INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1–2

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics

Review: Tree search

```
function TREE-SEARCH( problem, fringe) returns a solution, or failure fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) loop do

if fringe is empty then return failure node \leftarrow \text{Remove-Front}(fringe)

if GOAL-TEST[problem] applied to STATE(node) succeeds return node fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

– estimate of "desirability"

 \Rightarrow Expand most desirable unexpanded node

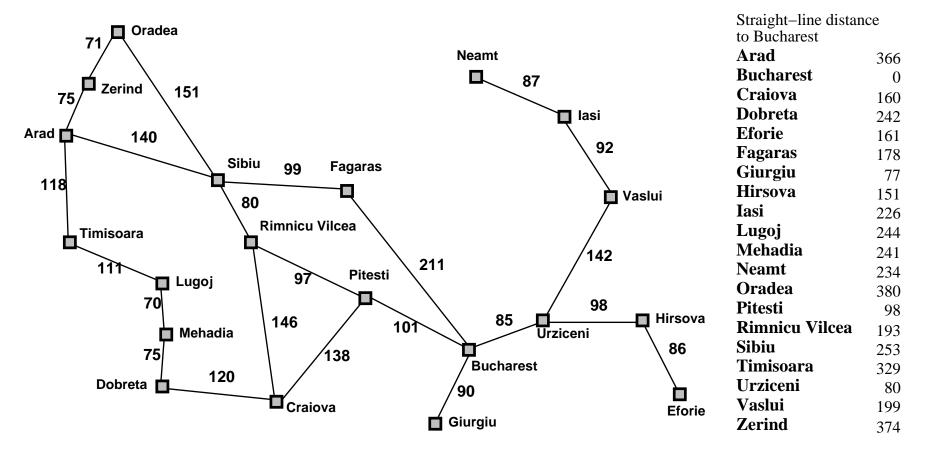
Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

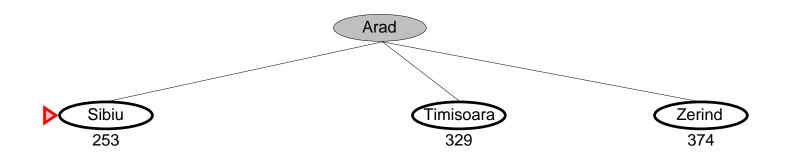


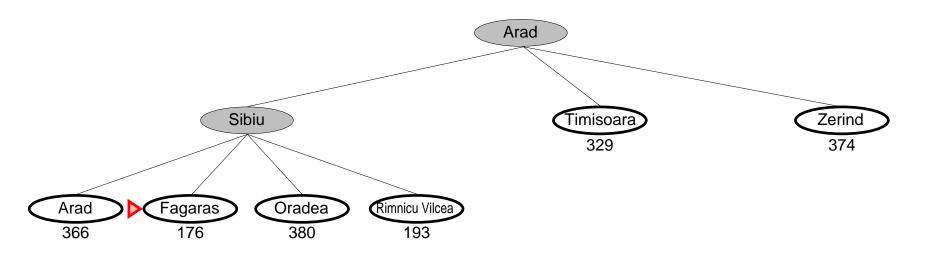
Greedy search

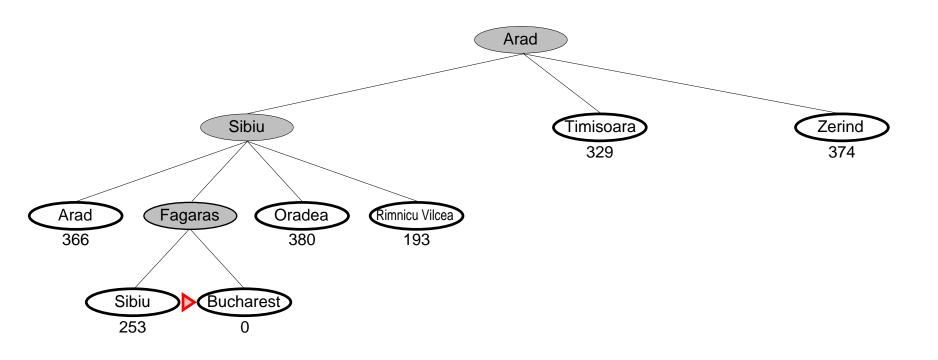
Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight}$ -line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal







Complete??

Time??

