
Linear Classification

CSE 4309 – Machine Learning
Vassilis Athitsos

Computer Science and Engineering Department
University of Texas at Arlington

1

Example of Linear
Classification

• Red points: patterns
belonging to class C1.

• Blue points: patterns
belonging to class C2.

• Goal: find a linear decision
boundary separating C1
from C2.

• Points on one side of the line will be classified as belonging to
C1, points on the other side will be classified as C2.

• The red line is one example of such a decision boundary.
– It misclassified a few patterns.

• The green line is another example. 2

Linear
Classification

• Mathematically, assuming
input patterns are
D-dimensional vectors:
– We are looking for a decision

boundary in the form of a
(D-1)-dimensional hyperplane
separating the two classes.

– Points on one side of the
hyperplane will be classified
as belonging to C1, points on the
other side will be classified as C2.

• If inputs are 2-dimensional vectors, the decision boundary is a line.

• If inputs are 3-dimensional vectors, the decision boundary is a 2-
dimensional surface.

3

Linear
Classification

• Input space: ℝ𝐷

• The decision boundary is
is a (D-1)-dimensional
hyperplane defined
using this equation:

• In the equation above: 𝑤0 and c are real numbers, w and x are
column vectors:

4

𝐰 =

𝑤1
…
𝑤𝐷

 𝐱 =

𝑥1
…
𝑥𝐷

𝒘𝑻𝒙 + 𝑤0 = c

Linear
Classification

• In order to be able to use
vector and matrix notation,
we extend vector 𝒘 and 𝒙,
as follows:

• Then, the decision boundary is defined by equation:

 𝒘𝑻𝒙 = c

5

𝒘 =

𝑤0
𝑤1…
𝑤𝐷

 𝒙 =

1
𝑥1…
𝑥𝐷

Linear
Classification

• Furthermore, we can use
basis functions 𝜑𝑖 𝑥 , which
we pick manually.

• As before, 𝜑0 𝑥 = 1.

• Then, the decision boundary is defined by equation:

 𝒘𝑻𝜑(𝑥) = c

6

𝒘 =

𝑤0
𝑤1…
𝑤𝐷

 𝜑(𝑥) =

1
𝜑1(𝑥)…
𝜑𝐷(𝑥)

Logistic Regression

• Despite the word "regression"
in its name, logistic regression
is actually a linear
classification method.

• In logistic regression, the goal
is to compute a decision
boundary 𝒘𝑻𝜑(𝑥) = 0.

• The classification function
itself is defined as:

y x = 𝜎 𝒘Τ𝜑(𝑥)

where 𝜎 is the sigmoidal function
we have seen before:

7

𝜎 𝑎 =
1

1 + 𝑒−𝑎

8

Logistic Regression

• In logistic regression, the
goal is to compute a decision
boundary 𝒘𝑻𝜑(𝑥) = 0.

• The classification function
itself is defined as:

• We want to separate two
classes, denoted as 𝐶0 and 𝐶1.

• We have a set of training inputs: 𝑋 = 𝑥1, … , 𝑥𝑁

• We also have a set of corresponding outputs: 𝒕 = 𝑡1, … , 𝑡𝑁

• Each 𝑡𝑛 is either 0 or 1:
– 0 corresponds to class 𝐶0.

– 1 corresponds to class 𝐶1.

y x = 𝜎 𝒘Τ𝜑(𝑥)

9

Logistic Regression

• Classification function:

• We treat the output of

𝜎 𝒘Τ𝜑(𝑥) as an estimate

of probability p(𝐶1|𝑥).

• Then, p 𝐶0 𝑥 = 1 − p(𝐶1|𝑥).

• When 𝒘𝑻𝜑 𝑥 > 0, p 𝐶1 𝑥 > 0.5, so 𝐶1 is more likely than 𝐶0.

• When 𝒘𝑻𝜑 𝑥 < 0, p 𝐶0 𝑥 < 0.5, so 𝐶0 is more likely than 𝐶1.

y x = 𝜎 𝒘Τ𝜑(𝑥)

Finding the Most Likely Solution

• Our rationale is almost identical to the rationale we used for
finding the most likely solution for linear regression.

• Suppose we have a set of training inputs: 𝑋 = 𝑥1, … , 𝑥𝑁

• We also have a set of corresponding outputs: 𝒕 = 𝑡1, … , 𝑡𝑁

• We assume that training inputs are independent of each
other.

