Shortest Paths

CSE 2320 — Algorithms and Data Structures
Vassilis Athitsos
University of Texas at Arlington



Terminology

A network is a directed graph. We will use both
terms interchangeably.

 The weight of a path is the sum of weights of the
edges that make up the path.

 The shortest path between two verticessand tina
directed graph is a directed path from s to t with the
property that no other such path has a lower weight.




Shortest Paths

* Finding shortest paths is not a single problem, but
rather a family of problems.

* We will consider two of these problems:

— Single-source: find the shortest path from the source
vertex v to all other vertices in the graph.

It turns out that these shortest paths form a tree, with v as the
root.

— All-pairs: find the shortest paths for all pairs of vertices in
the graph.



Assumptions

* Allow directed graphs.

— In all our shortest path algorithms, we will allow graphs to
be directed.

— Obviously, any algorithm that works on directed graphs will
also work on undirected graphs. Why?

* Negative edge weights are not allowed. Why?



Assumptions

* Allow directed graphs.

— In all our shortest path algorithms, we will allow graphs to
be directed.

— Obviously, any algorithm that works on directed graphs will
also work on undirected graphs. Why?

* Undirected graphs are a special case of directed graphs.

* Negative edge weights are not allowed. Why?

— With negative weights, "shortest paths" may not be
defined.

— If a cyclic path has negative weight, then repeating that
path infinitely will lead to "shorter" and "shorter" paths.

— If all weights are nonnegative, a shortest path never needs
to include a cycle.



Shortest-Paths Spanning Tree

* Given a network G and a designated vertex s, a
shortest-paths spanning tree (SPST) for s is a tree
that contains s and all vertices reachable from s, such
that:

— Vertex s is the root of this tree.
— Each tree path is a shortest path in G.




Computing SPSTs

 To compute an SPST, given a graph G and a vertex s,
we will design an algorithm that maintains and
updates the following two arrays:

— Array wt: wt[v] is the weight of the shortest path we have
found so far from s to v.
* At the beginning, wt[v] = infinity, except for s, where wt[s] = 0.
— Array st: st[v] is the parent vertex of v on the shortest path
found so far from s to v.
* At the beginning, st[v] = -1, except for s, where st[s] = s.
— Array in: in[v] is 1 if v has been already added to the SPST,
0 otherwise.

e At the beginning, in[v] = 0, except for s, where in[s] = 1.



Dijkstra's Algorithm

 Computes an SPST for a graph G and a source s.

* Very similar to Prim's algorithm, but:
— First vertex to add is the source.

— Works with directed graphs, whereas Prim's only works
with undirected graphs.

- Requires edge weights to be non-negative.

- The wt array behaves differently (see next slides).

* Time: O(V?), similar analysis to that of Prim's
algorithm.

 Time O(E lg V) using a priority-queue
implementation.



Dijkstra's Algorithm

Input: number of vertices V, VxV array weight, source vertex s.

1. Forallv:
2. wt[v] = infinity.
3. st[v]=-1.
4. in[v]=0.

5. wt[s] =0, st[s] =s.
6. Repeat until all vertices have been added to the tree:
7. Find the v with the smallest wt[v], among all v such that in[v] = 0.
8. Add to the SPST vertex v and edge from st[v] to v.
9. in[v]=1.
10. For each neighbor w of v, such that in[w] = 0:
11. If wt[w] > wt[v] + weight[v, w]:
12. wt[w] = wt[v] + weight[v, w],
13. stfw]=w.



Edge Relaxation

if (wt[w] > wt[v] + e.wt)
{
wt[w] = wt[v] + e.wt;
stfw] = v;

}

* wt[w]: current estimate of shortest distance from
source to w.

e st[w]: parent vertex of w on shortest found path
from source to w.



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

First, we initialize arrays wt, st,
in (steps 2, 3, 4).

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf inf inf inf inf
st -1 -1 -1 -1 -1 -1 -1 -1

in 0 0 0 0 0 0 0 0

11



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 7.

* Step 5.

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf inf inf inf 0
st -1 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 0

12



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 7.