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

```
\frac{\mathsf{Complete}??\ \mathsf{No-can}\ \mathsf{get}\ \mathsf{stuck}\ \mathsf{in}\ \mathsf{loops},\ \mathsf{e.g.},}{\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to}
```

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

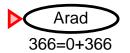
f(n) =estimated total cost of path through n to goal

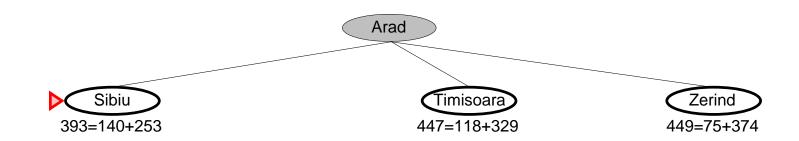
A* search uses an admissible heuristic

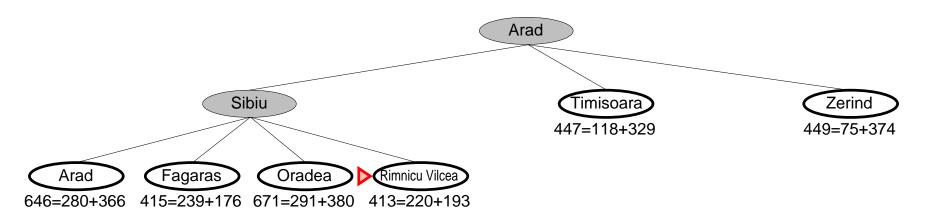
i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

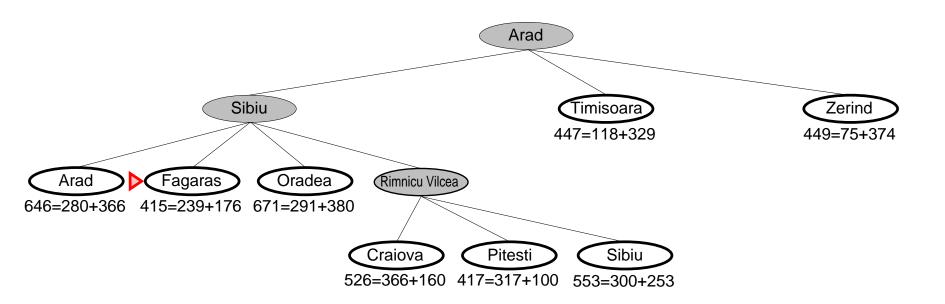
E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

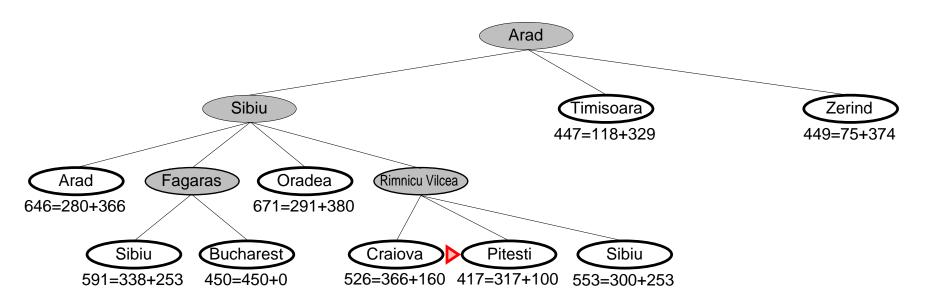
Theorem: A* search is optimal



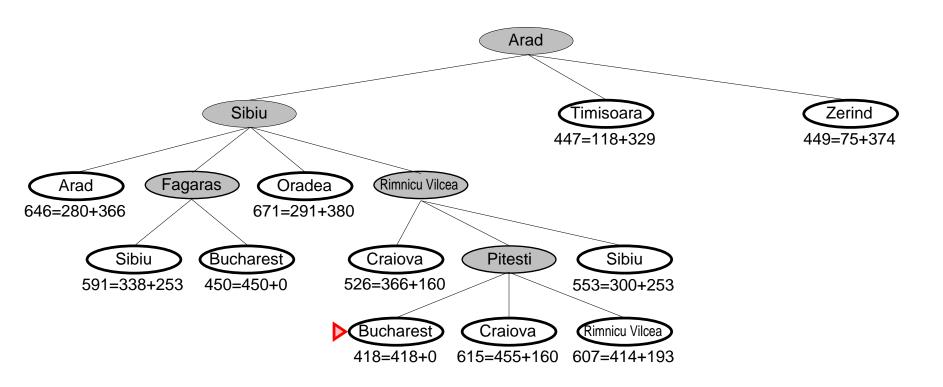






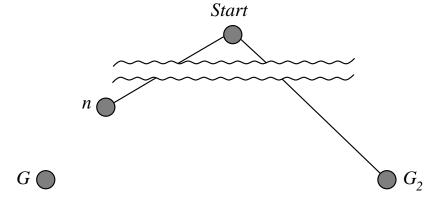


\mathbf{A}^* search example



Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .



$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Complete??

 $\underline{\text{Complete}} \ref{Complete} \ref{Complete}$

Time??