• We assume that outputs are conditionally independent of
each other, given their inputs and our estimate of 𝒘.

• Then:

𝑝 𝒘 𝑋, 𝒕 =
𝑝 𝒕 𝑋,𝒘 ∗ 𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋

 10

Finding the Most Likely Solution

𝑝 𝑤 𝑋, 𝒕 =
𝑝 𝒕 𝑋,𝒘 ∗ 𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋

• We assume that, given 𝑋, all values of w are equally likely.

• Then,
𝑝(𝒘|𝑋)

𝑝 𝒕 𝑋
 is a constant that does not depend on w.

• Therefore, finding the w that maximizes 𝑝 𝒘 𝑋, 𝒕 is the same
as finding the w that maximizes 𝑝 𝒕 𝑋,𝒘 .

• 𝑝 𝒕 𝑋,𝒘 is the likelihood of the training data.

• So, to find the most likely answer w, we must find the value of
w that maximizes the likelihood of the training data.

11

Probability of 𝑡𝑛

• We want to find the w that maximizes 𝑝 𝒕 𝑋,𝒘 .

𝑝 𝒕 |𝑋,𝒘 = 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘

𝑛

𝑛=1

• How can we compute 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘 ?

• Remember: we assume that y x,𝐰 is an estimate of p 𝐶1 𝑥).

• Under this assumption, for a given 𝑥𝑛:
– The probability that 𝑡𝑛 (the correct class for 𝑥𝑛) is 1 is y x,𝐰 .

– The probability that 𝑡𝑛 (the correct class for 𝑥𝑛) is 0 is {1 − y x,𝐰 }.

12

Probability of 𝑡𝑛

• To simplify notation, define 𝑦𝑛 = 𝑦(𝑥𝑛, 𝐰).

• Under this assumption, for a given 𝑥𝑛:

– 𝑝(𝑡𝑛 = 1 𝑥𝑛, 𝑤 = 𝑦𝑛.

– 𝑝(𝑡𝑛 = 0 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛).

• So:

– If 𝑡𝑛 = 1, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛.

– If 𝑡𝑛 = 0, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛).

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛

𝑡𝑛 1 − 𝑦𝑛
1−𝑡𝑛

13

14

Probability of 𝑡𝑛

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

• To make sense of this formula, we just need to verify
that it is correct when 𝑡𝑛 = 1 and when 𝑡𝑛 = 0.

• If 𝑡𝑛 = 1, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛. The above formula
becomes:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛
 = 𝑦𝑛

1 1 − 𝑦𝑛
1−1

 = 𝑦𝑛 1 − 𝑦𝑛
0 = 𝑦𝑛

• So, the formula is verified for the case where 𝑡𝑛 = 1.

15

Probability of 𝑡𝑛

• Regardless of whether 𝑡𝑛 is 1 or 0, the following holds:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

• If 𝑡𝑛 = 0, then 𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = (1 − 𝑦𝑛). The above
formula becomes:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛

𝑡𝑛 1 − 𝑦𝑛
1−𝑡𝑛

 = 𝑦𝑛
0 1 − 𝑦𝑛

1−0
 = 1 1 − 𝑦𝑛

1 = (1 − 𝑦𝑛)

• So, the formula is verified for the case where 𝑡𝑛 = 0.

16

Probability of 𝒕

• We have shown that:

𝑝(𝑡𝑛 𝑥𝑛, 𝑤 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

• Therefore:

𝑝 𝒕 |𝑋,𝒘 = 𝑝 𝑡𝑛 |𝑥𝑛, 𝒘

𝑛

𝑛=1

 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

𝑛

𝑛=1

17

Log Likelihood of 𝒕

𝑝 𝒕 |𝑋,𝒘 = 𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

𝑛

𝑛=1

• Therefore, the log likelihood ln(𝑝 𝒕 |𝑋,𝒘) is:

ln(𝑝 𝒕 |𝑋,𝒘) = ln (𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛)

𝑛

𝑛=1

⇒

ln(𝑝 𝒕 |𝑋,𝒘) = 𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛)

𝑛

𝑛=1

18

Gradient of the Log Likelihood of 𝒕

• We want to find the value of w that maximizes

ln(𝑝 𝒕 |𝑋,𝒘) = 𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛)

𝑛

𝑛=1

• The textbook defines 𝐸 𝒘 = −ln(𝑝 𝒕 |𝑋,𝒘).