* Steps7/,8,9:v=7

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf inf inf inf 0
st -1 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 1

13



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=7
Step 10: For w ={0, 4}

— Step 11: Compare inf with 15
— Steps 12, 13: wt[0] = wt[7] + 15, st[0] = 7.

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf inf inf inf inf 0
st 7 -1 -1 -1 -1 -1 -1 7

in 0 0 0 0 0 0 0 1

14



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=7

Step 10: For w ={0, 4}
— Step 11: Compare inf with 10
— Steps 12, 13: wt[4] = wt[7] + 10, st[4] = 7.

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf inf 10 inf inf 0
st 7 -1 -1 -1 7 -1 -1 7

in 0 0 0 0 0 0 0 1

15



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 7.

* Steps7,8,9:v=4

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf inf 10 inf inf 0
st 7 -1 -1 -1 7 -1 -1 7

in 0 0 0 0 1 0 0 1

16



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=4

Step 10: For w ={3, 5, 6}
— Step 11: Compare inf with 10+25=35
— Steps 12, 13: wt[3] = wt[4] + 25, st[3] = 4.

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf 35 10 inf inf 0
st 7 -1 -1 4 7 -1 -1 7

in 0 0 0 0 1 0 0 1

17



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=4

Step 10: For w ={3, 5, 6}
— Step 11: Compare inf with 10+20=30
— Steps 12, 13: wt[5] = wt[4] + 20, st[5] = 4.

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf 35 10 30 inf 0
st 7 -1 -1 4 7 4 -1 7

in 0 0 0 0 1 0 0 1

18



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=4

Step 10: For w ={3, 5, 6}
— Step 11: Compare inf with 10+30=40
— Steps 12, 13: wt[6] = wt[4] + 30, st[6] = 4.

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf 35 10 30 40 0
st 7 -1 -1 4 7 4 4 7

in 0 0 0 0 1 0 0 1

19



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 7.

e Steps/,8,9:v=0

vertex 0 1 2 3 4 5 6 7
wt 15 inf inf 35 10 30 40 0
st 7 -1 -1 4 7 4 4 7

in 1 0 0 0 1 0 0 1

20



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 5, 6}
— Step 11: Compare inf with 15+20=35
— Steps 12, 13: wt[1] = wt[0] + 20, st[1] = 0.

vertex 0 1 2 3 4 5 6 7
wt 15 35 inf 35 10 30 40 0
st 7 0 -1 4 7 4 4 7

in 1 0 0 0 1 0 0 1

21



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 5, 6}
— Step 11: Compare inf with 15+30=45
— Steps 12, 13: wt[2] = wt[0] + 30, st[2] = 0.

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 30 40 0
st 7 0 0 4 7 4 4 7

in 1 0 0 0 1 0 0 1

22



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 5, 6}
— Step 11: Compare 30 with 15+10=25
— Steps 12, 13: wt[5] = wt[0] + 10, st[5] = 0.

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 40 0
st 7 0 0 4 7 0 4 7

in 1 0 0 0 1 0 0 1

23



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 5, 6}
— Step 11: Compare 40 with 15+20=35
— Steps 12, 13: wt[6] = wt[0] + 20, st[6] = 0.

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 0 0 1

24



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 7.

e Steps/,8,9:v=5

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 1 0 1

25



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=5
Step 10: For w = {3}

— Step 11: Compare 35 with 25+15=40
NO UPDATE

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 0 0 0 1 1 0 1

26



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=1
Step 10: For w = empty list

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 1 0 0 1 1 0 1

27



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=3
Step 10: For w = empty list

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 1 0 1 1 1 0 1

28



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=6
Step 10: For w = empty list

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 1 0 1 1 1 1 1

29



Dijkstra Example

Suppose we want to compute
the SPST for vertex 7.

Steps 7,8,9:v=6
Step 10: For w = empty list

vertex 0 1 2 3 4 5 6 7
wt 15 35 45 35 10 25 35 0
st 7 0 0 4 7 0 0 7

in 1 1 1 1 1 1 1 1

30



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

First, we initialize arrays wt, st,
in (steps 2, 3, 4).

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf inf inf inf inf
st -1 -1 -1 -1 -1 -1 -1 -1

in 0 0 0 0 0 0 0 0

31



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

* Step 5.