 $\underline{\text{Complete}??} \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Next: Example **Up:** 13 **Previous:** Optimality of A*

Series of Depth-First Searches

Like Iterative Deepening Search, except use A* cost threshold instead of depth threshold

Ensures optimal solution

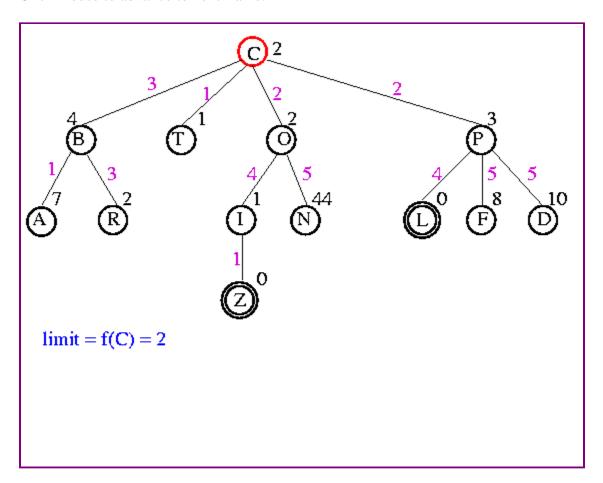
queueing-fn is enqueue-at-front if $f(child) \le threshold$

Threshold is h(root) for first pass

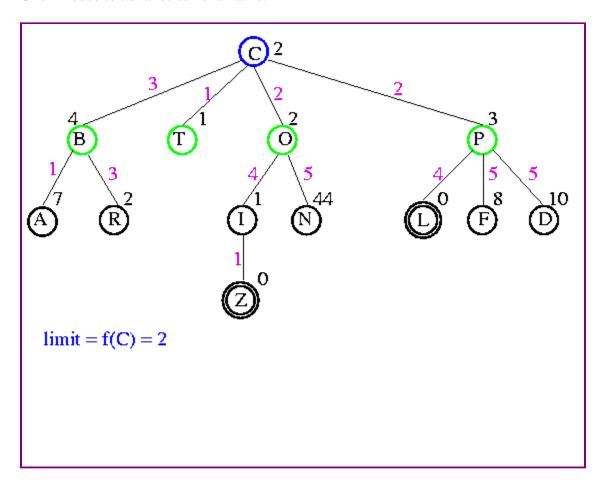
Next threshold is f(min_child), where min_child is cutoff child with minimum f value

