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Example of Linear 
Classification 

• Red points: patterns  
belonging to class C1. 

• Blue points: patterns 
belonging to class C2. 

• Goal: find a linear decision  
boundary separating C1  
from C2. 

• Points on one side of the line will be classified as belonging to 
C1, points on the other side will be classified as C2. 

• The red line is one example of such a decision boundary. 
– It misclassified a few patterns. 

• The green line is another example. 2 



Linear 
Classification 

• Mathematically, assuming 
input patterns are  
D-dimensional vectors: 
– We are looking for a decision  

boundary in the form of a 
(D-1)-dimensional hyperplane  
separating the two classes. 

– Points on one side of the  
hyperplane will be classified  
as belonging to C1, points on the  
other side will be classified as C2. 

• If inputs are 2-dimensional vectors, the decision boundary is a line. 

• If inputs are 3-dimensional vectors, the decision boundary is a 2-
dimensional surface. 
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Linear 
Classification 

• Input space:  ℝ𝐷 

• The decision boundary is  
is a (D-1)-dimensional  
hyperplane  defined 
using this equation: 
 

 

• In the equation above:  𝑤0 and c are real numbers, w and x are 
column vectors: 
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𝐰 =

𝑤1
…
𝑤𝐷

 𝐱 =

𝑥1
…
𝑥𝐷

 

𝒘𝑻𝒙 + 𝑤0 = c 



Linear 
Classification 

• In order to be able to use 
vector and matrix notation, 
we extend vector 𝒘 and 𝒙,  
as follows: 

 

 

 

 

 

• Then, the decision boundary is defined by equation: 
 

 𝒘𝑻𝒙 = c 
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𝒘 =

𝑤0
𝑤1…
𝑤𝐷

 𝒙 =

1
𝑥1…
𝑥𝐷

 



Linear 
Classification 

• Furthermore, we can use 
basis functions 𝜑𝑖 𝑥 , which 
we pick manually. 

• As before, 𝜑0 𝑥 = 1. 

 

 

 

 
 

• Then, the decision boundary is defined by equation: 
 

 𝒘𝑻𝜑(𝑥) = c 
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𝒘 =

𝑤0
𝑤1…
𝑤𝐷

 𝜑(𝑥) =

1
𝜑1(𝑥)…
𝜑𝐷(𝑥)

 



Logistic Regression 

• Despite the word "regression" 
in its name, logistic regression 
is actually a linear 
classification method. 

• In logistic regression, the goal 
is to compute a decision 
boundary 𝒘𝑻𝜑(𝑥) = 0. 

• The classification function 
itself is defined as: 
 

y x = 𝜎 𝒘Τ𝜑(𝑥)  
 

where 𝜎 is the sigmoidal function 
we have seen before: 
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𝜎 𝑎 =
1

1 + 𝑒−𝑎
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Logistic Regression 

• In logistic regression, the  
goal is to compute a decision  
boundary 𝒘𝑻𝜑(𝑥) = 0. 

• The classification function  
itself is defined as: 

 
 

• We want to separate two  
classes, denoted as 𝐶0 and 𝐶1. 

• We have a set of training inputs: 𝑋 = 𝑥1, … , 𝑥𝑁  

• We also have a set of corresponding outputs: 𝒕 = 𝑡1, … , 𝑡𝑁  

• Each 𝑡𝑛 is either 0 or 1:  
– 0 corresponds to class 𝐶0. 

– 1 corresponds to class 𝐶1. 

y x = 𝜎 𝒘Τ𝜑(𝑥)  
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Logistic Regression 

• Classification function:  
 
 

• We treat the output of  

𝜎 𝒘Τ𝜑(𝑥)  as an estimate 

of probability  p(𝐶1|𝑥). 

 

• Then, p 𝐶0 𝑥 = 1 − p(𝐶1|𝑥). 
 

• When 𝒘𝑻𝜑 𝑥 > 0, p 𝐶1 𝑥 > 0.5, so 𝐶1 is more likely than 𝐶0. 

 

• When 𝒘𝑻𝜑 𝑥 < 0, p 𝐶0 𝑥 < 0.5, so 𝐶0 is more likely than 𝐶1. 

y x = 𝜎 𝒘Τ𝜑(𝑥)  



Finding the Most Likely Solution 

• Our rationale is almost identical to the rationale we used for 
finding the most likely solution for linear regression. 

