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Example of Linear
Classification

Red points: patterns
belonging to class C,.

Blue points: patterns
belonging to class C,.

Goal: find a linear decision
boundary separating C, | | | | | |
from CZ' -4 -2 0 2 4 6 8
Points on one side of the line will be classified as belonging to

C,, points on the other side will be classified as C,.

* The red line is one example of such a decision boundary.

— It misclassified a few patterns.

 The green line is another example.



Linear
Classification

 Mathematically, assuming
input patterns are
D-dimensional vectors:

— We are looking for a decision o
boundary in the form of a 67 %
(D-1)-dimensional hyperplane ©
separating the two classes. —87

— Points on one side of the -4 =2 0 2 4 6 8

hyperplane will be classified
as belonging to C,, points on the
other side will be classified as C,.

e Ifinputs are 2-dimensional vectors, the decision boundary is a line.

* If inputs are 3-dimensional vectors, the decision boundary is a 2-
dimensional surface.



Linear
Classification

* Input space: R”

* The decision boundary is x o

is a (D-1)-dimensional |
hyperplane defined o

: . . 6} ok
using this equation: o 9P

WTx+W0=C

4 2 0 2 4 6 8
* Inthe equation above: wjy and c are real numbers, w and x are
column vectors:

"Wy X1

XD



Linear
Classification

 |n order to be able to use

vector and matrix notation, x 0@0

we extend vector w and x, 4} ©

as follows: o

-6} 1
. o S
Wo 1 A
— | _ . .
W = 1 x = |*1 -4 =2 0 2 8

* Then, the decision boundary is defined by equation:

wlix =c



Linear
Classification

 Furthermore, we can use

basis functions ¢;(x), which

we pick manually.
* As before, @y(x) = 1.

* Then, the decision boundary is defined by equation:

wlp(x) =c

1

Wil p(x) = |91(%)

Wp pp(x).




Logistic Regression

1+

* Despite the word "regression” |
in its name, logistic regression ;|
is actually a linear o7
classification method.

* In logistic regression, the goal ® el

is to compute a decision

boundary wlg(x) = 0.
* The classification function T S S

itself is defined as: 2

y(x) = o(wlo(x))
1

where ¢ is the sigmoidal function o(la) =

we have seen before: 1+e @



Logistic Regression

In logistic regression, the 1
goal is to compute a decision )
boundary wl¢(x) = 0.

The classification function _osp
itself is defined as: s
y() = a(wie(x)) )
We want to separate two
classes, denotedas Cyand C;.  © @ =& +« 2 o z « s & ©

a

We have a set of training inputs: X = {x{, ..., xy}
We also have a set of corresponding outputs: t = {tq, ..., ty}

Each t,, is either O or 1:

— 0 corresponds to class Cy.
— 1 corresponds to class Cj.



Logistic Regression

Classification function: 0o

Y(X) — O'(WTQD(X)) 0.7}
We treat the output of gug-
o(wTp(x)) as an estimate

0.3F

of probability p(C;|x).

Then’ p(Colx) — 1 _ p(Cllx). -10 -8 -6 -4 =2 |:|. 2 4 G 8 “I.EI'

a

When wlp(x) > 0, p(C{|x) > 0.5, so Cy is more likely than Cj.

When wlo(x) < 0, p(Cylx) < 0.5, so Cy is more likely than C;.



Finding the Most Likely Solution

Our rationale is almost identical to the rationale we used for
finding the most likely solution for linear regression.

Suppose we have a set of training inputs: X = {xq, ..., xy}
We also have a set of corresponding outputs: t = {tq, ..., ty}

We assume that training inputs are independent of each
other.

We assume that outputs are conditionally independent of
each other, given their inputs and our estimate of w.

Then:
p(t|X,w) = p(w|X)

p(t|X)

p(w|X,t) =



Finding the Most Likely Solution

p(t|X,w) * p(w|X)
p(t|X)

We assume that, given X, all values of w are equally likely.
p(w|X)

p(t|X)
Therefore, finding the w that maximizes p(w|X, t) is the same
as finding the w that maximizes p(t| X, w).

p(t|X,w) is the likelihood of the training data.

So, to find the most likely answer w, we must find the value of
w that maximizes the likelihood of the training data.

p(wlX,t) =

Then, is a constant that does not depend on w.



Probability of t,

We want to find the w that maximizes p(t| X, w).
n
p(e1X,w) = | ot 1t w)
n=1

How can we compute p(t,, |x,,, w)?
Remember: we assume that y(x, w) is an estimate of p(C; | x).

Under this assumption, for a given x,;:
— The probability that t,, (the correct class for x,,) is 1 is y(x, w).
— The probability that t, (the correct class for x,,) is 0is {1 — y(x,w)}.



Probability of t,

To simplify notation, define y,, = y(x,,, w).

Under this assumption, for a given x,,:

— p(tn = 1lxp, w) = yp.

— p(ty = Olxp, w) = (1= yn).

So:

— Ift,, = 1, then p(t,|x,, w) = y,.

— Ift,, = 0, then p(t,|x,, w) = (1 — y,).