This conservative increase ensures cannot look past optimal cost solution

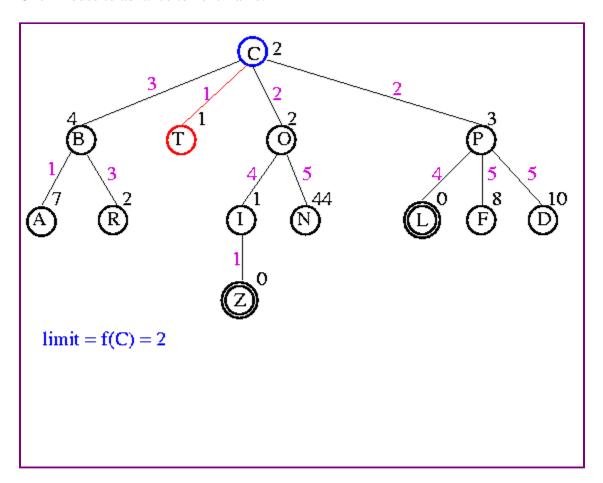
Example



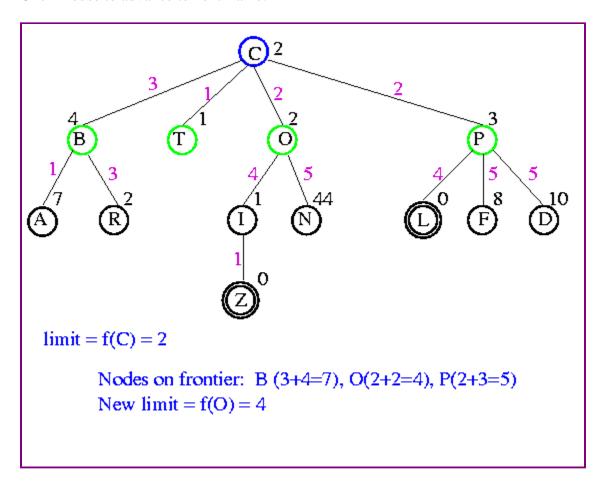
Example



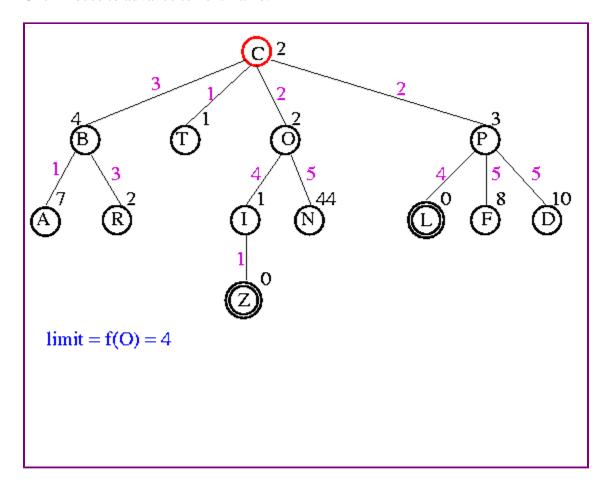
Example



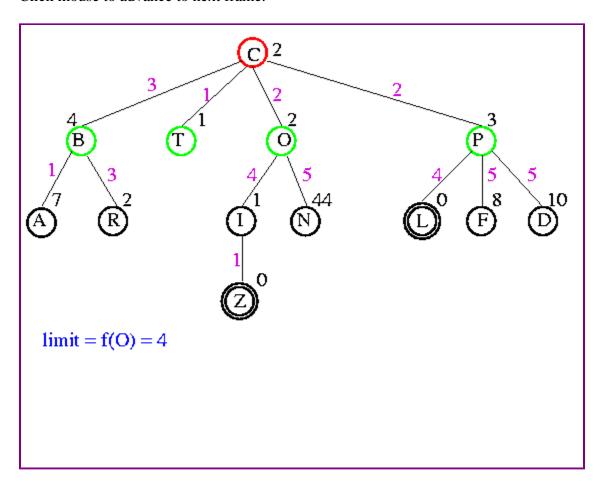
Example



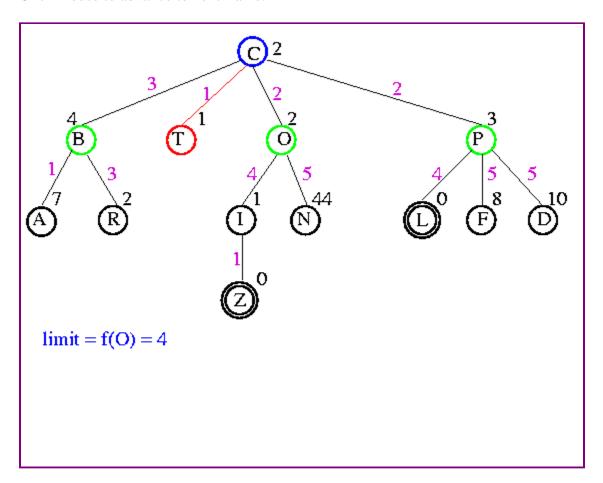
Example



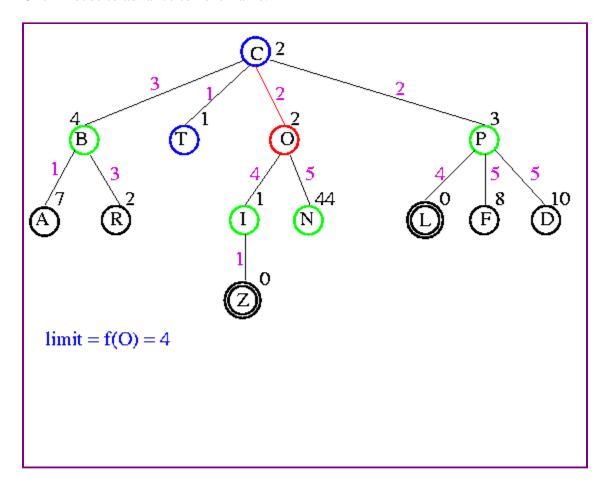
Example



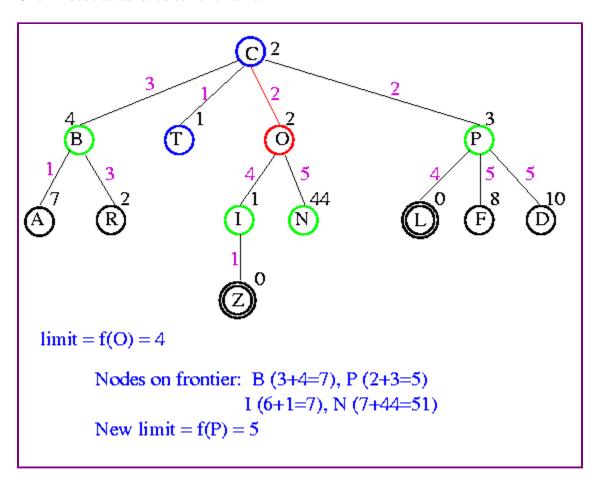
Example



Example



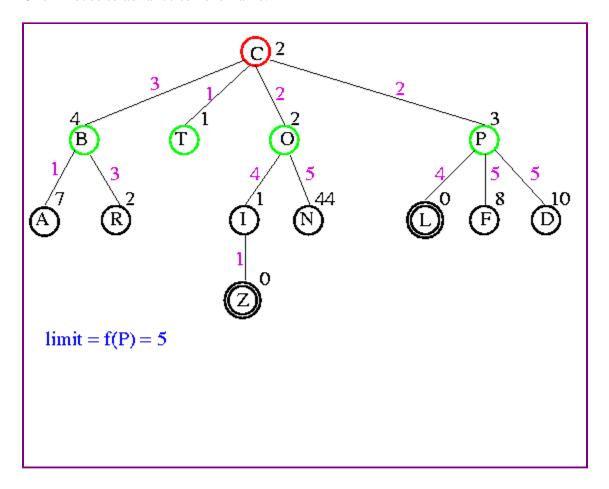
Example



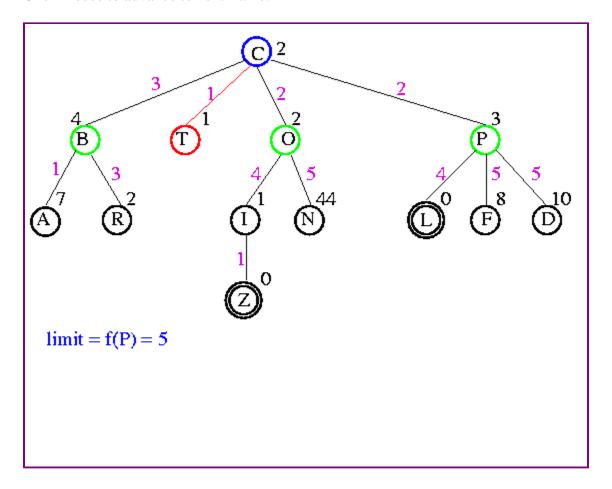