• Suppose we have a set of training inputs: 𝑋 = 𝑥1, … , 𝑥𝑁  

• We also have a set of corresponding outputs: 𝒕 = 𝑡1, … , 𝑡𝑁  

• We assume that training inputs are independent of each 
other. 

• We assume that outputs are conditionally independent of 
each other, given their inputs and our estimate of 𝒘. 

• Then: 

𝑝 𝒘 𝑋, 𝒕 =
𝑝 𝒕 𝑋,𝒘 ∗ 𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋
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Finding the Most Likely Solution 

𝑝 𝑤 𝑋, 𝒕 =
𝑝 𝒕 𝑋,𝒘 ∗ 𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋
 

 

• We assume that, given 𝑋, all values of w are equally likely. 

• Then, 
𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋
 is a constant that does not depend on w. 

• Therefore, finding the w that maximizes 𝑝 𝒘 𝑋, 𝒕  is the same 
as finding the w that maximizes 𝑝 𝒕 𝑋,𝒘 . 

• 𝑝 𝒕 𝑋,𝒘  is the likelihood of the training data. 

• So, to find the most likely answer w, we must find the value of 
w that maximizes the likelihood of the training data. 
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Probability of  𝑡𝑛  

• We want to find the w that maximizes 𝑝 𝒕  𝑋,𝒘 . 
 

𝑝 𝒕 |𝑋,𝒘 = 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘

𝑛

𝑛=1

 

 

• How can we compute 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘 ? 

• Remember: we assume that y x,𝐰  is an estimate of p 𝐶1  𝑥). 

• Under this assumption, for a given 𝑥𝑛: 
– The probability that  𝑡𝑛 (the correct class for 𝑥𝑛) is 1 is y x,𝐰 . 

– The probability that  𝑡𝑛 (the correct class for 𝑥𝑛) is 0 is {1 − y x,𝐰 }. 
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Probability of  𝑡𝑛  

• To simplify notation, define 𝑦𝑛 = 𝑦(𝑥𝑛, 𝐰). 

• Under this assumption, for a given 𝑥𝑛: 

– 𝑝(𝑡𝑛 = 1 𝑥𝑛, 𝑤 = 𝑦𝑛. 

– 𝑝(𝑡𝑛 = 0 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛). 

• So: 

– If 𝑡𝑛 = 1, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛. 

– If 𝑡𝑛 = 0, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛). 

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds: 

 
𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛

𝑡𝑛 1 − 𝑦𝑛
1−𝑡𝑛  
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Probability of  𝑡𝑛  

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds: 
 

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛  
 

• To make sense of this formula, we just need to verify 
that it is correct when 𝑡𝑛 = 1 and when 𝑡𝑛 = 0. 

• If 𝑡𝑛 = 1, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛. The above formula 
becomes: 

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛  
                       = 𝑦𝑛

1 1 − 𝑦𝑛
1−1 

                       = 𝑦𝑛 1 − 𝑦𝑛
0 = 𝑦𝑛 

 

• So, the formula is verified for the case where 𝑡𝑛 = 1.  
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Probability of  𝑡𝑛  

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds: 
 

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛  
 

• If 𝑡𝑛 = 0, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛). The above 
formula becomes: 

 
𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛

𝑡𝑛 1 − 𝑦𝑛
1−𝑡𝑛  

                       = 𝑦𝑛
0 1 − 𝑦𝑛

1−0 
                       = 1 1 − 𝑦𝑛

1 = (1 − 𝑦𝑛) 
 

• So, the formula is verified for the case where 𝑡𝑛 = 0.  
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Probability of  𝒕 

• We have shown that: 
 

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛  
 

• Therefore: 
 

𝑝 𝒕 |𝑋,𝒘 = 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘

𝑛

𝑛=1

 

 

                                   = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

𝑛

𝑛=1
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Log Likelihood of  𝒕 

𝑝 𝒕 |𝑋,𝒘 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

𝑛

𝑛=1

 

 

• Therefore, the log likelihood ln(𝑝 𝒕 |𝑋,𝒘 ) is: 
 

ln(𝑝 𝒕 |𝑋,𝒘 ) =  ln ( 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛)

𝑛

𝑛=1

⇒ 

 

ln(𝑝 𝒕 |𝑋,𝒘 ) =  𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛 )

𝑛

𝑛=1
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Gradient of the Log Likelihood of  𝒕 

• We want to find the value of w that maximizes 
 

ln(𝑝 𝒕 |𝑋,𝒘 ) =  𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛 )

𝑛

𝑛=1

 

 

• The textbook defines 𝐸 𝒘 = −ln(𝑝 𝒕 |𝑋,𝒘 ). 