Regardless of whether t,, is 1 or O, the following holds:

P(tnlXn,w) = ()" (1 — y,)' 7



Probability of t,

Regardless of whether t,, is 1 or O, the following holds:
p(tnlxn' W) = (yn)tn(l o Yn)l_tn

To make sense of this formula, we just need to verify
that it is correct when t,, = 1 and when t,, = 0.

Ift,, = 1, then p(t,|x,, w) = y,. The above formula
becomes:

p(tnlxn, w) = ()" (1 — )t~
) (A =yt

V(1 —)° =,

So, the formula is verified for the case where t,, = 1.



Probability of t,

* Regardless of whether t,, is 1 or O, the following holds:
p(tnlxn' W) = (yn)tn(l o Yn)l_tn

e Ift,, =0, thenp(t,|x,,w) = (1—1y,). The above
formula becomes:

P(tnlxn, w) = () (1 — yp)t =
= (y)° (1 — y)'7°
=11 -y)' =1 - )

* So, the formula is verified for the case where t,, = 0.



Probability of t

e We have shown that:
p(tnlxn' W) = (yn)tn(l — Yn)l_tn

e Therefore:

n
p(e1Xw) = | [ty 1nw)
n=1

n

= | [tomma -yt

n=1



Log Likelihood of t

n

p(e1X,w) = | [ -yt

n=1
* Therefore, the log likelihood In(p(t | X, w)) is:

n

In(p(e X, W) = > [In(Gp)*n(1 = y) ') =
n=1

n

In(p(¢ [X,w)) = ) [taIn(y) + (1 = ) In(1 = y,))]

n=1



Gradient of the Log Likelihood of t

e We want to find the value of w that maximizes

n

In(p(t |X,w)) = z [t In(y,) + (1 —t,) In(1 — y,))]

n=1

* The textbook defines E(w) = —In(p(t | X, w)).

* That negative sign is not important for our purposes. It
just means that to maximize In(p(t | X, w)) we need to
minimize E(w).

* Thus, we need to find the w such that the gradient
VE(w) becomes O.



Gradient of the Log Likelihood of t

 We will not derive this, but it turns out that:

n

VE(W) — z [(Yn - tn)(pn]

n=1

* There is no closed-form solution for computing a value
of w so that VE(w) = 0.

* We have two alternatives for minimizing E (w).

— An online (sequential learning) method, where we update w
every time we get a new training example (x,,, t,,).

— A batch processing method called iterative reweighted least
squares.



Sequential Learning

We follow the same approach as we did in sequential
learning for linear regression.

We first, somehow, get an initial estimate w(0),

— For example, we can initialize w(®) to random values
between -1 and 1.

— You can also initialize w9 to be the zero vector (all entries
equal to zero). That also works, | have verified it in my
code.

Then, we observe training examples, one by one.

Every time we observe a new training example, we
update the estimate.



Sequential Learning

The nt" training example contributes to the overall
gradient VE(w) a term VE,,(w) defined as:

VEn(W) — (yn — tn)(p(xn)

When we observe the nth training example, we update
the estimate from w(® to w(**D as follows:

wt*D) = w(®) — nVEn(W) — W(T) _U(Yn o tn)(P(xn)

n is called the learning rate. It is picked manually.
This whole process is called stochastic gradient descent.



Sequential Learning - Intuition

When we observe the nt" training example, we update
the estimate from w(® to w(*+D 3s follows:

w1 = w(D — nVEn(W) — W(T) _(Yn o tn)(p(xn)

What is the intuition behind this update?

The gradient VE, (w) is a vector that points in the
direction where E,, (W) increases.

Therefore, subtracting a very small amount of VE,,(w)
from w should make E,,(w) a little bit smaller.



Sequential Learning - Intuition

When we observe the nt" training example, we update
the estimate from w(® to w(*+D 3s follows:

w1 = w(D — nVEn(W) — W(T) _(Yn o tn)(p(xn)

Choosing a good value for n is important.

— If n is too small, the minimization may happen too slowly and
require too many training examples.

— If nis large, the update may overfit the most recent training
example, and overall w may fluctuate too much from one
update to the next.

Unfortunately, picking a good n is more of an art than a
science, and involves trial-and-error.



Iterative Reweighted Least Squares

Remember, we want the value of w that miminizes
E (w), which is defined as:

n

Ew) == ) [taInG) + (1= t) In(1 = y))]

n=1

It can be proven that E(w) has a unique minimum.
There is no closed form solution for that minimum.
However, there is an iterative method mimimizing E(w).
This method is called iterative reweighted least squares.



Iterative Reweighted Least Squares

* lIterative reweighted least squares is an application of a
more general optimization method, called Newton-
Raphson.

* In the Newton-Raphson method, to minimize E(w) we
do a sequence of updates on the value of w, using this
formula:

W(new) — W(old) — H1 VE(W(old))

* |n the above formula, H is the Hessian matrix, whose
elements are the second derivatives of E (w) with
respect to w.



Iterative Reweighted Least Squares

To minimize E (w) we iteratively update w, using this formula:

W(new) — W(old) _ H_1\7E(W)

To use the above formula, we must compute matrix H, which is
the Hessian matrix. Its elements are the second derivatives of
E (w) with respect to w.

