MAP and ML Estimation

Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Overview of Candy Bag Example

As described in slides by Russell and Norvig, for Chapter 20 of the 2nd edition:

- Five kinds of bags of candies.
 - -10% are h₁: 100% cherry candies
 - -20% are h₂: 75% cherry candies + 25% lime candies
 - -40% are h₃: 50% cherry candies + 50% lime candies
 - -20% are h₄: 25% cherry candies + 75% lime candies
 - -10% are h₅: 100% lime candies
- Each bag has an infinite number of candies.
 - This way, the ratio of candy types does not change as we pick candies out of the bag.

Hypotheses and Observations

 We have a bag of a certain type, and we are picking candies out of that bag.

– We don't know if our bag is of type 1, 2, 3, 4, or 5.

- We have five *hypotheses*: h_1 , h_2 , h_3 , h_4 , h_5 .
- Out of the bag, we pick T candies, whose types are: Q₁, Q₂, ..., Q_T.
 - Each Q_i is equal to either C (cherry) or L ("lime").
 - These Q_i's are called the **observations**.

Questions We Want to Answer

- What is P(h_i | Q₁, ..., Q_t)?
 Probability of hypothesis i after t observations.
- What is $P(Q_{t+1} = C | Q_1, ..., Q_t)$?
 - Similarly, what is $P(Q_{t+1} = L | Q_1, ..., Q_t)$
 - Probability of observation t+1 after t observations.

Simplifying notation

• Define:

$$-P_{t}(h_{i}) = P(h_{i} | Q_{1}, ..., Q_{t})$$

-P_{t}(Q_{t+1} = C) = P(Q_{t+1} = C | Q_{1}, ..., Q_{t})?

• Special case: t = 0 (no observations):

$$-P_0(h_i) = P(h_i)$$

• $P_0(h_i)$ is the prior probability of h_i

$$-P_0(Q_1 = C) = P(Q_1 = C)$$

 P₀(Q₁ = C) is the probability that the first observation is equal to C.

Questions We Want to Answer, Revisited

Using the simplified notation of the previous slide:

• What is $P_t(h_i)$?

- Probability of hypothesis i after t observations.

- What is $P_t(Q_{t+1} = C)$?
 - Similarly, what is $P_t(Q_{t+1} = L)$
 - Probability of observation t+1 after t observations.

A Special Case of Bayes Rule

 In the solution, we will use the following special case of Bayes rule:

-P(A | B, C) = P(B | A, C) * P(A | C) / P(B | C).

Computing P_t(h_i)

- Let t be an integer between 1 and T:
- $P_t(h_i) = P(h_i | Q1, ..., Q_t) =$

$$\frac{P(Q_{t} \mid h_{i}, Q_{1}, ..., Q_{t-1}) * P(h_{i} \mid Q_{1}, ..., Q_{t-1})}{P(Q_{t} \mid Q_{1}, ..., Q_{t-1})} =>$$

=>
$$P_t(h_i) = \frac{P(Q_t | h_i) * P_{t-1}(h_i)}{P_{t-1}(Q_t)}$$

Computing P_t(h_i) (continued)

• The formula $P_t(h_i) = \frac{P(Q_t | h_i) * P_{t-1}(h_i)}{P_{t-1}(Q_t)}$ is recursive, as it requires

knowing $P_{t-1}(h_i)$. The base case is $P_0(h_i) = P(h_i)$.

 To compute P_t(h_i) we also need P_{t-1}(Q_t). We show how to compute that next.

Computing P_{t+1}(Q_t)

• $P_t(Q_{t+1}) = P(Q_{t+1} | Q_1, ..., Q_t) =$

$$\sum_{i=1}^{5} (P(Q_{t+1} | h_i) P(h_i | Q_1, ..., Q_t)) =>$$

$$P_t(Q_{t+1}) = \sum_{i=1}^{5} (P(Q_{t+1} | h_i) P_t(h_i))$$

Computing $P_t(h_i)$ and $P_t(Q_{t+1})$

• Base case: t = 0.

-
$$P_0(h_i) = P(h_i)$$
, where $P(h_i)$ is known.
- $P_0(Q_1) = \sum_{i=1}^{5} (P(Q_1 | h_i) * P(h_i))$, where $P(Q_1 | h_i)$ is known.

• To compute $P_t(h_i)$ and $P_t(Q_{t+1})$:

• For j = 1, ..., t
- Compute
$$P_j(h_i) = \frac{P(Q_j | h_i) * P_{j-1}(h_i)}{P_{j-1}(Q_j)}$$

- Compute
$$P_j(Q_{j+1}) = \sum_{i=1}^{5} (P(Q_{j+1} | h_i) * P_j(h_i))$$

Computing $P_t(h_i)$ and $P_t(Q_{t+1})$

• Base case: t = 0.

-
$$P_0(h_i) = P(h_i)$$
, where $P(h_i)$ is known.
- $P_0(Q_1) = \sum_{i=1}^{5} (P(Q_1 | h_i) * P(h_i))$, where $P(Q_1 | h_i)$ is known.

- To compute $P_t(h_i)$ and $P_t(Q_{t+1})$:
- For j = 1, ..., t - Compute $P_j(h_i) = \frac{known computed at previous round}{P(Q_j | h_i) * P_{j-1}(h_i)}$ $P_{j-1}(Q_j)$ computed at previous round - Compute $P_j(Q_{j+1}) = \sum_{i=1}^{5} (P(Q_{j+1} | h_i) * P_j(h_i))$ known computed at previous line¹²

MAP Estimate

- The Maximum a Posteriori (MAP) estimate answers the following question:
 - What is the most likely hypothesis given observations Q₁, ..., Q_t?
 - Answer:
 - Compute, for each h_i, P_t(h_i), using the algorithm described in the previous slides.
 - Select the h_i with the highest value of $P_t(h_i)$. The winning h_i is called the *MAP estimate*.

ML Estimate

- The Maximum Likelihood (ML) estimate answers the following question:
 - What is the most likely hypothesis given observations Q₁, ..., Q_t?
 - Answer: Compute, for each h_i:
 - $P(Q_1, ..., Q_t | h_i) = P(Q_1 | h_i) * ... * P(Q_t | h_i)$
 - Select the h_i with the highest value of
 P(Q₁, ..., Q_t | h_i) P_t(h_i). The winning h_i is called the *ML estimate*.

Comparison of MAP and ML

- When there is enough information to compute both the MAP estimate and the ML estimate, then the MAP is more accurate, because it uses more information.
 - The ML estimate ignores the prior probabilities P(h_i).
 Alternatively we can think that the ML estimate assumes that all prior probabilities P(h_i) are equal to each other.
- When the prior probabilities P(h_i) are not known, then only the ML estimate can be computed.
- Computing the ML estimate is more simple than computing the MAP estimate.