• That negative sign is not important for our purposes. It 
just means that to maximize ln(𝑝 𝒕 |𝑋,𝒘 ) we need to 
minimize 𝐸 𝒘 . 

• Thus, we need to find the w such that the gradient 
𝛻𝐸 𝒘  becomes 0. 
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Gradient of the Log Likelihood of  𝒕 

• We will not derive this, but it turns out that: 
 

𝛻𝐸 𝒘 =  𝑦𝑛 − 𝑡𝑛 𝜑𝑛

𝑛

𝑛=1

 

 

• There is no closed-form solution for computing a value 
of w so that 𝛻𝐸 𝒘 = 0. 

• We have two alternatives for minimizing 𝐸 𝒘 . 

– An online (sequential learning) method, where we update w 
every time we get a new training example 𝑥𝑛, 𝑡𝑛 . 

– A batch processing method called iterative reweighted least 
squares. 

 



Sequential Learning 

• We follow the same approach as we did in sequential 
learning for linear regression. 

• We first, somehow, get an initial estimate 𝒘(0). 

– For example, we can initialize 𝒘(0) to random values 
between -1 and 1. 

– You can also initialize 𝒘(0) to be the zero vector (all entries 
equal to zero). That also works, I have verified it in my 
code. 

• Then, we observe training examples, one by one. 

• Every time we observe a new training example, we 
update the estimate. 
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Sequential Learning 

• The nth training example contributes to the overall 
gradient 𝛻𝐸 𝒘  a term 𝛻𝐸𝑛 𝒘  defined as: 
 

𝛻𝐸𝑛 𝒘 = 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 
 

• When we observe the nth training example, we update 

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows: 
 

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 −𝜂 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 

 

• 𝜂 is called the learning rate. It is picked manually. 

• This whole process is called stochastic gradient descent. 
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Sequential Learning - Intuition 

• When we observe the nth training example, we update 

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows: 
 

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 − 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 

 

• What is the intuition behind this update? 

• The gradient 𝛻𝐸𝑛(𝒘) is a vector that points in the 
direction where 𝐸𝑛(𝒘) increases. 

• Therefore, subtracting a very small amount of 𝛻𝐸𝑛 𝒘  
from 𝒘 should make 𝐸𝑛(𝒘) a little bit smaller. 
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Sequential Learning - Intuition 

• When we observe the nth training example, we update 

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows: 
 

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 − 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 

 

• Choosing a good value for 𝜂 is important. 

– If 𝜂 is too small, the minimization may happen too slowly and 
require too many training examples. 

– If 𝜂 is large, the update may overfit the most recent training 
example, and overall w may fluctuate too much from one 
update to the next. 

• Unfortunately, picking a good 𝜂 is more of an art than a 
science, and involves trial-and-error. 23 



Iterative Reweighted Least Squares 

• Remember, we want the value of w that miminizes 
𝐸 𝒘 , which is defined as: 

 

𝐸 𝑤 = − 𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛 )

𝑛

𝑛=1

 

 

• It can be proven that 𝐸 𝒘  has a unique minimum. 

• There is no closed form solution for that minimum. 

• However, there is an iterative method mimimizing 𝐸 𝒘 . 

• This method is called iterative reweighted least squares. 
24 



Iterative Reweighted Least Squares 

• Iterative reweighted least squares is an application of a 
more general optimization method, called Newton-
Raphson. 

• In the Newton-Raphson method, to minimize 𝐸 𝒘  we 
do a sequence of updates on the value of 𝒘, using this 
formula: 

𝒘(𝑛𝑒𝑤) = 𝒘(𝑜𝑙𝑑) −𝑯−1𝛻𝐸 𝒘(𝑜𝑙𝑑)  

 

• In the above formula, 𝑯 is the Hessian matrix, whose 
elements are the second derivatives of 𝐸 𝒘  with 
respect to 𝒘. 
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Iterative Reweighted Least Squares 

• To minimize 𝐸 𝒘  we iteratively update 𝒘, using this formula: 
 

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) −𝑯−1𝛻𝐸 𝒘  
 

• To use the above formula, we must compute matrix 𝑯, which is 
the Hessian matrix.  Its elements are the second derivatives of 
𝐸 𝒘  with respect to 𝒘. 

• We have already seen that  𝛻𝐸 𝒘 =  𝑦𝑛 − 𝑡𝑛 𝜑𝑛
𝑛
𝑛=1 . 

