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Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean Xi with k Boolean parents has
B E

J

A

M

2k rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1 − p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)
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Global semantics

Global semantics defines the full joint distribution
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as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i = 1P (xi|parents(Xi))

e.g., P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

=
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Global semantics

“Global” semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i = 1P (xi|parents(Xi))

e.g., P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents
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Theorem: Local semantics ⇔ global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick
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Example: Car insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables ⇒ parameterized distributions (e.g., linear Gaussian)
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