Example



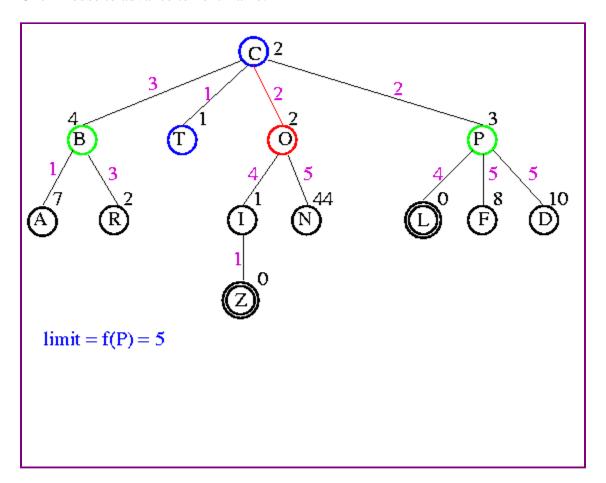
Example



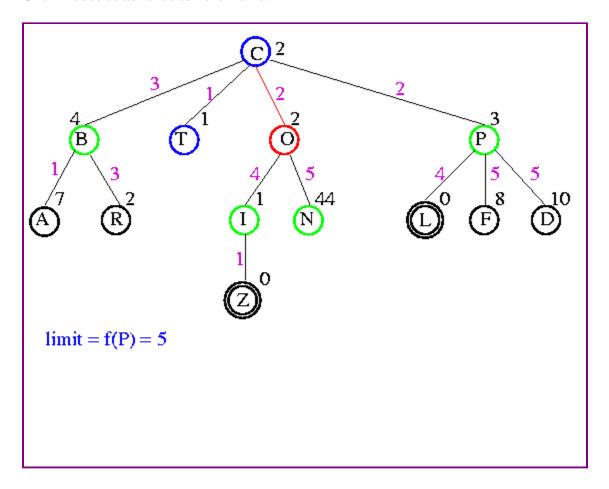
Example



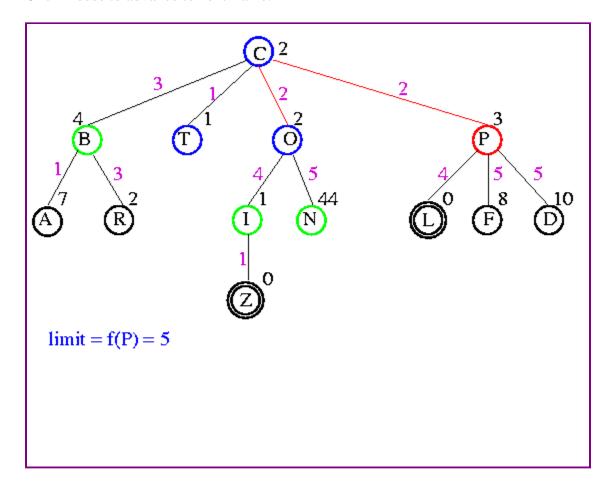
Example



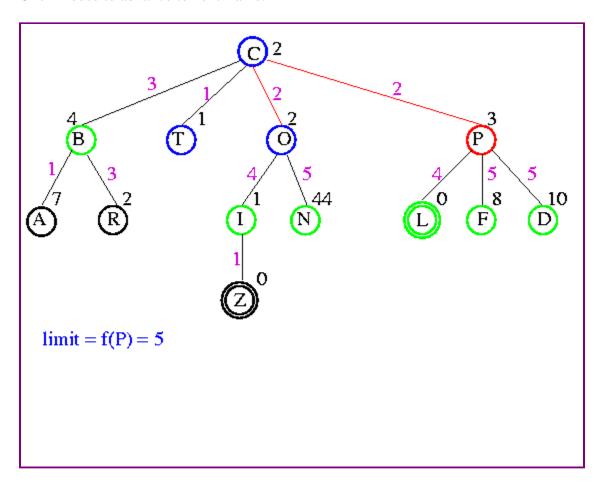
Example



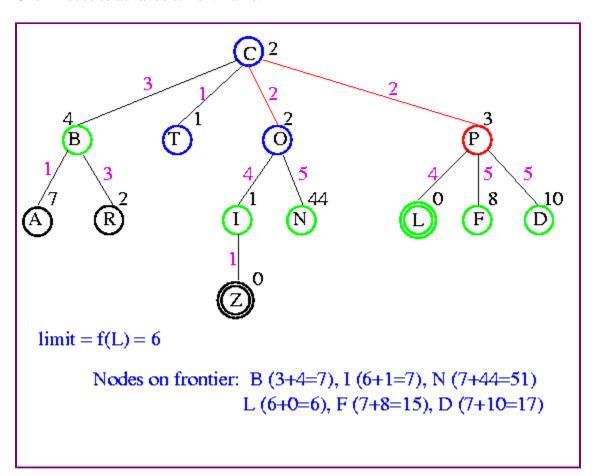
Example



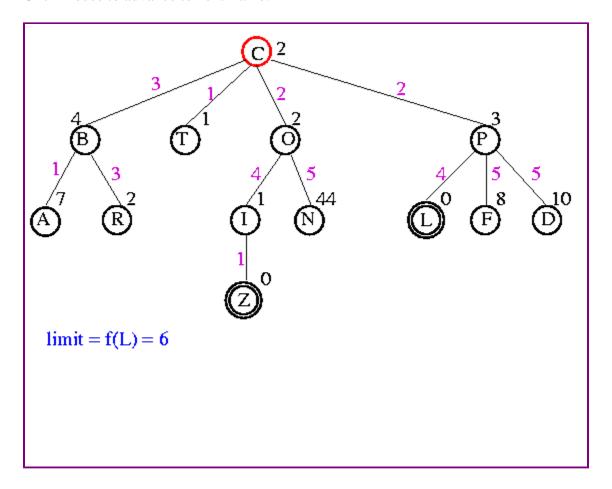
Example



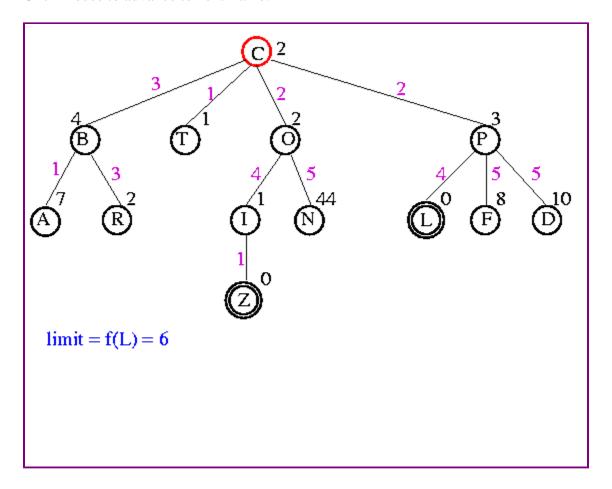
Example



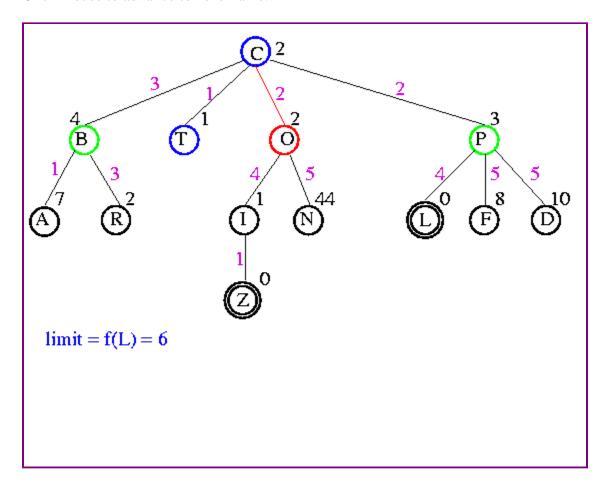
Example



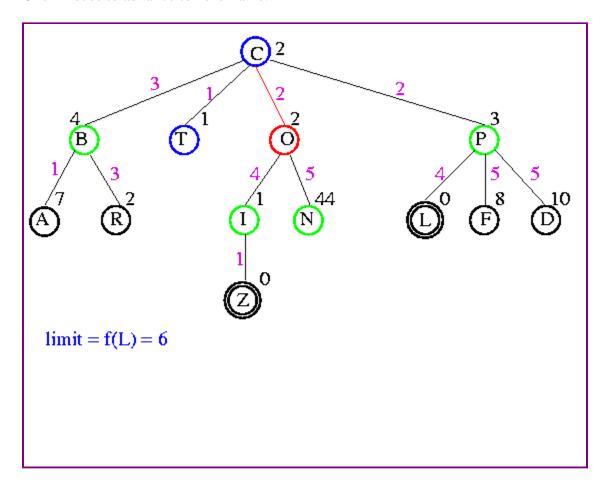
Example



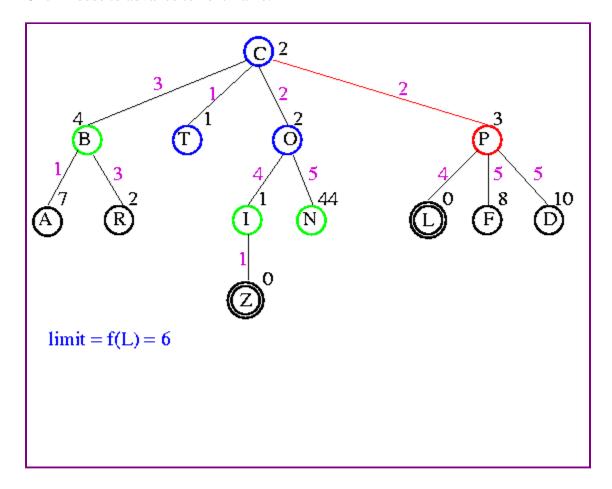
Example