• This can be rewritten as: 𝛻𝐸 𝒘 = 𝚽Τ(𝒚 − 𝒕), where: 
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𝚽 =

𝜑0 𝑥1 , … , 𝜑𝐷 𝑥1
𝜑0 𝑥2 , … , 𝜑𝐷 𝑥2

…
𝜑0 𝑥𝑁 , … , 𝜑𝐷 𝑥𝑁

 𝐭 =

𝑡1
𝑡2
…
𝑡𝑁

 𝐲 =

𝑦1
𝑦2
…
𝑦𝑁

 



Iterative Reweighted Least Squares 

• So, we have: 
𝛻𝐸 𝒘 = 𝚽Τ 𝒚 − 𝒕  

 
𝐻 = 𝛻𝛻𝐸 𝒘 = 𝚽Τ𝑹𝚽 

 

• In the above formula, we have introduced a new symbol 
𝑹, defined as a diagonal matrix as follows: 

– If 𝑖 ≠ 𝑗, then 𝑅𝑖𝑗 = 0, where 𝑅𝑖𝑗 is the value of 𝑹 at row i and 

column j. 

– Every diagonal value 𝑅𝑛𝑛 is defined as 𝑅𝑛𝑛 = 𝑦𝑛(1 − 𝑦𝑛) 
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Iterative Reweighted Least Squares 

• Putting all those formulas together, we get: 
 

𝛻𝐸 𝒘 = 𝚽Τ 𝒚 − 𝒕  
 

𝐻 = 𝛻𝛻𝐸 𝒘 = 𝚽Τ𝑹𝚽 
 

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) − (𝚽Τ𝑹𝚽)−1𝚽Τ 𝒚 − 𝒕  
 

• This is now a closed form solution for how to iteratively 
update 𝒘. 

– You stop the iterative updating when the value of 𝒘 converges, 
and changes little or not at all from one iteration to the next. 

 

 

28 



Logistic Regresssion: Recap 

• Classification function: y x = 𝜎 𝒘Τ𝜑(𝑥)  

– We treat y x  as an estimate of probability  p(𝐶1|𝑥). 

• Error measure: 𝐸 𝒘 = −ln(𝑝 𝒕 |𝑋,𝒘 ) 

• There is no closed form formula for finding the best 𝒘. 

• However, a unique best 𝒘 exists, and can be found using 
iterative reweighted least squares: 

 

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) − 𝚽Τ𝑹𝚽
−1
𝚽Τ 𝒚 − 𝒕  

 

• We can also minimize E(𝒘) using sequential learning: 
 

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 −𝜂 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 29 



Fisher's Linear Discriminant 

• Remember, in linear classification, the decision boundary is 
defined by equation: 
 

𝒘𝑇𝑥 = 0 
 

– The formula above is the simple version, without using basis functions. 

• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙. 

• Geometrically, what does function 𝑦 𝒙  do? 

– 𝑦 𝒙 :ℝ𝑫 → ℝ 

– 𝑦 𝒙  maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line. 

• If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1. 

• If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0. 
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Fisher's Linear Discriminant 

• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙. 

• 𝑦 𝒙  maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line. 
– If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1. 

– If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0. 

• The figure shows an example: 
– Input points 𝒙 are projected  

on a line. 

– If they project onto one side 
of the line, they are classified 
as blue. 

– If they project on the other  
side, they are classified as red. 

• In this particular example, 
some points are misclassified. 
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• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙. 

• 𝑦 𝒙  maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line. 
– If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1. 

– If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0. 

• What 𝒘 is the best solution? 
– Logistic regression provided one 

answer, by minimizing a specific  
error measure:  
 

 𝐸 𝒘 = −ln 𝑝 𝒕 |𝑋, 𝒘  
 

– Fisher's linear discriminant is 
an alternative method, that  
computes a value for 𝒘 using a 
different criterion. 

 

Fisher's Linear Discriminant 
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• Goal in Fisher's Linear Discriminant: find the line projection that 
maximizes the separation of the classes. 

• Key question: how do we measure separation of the classes? 

• One simple (but not very useful) answer:  
maximize the separation of  
the means of the classes. 

  

Fisher's Linear Discriminant 
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• One simple (but not very useful) answer: maximize the separation 
of the means of the classes. 