• That negative sign is not important for our purposes. It
just means that to maximize ln(𝑝 𝒕 |𝑋,𝒘) we need to
minimize 𝐸 𝒘 .

• Thus, we need to find the w such that the gradient
𝛻𝐸 𝒘 becomes 0.

19

Gradient of the Log Likelihood of 𝒕

• We will not derive this, but it turns out that:

𝛻𝐸 𝒘 = 𝑦𝑛 − 𝑡𝑛 𝜑𝑛

𝑛

𝑛=1

• There is no closed-form solution for computing a value
of w so that 𝛻𝐸 𝒘 = 0.

• We have two alternatives for minimizing 𝐸 𝒘 .

– An online (sequential learning) method, where we update w
every time we get a new training example 𝑥𝑛, 𝑡𝑛 .

– A batch processing method called iterative reweighted least
squares.

Sequential Learning

• We follow the same approach as we did in sequential
learning for linear regression.

• We first, somehow, get an initial estimate 𝒘(0).

– For example, we can initialize 𝒘(0) to random values
between -1 and 1.

– You can also initialize 𝒘(0) to be the zero vector (all entries
equal to zero). That also works, I have verified it in my
code.

• Then, we observe training examples, one by one.

• Every time we observe a new training example, we
update the estimate.

20

Sequential Learning

• The nth training example contributes to the overall
gradient 𝛻𝐸 𝒘 a term 𝛻𝐸𝑛 𝒘 defined as:

𝛻𝐸𝑛 𝒘 = 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛)

• When we observe the nth training example, we update

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows:

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 −𝜂 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛)

• 𝜂 is called the learning rate. It is picked manually.

• This whole process is called stochastic gradient descent.

21

Sequential Learning - Intuition

• When we observe the nth training example, we update

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows:

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 − 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛)

• What is the intuition behind this update?

• The gradient 𝛻𝐸𝑛(𝒘) is a vector that points in the
direction where 𝐸𝑛(𝒘) increases.

• Therefore, subtracting a very small amount of 𝛻𝐸𝑛 𝒘
from 𝒘 should make 𝐸𝑛(𝒘) a little bit smaller.

22

Sequential Learning - Intuition

• When we observe the nth training example, we update

the estimate from 𝑤(𝜏) to 𝑤(𝜏+1) as follows:

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 − 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛)

• Choosing a good value for 𝜂 is important.

– If 𝜂 is too small, the minimization may happen too slowly and
require too many training examples.

– If 𝜂 is large, the update may overfit the most recent training
example, and overall w may fluctuate too much from one
update to the next.

• Unfortunately, picking a good 𝜂 is more of an art than a
science, and involves trial-and-error. 23

Iterative Reweighted Least Squares

• Remember, we want the value of w that miminizes
𝐸 𝒘 , which is defined as:

𝐸 𝑤 = − 𝑡𝑛 ln 𝑦𝑛 + (1 − 𝑡𝑛) ln 1 − 𝑦𝑛)

𝑛

𝑛=1

• It can be proven that 𝐸 𝒘 has a unique minimum.

• There is no closed form solution for that minimum.

• However, there is an iterative method mimimizing 𝐸 𝒘 .

• This method is called iterative reweighted least squares.
24

Iterative Reweighted Least Squares

• Iterative reweighted least squares is an application of a
more general optimization method, called Newton-
Raphson.

• In the Newton-Raphson method, to minimize 𝐸 𝒘 we
do a sequence of updates on the value of 𝒘, using this
formula:

𝒘(𝑛𝑒𝑤) = 𝒘(𝑜𝑙𝑑) −𝑯−1𝛻𝐸 𝒘(𝑜𝑙𝑑)

• In the above formula, 𝑯 is the Hessian matrix, whose
elements are the second derivatives of 𝐸 𝒘 with
respect to 𝒘.

25

Iterative Reweighted Least Squares

• To minimize 𝐸 𝒘 we iteratively update 𝒘, using this formula:

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) −𝑯−1𝛻𝐸 𝒘

• To use the above formula, we must compute matrix 𝑯, which is
the Hessian matrix. Its elements are the second derivatives of
𝐸 𝒘 with respect to 𝒘.

• We have already seen that 𝛻𝐸 𝒘 = 𝑦𝑛 − 𝑡𝑛 𝜑𝑛
𝑛
𝑛=1 .