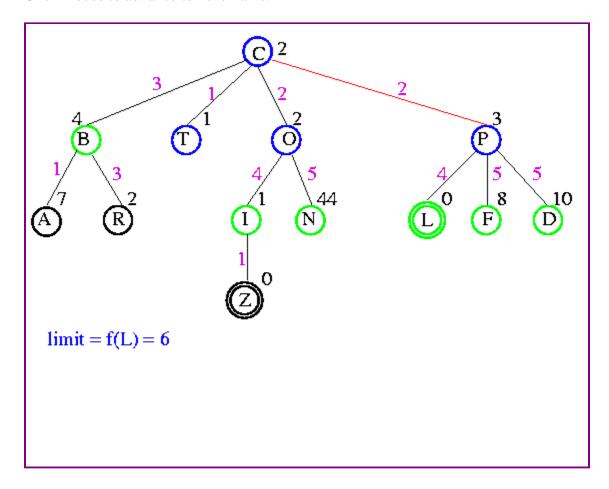
Example



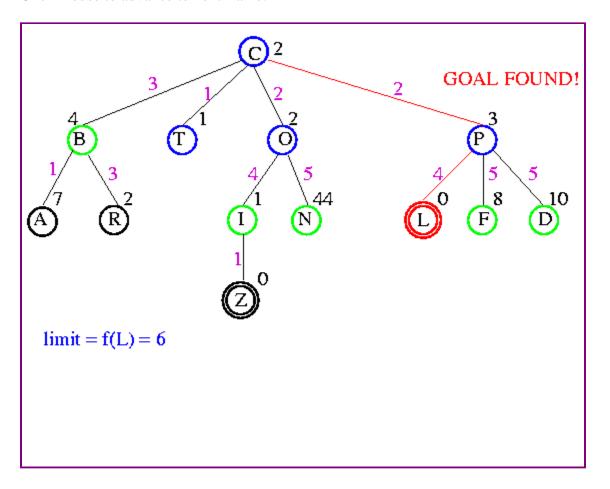
Example



Example

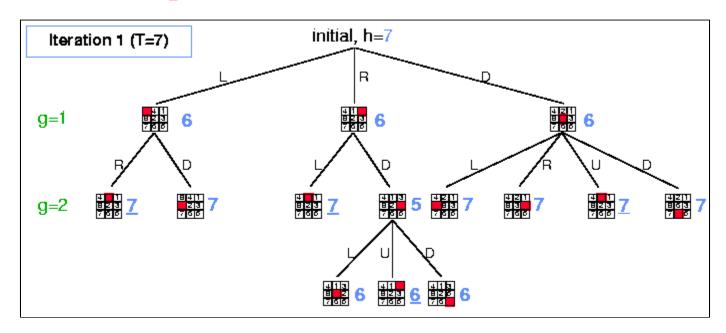


Example



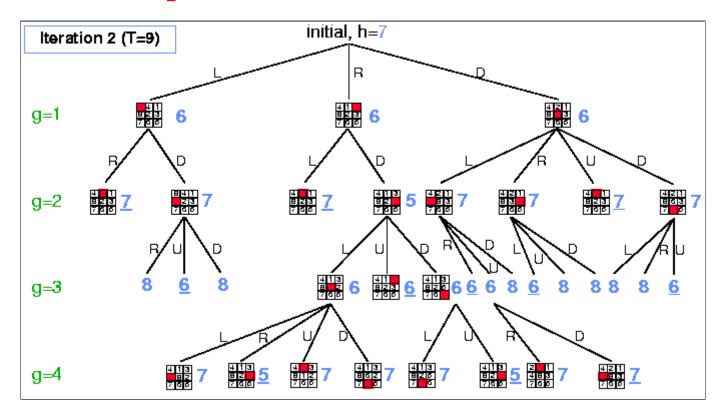
Next: Eight Puzzle Example Up: 13 Previous: Example

Eight Puzzle Example



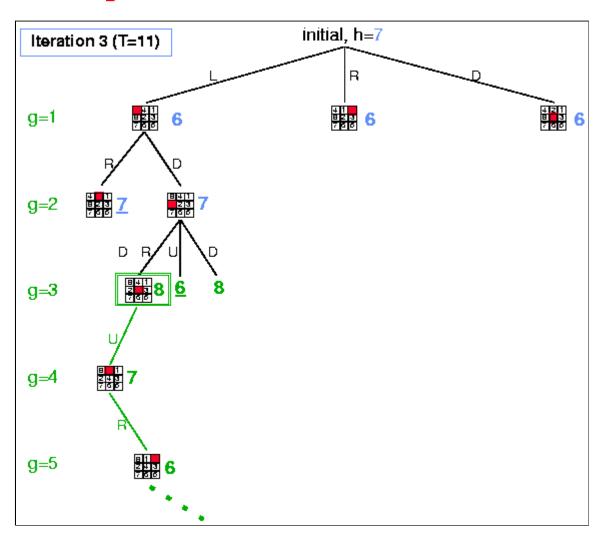
Next: Eight Puzzle Example Up: 13 Previous: Eight Puzzle Example

Eight Puzzle Example



Next: Analysis Up: 13 Previous: Eight Puzzle Example

Eight Puzzle Example



Next: RBFS Up: 13 Previous: Eight Puzzle Example