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf 0 inf inf inf
st -1 -1 -1 -1 4 -1 -1 -1

in 0 0 0 0 0 0 0 0

32



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

* Steps7,8,9:v=4

vertex 0 1 2 3 4 5 6 7
wt inf inf inf inf 0 inf inf inf
st -1 -1 -1 -1 4 -1 -1 -1

in 0 0 0 0 1 0 0 0

33



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=4

Step 10: Forw ={3, 5, 6, 7}
— Step 11: Compare inf with 25
— Steps 12, 13: wt[3] = wt[4] + 25, st[3] = 4.

vertex 0 1 2 3 4 5 6 7
wt inf inf inf 25 0 inf inf inf
st -1 -1 -1 4 4 -1 -1 -1

in 0 0 0 0 1 0 0 0

34



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=4

Step 10: Forw ={3, 5, 6, 7}
— Steps 12, 13: update wt[w], st[w]

vertex 0 1 2 3 4 5 6 7
wt inf inf inf 25 0 20 30 10
st -1 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 0

35



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

* Steps7/,8,9:v=7

vertex 0 1 2 3 4 5 6 7
wt inf inf inf 25 0 20 30 10
st -1 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 1

36



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=7
Step 10: For w = {0}
— Step 11: Compare inf with 10+15 = 25.
— Steps 12, 13: wt[0] = wt[7] + 15, st[0] = 7.

vertex 0 1 2 3 4 5 6 7
wt 25 inf inf 25 0 20 30 10
st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 0 0 1

37



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

e Steps/,8,9:v=5

vertex 0 1 2 3 4 5 6 7
wt 25 inf inf 25 0 20 30 10
st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

38



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=5

Step 10: For w ={0, 3}
— Step 11: Compare 25 with 20+10 = 25.
NO UPDATE

vertex 0 1 2 3 4 5 6 7
wt 25 inf inf 25 0 20 30 10
st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

39



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=5

Step 10: For w ={0, 3}
— Step 11: Compare 25 with 20+15 = 35.
NO UPDATE

vertex 0 1 2 3 4 5 6 7
wt 25 inf inf 25 0 20 30 10
st 7 -1 -1 4 4 4 4 4

in 0 0 0 0 1 1 0 1

40



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

* Steps/,8,9:v=0

vertex 0 1 2 3 4 5 6 7
wt 25 inf inf 25 0 20 30 10
st 7 -1 -1 4 4 4 4 4

in 1 0 0 0 1 1 0 1

41



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 6}
— Step 11: Compare inf with 25+20 = 45.
— Steps 12, 13: wt[1] = wt[0] + 20, st[1] = 0.

vertex 0 1 2 3 4 5 6 7
wt 25 45 inf 25 0 20 30 10
st 7 0 -1 4 4 4 4 4

in 1 0 0 0 1 1 0 1

42



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=0

Step 10: Forw ={1, 2, 6}
— Step 11: Compare inf with 25+30 = 55.
— Steps 12, 13: wt[2] = wt[0] + 30, st[2] = 0.

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 0 0 0 1 1 0 1

43



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=0
Step 10: Forw ={1, 2, 6}

— Step 11: Compare 30 with 25+20 = 45.
NO UPDATE

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 0 0 0 1 1 0 1

44



Dijkstra Example

* Suppose we want to compute
the SPST for vertex 4.

e Steps/,8,9:v=3

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 0 1

45



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=3
Step 10: empty list

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 0 1

46



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=6
Step 10: empty list

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 0 0 1 1 1 1 1

47



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=1
Step 10: empty list

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 1 0 1 1 1 1 1

48



Dijkstra Example

Suppose we want to compute
the SPST for vertex 4.

Steps 7,8,9:v=2
Step 10: empty list

vertex 0 1 2 3 4 5 6 7
wt 25 45 55 25 0 20 30 10
st 7 0 0 4 4 4 4 4

in 1 1 1 1 1 1 1 1

49



All-Pairs Shortest Paths

* Before we describe an algorithm for computing the
shortest paths among all pairs of vertices, we should
agree on what this algorithm should return.