• This can be rewritten as: 𝛻𝐸 𝒘 = 𝚽Τ(𝒚 − 𝒕), where:

26

𝚽 =

𝜑0 𝑥1 , … , 𝜑𝐷 𝑥1
𝜑0 𝑥2 , … , 𝜑𝐷 𝑥2

…
𝜑0 𝑥𝑁 , … , 𝜑𝐷 𝑥𝑁

 𝐭 =

𝑡1
𝑡2
…
𝑡𝑁

 𝐲 =

𝑦1
𝑦2
…
𝑦𝑁

Iterative Reweighted Least Squares

• So, we have:
𝛻𝐸 𝒘 = 𝚽Τ 𝒚 − 𝒕

𝐻 = 𝛻𝛻𝐸 𝒘 = 𝚽Τ𝑹𝚽

• In the above formula, we have introduced a new symbol
𝑹, defined as a diagonal matrix as follows:

– If 𝑖 ≠ 𝑗, then 𝑅𝑖𝑗 = 0, where 𝑅𝑖𝑗 is the value of 𝑹 at row i and

column j.

– Every diagonal value 𝑅𝑛𝑛 is defined as 𝑅𝑛𝑛 = 𝑦𝑛(1 − 𝑦𝑛)

27

Iterative Reweighted Least Squares

• Putting all those formulas together, we get:

𝛻𝐸 𝒘 = 𝚽Τ 𝒚 − 𝒕

𝐻 = 𝛻𝛻𝐸 𝒘 = 𝚽Τ𝑹𝚽

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) − (𝚽Τ𝑹𝚽)−1𝚽Τ 𝒚 − 𝒕

• This is now a closed form solution for how to iteratively
update 𝒘.

– You stop the iterative updating when the value of 𝒘 converges,
and changes little or not at all from one iteration to the next.

28

Logistic Regresssion: Recap

• Classification function: y x = 𝜎 𝒘Τ𝜑(𝑥)

– We treat y x as an estimate of probability p(𝐶1|𝑥).

• Error measure: 𝐸 𝒘 = −ln(𝑝 𝒕 |𝑋,𝒘)

• There is no closed form formula for finding the best 𝒘.

• However, a unique best 𝒘 exists, and can be found using
iterative reweighted least squares:

𝑤(𝑛𝑒𝑤) = 𝑤(𝑜𝑙𝑑) − 𝚽Τ𝑹𝚽
−1
𝚽Τ 𝒚 − 𝒕

• We can also minimize E(𝒘) using sequential learning:

𝒘(𝜏+1) = 𝒘(𝜏) − 𝜂𝛻𝐸𝑛 𝒘 = 𝒘
𝜏 −𝜂 𝑦𝑛 − 𝑡𝑛 𝜑(𝑥𝑛) 29

Fisher's Linear Discriminant

• Remember, in linear classification, the decision boundary is
defined by equation:

𝒘𝑇𝑥 = 0

– The formula above is the simple version, without using basis functions.

• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙.

• Geometrically, what does function 𝑦 𝒙 do?

– 𝑦 𝒙 :ℝ𝑫 → ℝ

– 𝑦 𝒙 maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line.

• If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1.

• If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0.

30

Fisher's Linear Discriminant

• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙.

• 𝑦 𝒙 maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line.
– If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1.

– If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0.

• The figure shows an example:
– Input points 𝒙 are projected

on a line.

– If they project onto one side
of the line, they are classified
as blue.

– If they project on the other
side, they are classified as red.

• In this particular example,
some points are misclassified.

31

• Let's define function 𝑦 𝒙 = 𝒘𝑇𝒙.

• 𝑦 𝒙 maps (projects) 𝐷-dimensional vectors 𝒙 to points on a line.
– If 𝑦 𝒙 > 𝟎 then 𝒙 is classified as belonging to class 𝐶1.

– If 𝑦 𝒙 < 𝟎 then 𝒙 is classified as belonging to class 𝐶0.

• What 𝒘 is the best solution?
– Logistic regression provided one

answer, by minimizing a specific
error measure:

 𝐸 𝒘 = −ln 𝑝 𝒕 |𝑋, 𝒘

– Fisher's linear discriminant is
an alternative method, that
computes a value for 𝒘 using a
different criterion.

Fisher's Linear Discriminant

32

• Goal in Fisher's Linear Discriminant: find the line projection that
maximizes the separation of the classes.

• Key question: how do we measure separation of the classes?

• One simple (but not very useful) answer:
maximize the separation of
the means of the classes.

