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Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains’ of electrical potential

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

Nucleus ( /

Synapses

Cell body or Soma
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; — glin;) = g (2;Wja;)

_ 1 Bias Weight _
Q=" W, a = g(in;)

Output
Links

Input Input  Activation
Links Function Function

Output

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions

q(iry) , 9in)

+1

. .
IN; IN;

(a) (b)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + ™)

Changing the bias weight 11/); moves the threshold location
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Implementing logical functions

Wy =1.5 Wy = 0.5 Wy =—0.5
W= T W, o=
— —
W2 =1 W2 =1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (11, ; = W/, ;)
g(x)=sign(z), a;= + 1, holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example

W 5

W, 5

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss5-as+ Wys-aq)
= gWss5-g(Wis-a1+Wys-as)+Wys-g(Wis- a1+ Woy-as))

Adjusting weights changes the function: do learning this way!
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Single-layer perceptrons

Perceptron output
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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Expressiveness of perceptrons

Consider a perceptron with ¢ = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Zjoa:j >0 or W-x>0

X1 | X1 4 X1 4
10 ® le@ ® le@ O
?
00 O—= 0 0 0—e—
0 1 X 0 1 %X 0 1 X
(a) X; and Xo (b) x¢ or. X (C) X1 xor Xo

Minsky & Papert (1969) pricked the neural network balloon
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output vy is

1 1
E = §Er7“2 = §(y — hw(x))*,

Perform optimization search by gradient descent:

oOF B OFErr B 0
= FErr = FErr
oW oW oW

= —FErr x ¢'(in) X x;

(y - Q(Z?—oWﬂj))

Simple weight update rule:
W; — W+ ax Errx ¢'(in) x z;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

@ @

(%] 1 A 0 1 A
|7 |7
209 209
c c
208 208
(@] (@]

£ 07 207
S ~ S

< 0.6 1 / Perceptron —— - 0.6
i) i)
20.5 1 20.5
© 0.4 ©04

R

Perceptron ——

Q 0O 10 20 30 40 50 60 70 80 90 100 Q 0O 10 20 30 40 50 60 70 80 90 100

Training set size - MAJORITY on 11 inputs Training set size -

Perceptron learns majority function easily, DTL is hopeless

RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

Layers are usually fully connected;

a;

numbers of hidden units typically chosen by hand
Output units
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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1 77
] /// ////’// 17
0.8 - ////Z///,Z///,’;/r;;;r,,,’ ~
i
0.6 7z
Yz
. i
0.4 ”’/"’57’//7’/////”///:/’//
://////I/ i) =
0§ 7, ////////////// ~ 4
“ 20 %

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wjﬂ'/ — Wjﬂ'/ + a X a; X AL

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:

Aj=g'(in;) S WA .
1
Update rule for weights in hidden layer:

W/ﬁj — W]{J' +a X ap X Aj .

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

1
B= gl —al
where the sum is over the nodes in the output layer.
oF da; dg(in;)
@Wj,i — _(yz - az>§Wj,i — (yz al) an

= —(yi — a;)g'(in;) =~y — ai)g (i) 5 (Z Wi Zaj)

8Wj7¢
= —(yi — ai)g'(iny)aj = —a; A

oW,
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Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
14 ,
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Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

O/ 1FHIM|s 6|7 ¥
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3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

| o

Current best (kernel machines, vision algorithms) = 0.6% error
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Summary

Most brains have lots of neurons; each neuron =2 linear—threshold unit (7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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