A AND B B => (A OR C)
A B NOT ADoes this knowledge base entail the following sentence:
B OR CJustify your answer.
A | B | C | Sentence |
false | false | false | true |
false | false | true | false |
false | true | false | false |
false | true | true | true |
true | false | false | false |
true | false | true | false |
true | true | false | false |
true | true | true | true |
1. for-every x, exists y: son(x) = y 2. for-every x, for-every y: son(x) = y <=> father(y) = xIn your answers, any "not" may only appear after the last appearance of a universal or existential quantifier.
KB 1: for-every x: king(x) and greedy(x) => evil(x) king(John) greedy(John) brother(Richard, John) KB 2: for-every x: king(x) and greedy(x) => evil(x) king(John) greedy(John) brother(Richard, John) king(father(John))
1. major(John, x), major(y, mathematics) 2. major(John, x), major(y, z) 3. major(John, x), major(y, x) 4. major(John, x), major(x, y)