Fisher's Linear Discriminant

33

• One simple (but not very useful) answer: maximize the separation
of the means of the classes.

 𝒎0 =
1

𝑁0
 𝑥𝑛𝑛∈𝐶0

 𝒎1 =
1

𝑁1
 𝑥𝑛𝑛∈𝐶1

• Goal: maximize 𝒘𝑇𝒎1 −𝒘
𝑇𝒎0

• Same as maximizing
 𝒘𝑇(𝒎1 −𝒎0)

• Do you see any problem with
this goal?

Maximizing Separation of Means

34

• One simple (but not very useful) answer: maximize the separation
of the means of the classes.

 𝒎0 =
1

𝑁0
 𝑥𝑛𝑛∈𝐶0

 𝒎1 =
1

𝑁1
 𝑥𝑛𝑛∈𝐶1

• Goal: maximize 𝒘𝑇𝒎1 −𝒘
𝑇𝒎0

• Same as maximizing
 𝒘𝑇(𝒎1 −𝒎0)

• For any 𝒘, replacing 𝒘 by
1000 ∗ 𝒘, we increase the separation of the means by a factor of
1000, but classification accuracy stays the same.

• Maximizing 𝒘𝑇(𝒎1 −𝒎0) does not help improve accuracy.

Maximizing Separation of Means

35

• A second not very useful answer: maximize the separation of the
means of the classes, subject to 𝒘 = 1.

• Now we cannot replace 𝒘 by 1000 ∗ 𝒘, because that would
violate the constraint that 𝒘 = 1.

Maximizing Separation of Means

36

• A second not very useful answer: maximize the separation of the
means of the classes, subject to 𝒘 = 1.

• The solution according to this criterion is shown on the left figure.
– Do you see any problems?

Maximizing Separation of Means

37

• A second not very useful answer: maximize the separation of the
means of the classes, subject to 𝒘 = 1.

• The solution according to this criterion is shown on the left figure.
– The projection on the right figure gives more accurate classification.

– Our criterion fails to identify that far better solution.

Maximizing Separation of Means

38

Between Class Variance,
Within-Class Variance,

• 𝒘𝑇(𝒎1 −𝒎0) is called the between-class variance.

– It measures how far (on average) a point from class 𝐶0 is
from a point in class 𝐶1.

• We can also define the within-class variance (𝑠𝑘)
2:

– How far (on average) a point from class 𝐶𝑘 is from another
point in the same class 𝐶𝑘.

(𝑠𝑘)
2= 𝒘𝑇𝒙𝑛 −𝒘

𝑇𝒎𝑘
2

𝑛∈𝐶𝑘

39

Fisher Criterion

• Fisher criterion: maximize the ratio 𝐽(𝒘) of between-class
variance over within-class variance.

𝐽(𝒘) =
𝒘𝑇𝒎1 −𝒘

𝑇𝒎0
2

(𝑠0)
2+(𝑠1)

2

• Intuition: we want, at the same time, a projection where:

– Between-class variance is large (inputs belonging to different
classes should map to points that are far from each other).

– Within-class variance is small (inputs belonging to the same
class should map to points that are close to each other).

40

Maximizing 𝐽(𝒘)

• We will use the following definitions:

– 𝑺𝐵 is the between-class covariance matrix.

𝑺𝐵 = 𝒎1 −𝒎0 𝒎1 −𝒎0
𝑇

– 𝑺𝑊 is the total within-class covariance matrix.

𝑺𝑊 = 𝒙𝑛 −𝒎0 𝒙𝑛 −𝒎0
𝑇

𝑛∈𝐶0

+ 𝒙𝑛 −𝒎1 𝒙𝑛 −𝒎1
𝑇

𝑛∈𝐶1

– Then: 𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘

41

Maximizing 𝐽(𝒘)

• We want to find the 𝒘 that maximizes:

 𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘

• Differentiating 𝐽(𝒘) with respect to 𝒘, and solving equation
𝛻𝐽 𝒘 = 𝟎, we get this solution:

𝒘 ∝ 𝑺𝑊
−1 𝒎1 −𝒎0

• The symbol ∝ means that 𝒘 is proportional to 𝑺𝑊
−1 𝒎1 −𝒎0 .

• Therefore, 𝒘 = 𝑺𝑊
−1 𝒎1 −𝒎0 is a solution.

• For any real number 𝑐, 𝒘 = 𝑐 𝑺𝑊
−1 𝒎1 −𝒎0 is also a solution.

42