Analysis

Some redundant search, but small amount compared to work done on last iteration

Dangerous if f values are very close

If threshold = 21.1 and next value is 21.2, probably only include 1 new node each iteration

Time: $O(b^m)$ Space: O(m)

SMA* search can be used to remember some nodes from one iteration to the next.

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

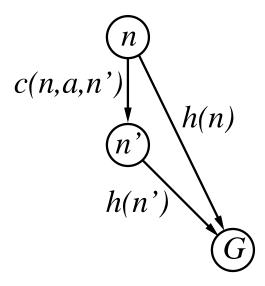
$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.



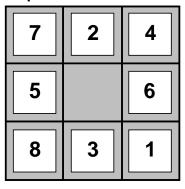
Admissible heuristics

E.g., for the 8-puzzle:

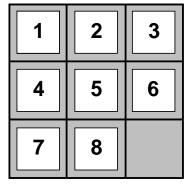
 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)



Start State



Goal State

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

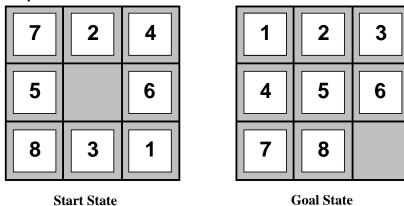
Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)



$$\frac{h_1(S)}{h_2(S)} = ??$$
 6
 $\frac{h_2(S)}{h_2(S)} = ??$ 4+0+3+3+1+0+2+1 = 14

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

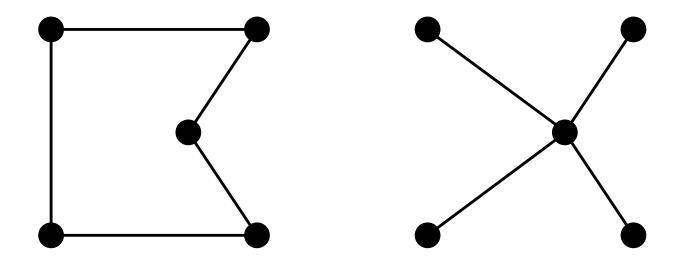
If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems