Entropy and Entropy Gain

Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Entropy – Two-Class Example

- Suppose that we have a set X of training examples.
 K₁ examples have class label A.
 - K_2 examples have class label B.
- Let $K = K_1 + K_2$.
- Then the entropy of the set X is:

 $H(K_1/K, K_2/K) = -(K_1/K) \log(K_1/K) - (K_2/K)\log(K_2/K)$

Information Gain – Example with Two Classes, Two Answers

- Suppose that we have a set X of training examples.
 - K₁ examples have class label A.
 - K₂ examples have class label B.
- Let $K = K_1 + K_2$.
- Suppose that we have a question Q₁ with only two possible answers: R₁ and R₂.
- K₃ examples of class A and K₄ examples of class B give answer R₁.
- K₅ examples of class A and K₆ examples of class B give answer R₂.
- Obviously, $K_3 + K_5 = K_1$, $K_4 + K_6 = K_2$

Information Gain – Example with Two Classes, Two Answers

• Information gain of question Q at node $N_1 =$ Entropy at N_1 – weighted average of entropies at N_2 and N_3

Information Gain – Example with Two Classes, Two Answers

• Information gain of question Q at node $N_1 =$

