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Overview of Candy Bag Example

As described in slides by Russell and Norvig, for
Chapter 20 of the 2"d edition:

* Five kinds of bags of candies.
— 10% are h,: 100% cherry candies
— 20% are h,: 75% cherry candies + 25% lime candies
— 40% are h;: 50% cherry candies + 50% lime candies
— 20% are h,: 25% cherry candies + 75% lime candies
— 10% are h;: 100% lime candies

« Each bag has an infinite number of candies.

— This way, the ratio of candy types does not
change as we pick candies out of the bag. ,



Hypotheses and Observations

* We have a bag of a certain type, and we are
picking candies out of that bag.

— We don’t know if our bag is of type 1, 2, 3, 4, or 5.
* We have five hypotheses: hy, h,, h;, h,, he.
* QOut of the bag, we pick T candies, whose

types are: Q,, Q,, ..., Q.

— Each Q; is equal to either C (cherry) or L ("lime”).

— These Qs are called the observations.



Questions We Want to Answer

* Whatis P(h, | Qq, ..., Q)7

— Probability of hypothesis i after t observations.
* Whatis P(Q;,, =C | Qq, ..., Q)?

— Similarly, what is P(Q,,; =L | Q4, ..., Q)

— Probability of observation t+1 after t
observations.




Simplifying notation

* Define:
—Pyh) = P(h | Qy, ..., Q)
-P(Qu,=C)=P(Q,,=C|Qy, ..., Q)?
» Special case: t = 0 (no observations):
— Po(hy) = P(hy)
* Py(h)) is the prior probability of h,
- Po(Q, =C)=P(Q, =C)

« Py(Q, = C) is the probability that the first
observation is equal to C.



Questions We Want to Answer,
Revisited

Using the simplified notation of the previous
slide:
* What is P,(h,)?
— Probability of hypothesis i after t observations.
 What is P(Q,,, = C)?
— Similarly, what is P(Q,,, = L)

— Probability of observation t+1 after t
observations.



A Special Case of Bayes Rule

* In the solution, we will use the following
special case of Bayes rule:

-P(A|B,C)=PB|A C)*P(A|C)/P(B|C).



Computing P,(h;)
* Lett be an integer between 1 and T
« P(h)=P(h |Q1, ..., Q)=
P(Qt | hl’ Q1, - uy Qt_1) * P(hl | Q1, -y Qt_1)
P(Q,| Qq, ..., Q)

=>

P(Q, | hy) ™ Pyq(hy)

Pea(Qy)




Computing P,(h;) (continued)

P(Q; | hy) ™ Pyq(hy)
Pea(Qy)

 The formula P.(h;) =

IS recursive, as it requires
knowing P, ,(h,). The base case is P4(h;) = P(h)).

» To compute P,(h.) we also need P, ,(Q,). We
show how to compute that next.



Computing P.,4(Q,)
(Qt+1) (Qt+1 | Q1 - Qt) =
zls (P(Qq | ) P(hy | Qq, ..., Q)) =>
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Computing P,(h;) and P(Q;,4)

« Base case:t=0.
— Py(hy) = P(h) where P(h.) is known.

— Po(Qq) = Z P(Q, | h) * P(h) ), where P(Q, | h) is known.

* To compute P(h;) and P(Q;,,):
e Forj=1,..,t

P(Q | h) * P.(h,
— Compute Pj(h) = (@11 (M)

Pi4(Q)

)
- Compute P(Qy1) =3 (P(Qu [h) * P(h))
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Computing P(h.) and Py(Q,4)

« Base case:t=0.
— Py(hy) = P(h) where P(h.) is known.

— Po(Qq) = Z P(Q, | h) * P(h) ), where P(Q, | h) is known.

» To compute P,(h,) and P(Q,,+):
° Forj — 1, . t known computed at previous round

P(Q; | h)) *C_Py4(hy)
P;4(Q)

computed at previous round

— Compute Pj(h;) =

5
— Compute Pi(Qi4) =Y (P(Qg4 | by) *(Py(hy))

— 12
i=1 known Ccomputed at previous line



MAP Estimate

* The Maximum a Posteriori (MAP) estimate
answers the following question:

— What is the most likely hypothesis given
observations Q,, ..., Q,?

— Answer:

« Compute, for each h,, P,(h,), using the algorithm
described in the previous slides.

 Select the h, with the highest value of P(h;). The
winning h; is called the MAP estimate.
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ML Estimate

* The Maximum Likelihood (ML) estimate
answers the following question:

— What is the most likely hypothesis given
observations Q,, ..., Q,?

— Answer: Compute, for each h;:
d P(Q1, . Qt | hl) = P(Q1 | hl) * * P(Qtl hl)
 Select the h; with the highest value of

P(Q,, ..., Q| h)). The winning h. is called the ML
estimate.
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Comparison of MAP and ML

« When there is enough information to compute
both the MAP estimate and the ML estimate,
then the MAP Is more accurate, because It uses
more information.

— The ML estimate ignores the prior probabilities P(h)).
Alternatively we can think that the ML estimate
assumes that all prior probabilities P(h;) are equal to
each other.

* When the prior probabilities P(h.) are not known,

then only the ML estimate can be computed.

« Computing the ML estimate is more simple than
computing the MAP estimate. 15