* We need to compute two V x V arrays:
— dist[v][w] is the distance of the shortest path from v to w.
— path[v][w] is the vertex following v, on the shortest path
from v to w.
* Given these two arrays (after our algorithm has
completed), how can we recover the shortest path
between some vand w?



All-Pairs Shortest Paths

We need to compute two V x V arrays:
— dist[v][w] is the distance of the shortest path from v to w.

— path[v][w] is the vertex following v, on the shortest path from v to w.

Given these two arrays (after our algorithm has completed),
how can we recover the shortest path between some v and
w?

path = empty list
C=V
while(true)
— insert_to_end(path, c)
— if (c == w) break
— ¢ = path|[c][w]



Computing Shortest Paths

* Overview: we can simply call Dijkstra's algorithm on
each vertex.

* Time: V times the time of running Dijkstra's
algorithm once.
— O(E Ig V) for one vertex.
— O(VE Ig V) for all vertices.
— O(V3 Ig V) for dense graphs.
* There is a better algorithm for dense graphs, Floyd's

algorithm, with O(V3) complexity, but we will not
cover it.



All-Pairs Shortest Paths
Using Dijkstra

The complete all-pairs
algorithm is more complicated
than simply calling Dijkstra's
algorithm V times.

20

Here is why:
Suppose we call Dijkstra's algorithm on vertex 1.

The algorithm computes arrays wt and st:
— wt[v]: weight of shortest path from vertex 1 to v.
— st[v]: parent vertex of v on shortest path from vertex 1 to v.

How do arrays wt and st correspond to arrays dist and path?
— dist[v][w] is the distance of the shortest path from v to w.
— path[v][w] is the vertex following v, on the shortest path from v to w.

No useful correspondence!!! 53



Using Reverse Graphs

Suppose that G is the graph
you see on the right.

Suppose that H is the reverse
graph, obtained by switching
the direction of every single

edge in G.

20

20

54



Using Reverse Graphs

Suppose that G is the graph
you see on the right.

Suppose that H is the reverse
graph, obtained by switching
the direction of every single
edge in G.

Then, for any vertices v and w, the shortest path fromw tovinH
is simply the reverse of the shortest path from vtow in G.

20

For example:
— Shortest path from 1 to 4 in G:
— Shortest path from 4 to 1in H:

55



Using Reverse Graphs

Suppose that G is the graph
you see on the right.

Suppose that H is the reverse
graph, obtained by switching
the direction of every single
edge in G.

20

Then, for any vertices v and w, the shortest path fromw tovinH
is simply the reverse of the shortest path from vtow in G.

For example:
— Shortest path from1to4inG:1,0,7,4
— Shortest path from4to1inH:4,7,0, 1.

— These two paths are just reversed forms of each other, and they have the
same weights.

56



Using Reverse Graphs

Suppose that we call Dijkstra's
algorithm with source = vertex 1,
on graph H (the reverse graph
of what you see on the right).

Consider the arrays wt and st
we get as a result of that.

These arrays are related to arrays dist and path on the original
graph G (what you actually see on the right) as follows:

— dist[v][1] = wt[V].

— path[v][1] = st[v].
Why?

20

57



Using Reverse Graphs

Suppose that we call Dijkstra's
algorithm with source = vertex 1,
on graph H (the reverse graph
of what you see on the right).

Consider the arrays wt and st
we get as a result of that.

20

wt[v] is the weight of the shortest path from 1 to v in H.
— Therefore, wt[v] is the weight of the shortest path fromvto 1in G.
— Therefore, dist[v][1] = wt[v].

st[v] is the parent of v on the shortest path from 1 to vin H.

— Therefore, st[v] is the vertex following v on the shortest path fromvto 1
in G.

— Therefore, path[v][1] = st[v].

58



Using Dijkstra's Algorithm for All-

Pairs Shortest Paths

Input: graph G.
1. Construct reverse graph H.
2. Foreachsin{O, ..., V-1}:
3. Call Dijkstra's algorithm on graph H, with source =s.
4. Foreachvin{O,..., V-1}:
5. dist[v][s] = wt[v].
6. path[v][s] = st[v].



