] = st[v].

58

 0

 1

 7

 2

 5

 3

 4

 6

10

20

30 20

15

30

10

20

15 25

50

Using Dijkstra's Algorithm for All-
Pairs Shortest Paths

Input: graph G.

1. Construct reverse graph H.

2. For each s in {0, ..., V-1}:

3. Call Dijkstra's algorithm on graph H, with source = s.

4. For each v in {0, ..., V-1}:

5. dist[v][s] = wt[v].

6. path[v][s] = st[v].

59