 𝒎0 =
1

𝑁0
 𝑥𝑛𝑛∈𝐶0

 

 𝒎1 =
1

𝑁1
 𝑥𝑛𝑛∈𝐶1

 
 

• Goal: maximize 𝒘𝑇𝒎1 −𝒘
𝑇𝒎0 

• Same as maximizing   
 𝒘𝑇(𝒎1 −𝒎0) 

• Do you see any problem with 
this goal? 

 

Maximizing Separation of Means 
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• One simple (but not very useful) answer: maximize the separation 
of the means of the classes. 

 𝒎0 =
1

𝑁0
 𝑥𝑛𝑛∈𝐶0

 

 𝒎1 =
1

𝑁1
 𝑥𝑛𝑛∈𝐶1

 
 

• Goal: maximize 𝒘𝑇𝒎1 −𝒘
𝑇𝒎0 

• Same as maximizing   
 𝒘𝑇(𝒎1 −𝒎0) 

• For any 𝒘, replacing 𝒘 by  
1000 ∗ 𝒘, we increase the separation of the means by a factor of 
1000, but classification accuracy stays the same. 

• Maximizing  𝒘𝑇(𝒎1 −𝒎0) does not help improve accuracy. 

 

Maximizing Separation of Means 
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• A second not very useful answer: maximize the separation of the 
means of the classes, subject to 𝒘 = 1. 

• Now we cannot replace 𝒘 by 1000 ∗ 𝒘, because that would 
violate the constraint  that 𝒘 = 1. 

Maximizing Separation of Means 
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• A second not very useful answer: maximize the separation of the 
means of the classes, subject to 𝒘 = 1. 

• The solution according to this criterion is shown on the left figure. 
– Do you see any problems? 

Maximizing Separation of Means 
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• A second not very useful answer: maximize the separation of the 
means of the classes, subject to 𝒘 = 1. 

• The solution according to this criterion is shown on the left figure. 
– The projection on the right figure gives more accurate classification. 

– Our criterion fails to identify that far better solution. 

Maximizing Separation of Means 
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Between Class Variance, 
Within-Class Variance,  

• 𝒘𝑇(𝒎1 −𝒎0) is called the between-class variance. 

– It measures how far (on average) a point from class 𝐶0 is 
from a point in class 𝐶1. 

• We can also define the within-class variance (𝑠𝑘)
2: 

– How far (on average) a point from class 𝐶𝑘  is from another 
point in the same class 𝐶𝑘. 

 

(𝑠𝑘)
2=  𝒘𝑇𝒙𝑛 −𝒘

𝑇𝒎𝑘
2

𝑛∈𝐶𝑘
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Fisher Criterion 

• Fisher criterion: maximize the ratio 𝐽(𝒘) of between-class 
variance over within-class variance. 

 

𝐽(𝒘) =
𝒘𝑇𝒎1 −𝒘

𝑇𝒎0
2

(𝑠0)
2+(𝑠1)

2
 

 

• Intuition: we want, at the same time, a projection where:  

– Between-class variance is large (inputs belonging to different 
classes should map to points that are far from each other). 

– Within-class variance is small (inputs belonging to the same 
class should map to points that are close to each other). 
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Maximizing 𝐽(𝒘) 

• We will use the following definitions: 

– 𝑺𝐵 is the between-class covariance matrix. 
 

𝑺𝐵 = 𝒎1 −𝒎0 𝒎1 −𝒎0
𝑇 

 

– 𝑺𝑊 is the total within-class covariance matrix. 
 

𝑺𝑊 =  𝒙𝑛 −𝒎0 𝒙𝑛 −𝒎0
𝑇

𝑛∈𝐶0

+  𝒙𝑛 −𝒎1 𝒙𝑛 −𝒎1
𝑇

𝑛∈𝐶1

 

 

– Then:    𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘
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Maximizing 𝐽(𝒘) 

• We want to find the 𝒘 that maximizes:    
 

 𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘
 

 

• Differentiating  𝐽(𝒘) with respect to 𝒘, and solving equation 
𝛻𝐽 𝒘 = 𝟎, we get this solution: 
 

𝒘 ∝ 𝑺𝑊
−1 𝒎1 −𝒎0  

 

• The symbol ∝ means that 𝒘 is proportional to 𝑺𝑊
−1 𝒎1 −𝒎0 . 

• Therefore, 𝒘 = 𝑺𝑊
−1 𝒎1 −𝒎0  is a solution. 

• For any real number 𝑐, 𝒘 = 𝑐 𝑺𝑊
−1 𝒎1 −𝒎0  is also a solution.  
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