We have already seen that VE(w) = Y _,[(y, — t,,) @41
This can be rewritten as: VE(w) = ®T(y — t), where:

CPo(x1), s p (1) (1] (V1]
d = ®o(x2), ..., @p(xz) t = t2 y = y2
Po(xy), «or, @p(xy) IN ] YN



Iterative Reweighted Least Squares

 So, we have:
VEw) =@ (y —t)

H=VVE(w) = ®'RD

* |In the above formula, we have introduced a new symbol
R, defined as a diagonal matrix as follows:

— If i # j, then R;; = 0, where R;; is the value of R at row i and
column j.

— Every diagonal value R,,,, is defined as R,,,, = y,,(1 — v,,)



Iterative Reweighted Least Squares

e Putting all those formulas together, we get:
VEw) =@ (y —t)
H=VVE(w) = d'RD

W(new) — W(Old) _ ((I)TRq))—lq)T(y _ t)

* This is now a closed form solution for how to iteratively
update w.

— You stop the iterative updating when the value of w converges,
and changes little or not at all from one iteration to the next.



Logistic Regresssion: Recap

Classification function: y(x) = a(wT¢(x))

— We treat y(x) as an estimate of probability p(C;|x).

Error measure: E(w) = —In(p(t |X,w))

There is no closed form formula for finding the best w.

However, a unique best w exists, and can be found using
iterative reweighted least squares:

W(new) — W(Old) _ ((DTRq))_l(DT(y _ t)

We can also minimize E(w) using sequential learning:

wTtD) = w(®) — nVEn(W) — W(T) _n(Yn — tn)ga(xn)



Fisher's Linear Discriminant

Remember, in linear classification, the decision boundary is
defined by equation:

T

wix=20

— The formula above is the simple version, without using basis functions.
Let's define function y(x) = w'x.

Geometrically, what does function y(x) do?
— y(x):RP > R
— y(x) maps (projects) D-dimensional vectors x to points on a line.

If y(x) > 0 then x is classified as belonging to class C;.
If y(x) < 0 then x is classified as belonging to class Cj.



Fisher's Linear Discriminant

e Let's define function y(x) = w'x.

* y(x) maps (projects) D-dimensional vectors x to points on a line.
— If y(x) > 0 then x is classified as belonging to class Cj;.
— If y(x) < 0 then x is classified as belonging to class C.

* The figure shows an example:

4t .. .
— Input points x are projected :‘.-,.Jr., Lo
on a line. , L o
— If they project onto one side “ -*:1
of the line, they are classified S~ v
as blue. O .',"
. L/
— If they project on the other ",’
side, they are classified as red. 27 '..
. . §
* In this particular example, , , SN
) 2 6

some points are misclassified.



Fisher's Linear Discriminant

e Let's define function y(x) = w'x.

* y(x) maps (projects) D-dimensional vectors x to points on a line.
— If y(x) > 0 then x is classified as belonging to class Cj;.
— If y(x) < 0 then x is classified as belonging to class C.

e What wis the best solution?

4t -
— Logistic regression provided one :‘;'-.,+~‘ ..
answer, by minimizing a specific , \ L o AT P
error measure: % R
s’ ’-‘...-"
? :
E(w) = —In(p(t X, w)) ‘N 2
— Fisher's linear discriminant is Sl ?t
an alternative method, that
computes a value for w using a -
-2 2 6

different criterion.



Fisher's Linear Discriminant

Goal in Fisher's Linear Discriminant: find the line projection that
maximizes the separation of the classes.

Key question: how do we measure separation of the classes?
One simple (but not very useful) answer:

maximize the separation of A
the means of the classes. P R




Maximizing Separation of Means

* One simple (but not very useful) answer: maximize the separation
of the means of the classes.

m — 1 2 x 4- e % | .
0 NO nECO n \ . ..:'.::{:::;::_1'_{-5:-::.?; .- .
_ 1 2t o "\ ;.;'-3.;::'..
m; = — Yinec, Xn % AT
' % SR
(Y . .
. Or
* Goal: maximize w'm; —wi'm, 'g
* Same as maximizing | ?‘
T _
w'(my —my)
* Do you see any problem with 5 > 5

this goal?



Maximizing Separation of Means

* One simple (but not very useful) answer: maximize the separation

of the means of the classes.

_ 1 y
mO - NO nECO xn

_ 1 y
m1 - Nl nECl xn

e Goal: maximizew'm; —w'm,

* Same as maximizing
w'(m; —m,)
 For any w, replacing w by

R R N
\ N -'":':‘-.' " .
- % ‘. ..:: .3.='.-
et
;'.{ bt
“&’ |
B!
-2 2 6

1000 * w, we increase the separation of the means by a factor of
1000, but classification accuracy stays the same.

e Maximizing w! (m; — m,) does not help improve accuracy.




Maximizing Separation of Means

A second not very useful answer: maximize the separation of the
means of the classes, subject to |[|w]|| = 1.

Now we cannot replace w by 1000 * w, because that would
violate the constraint that |[|w|| = 1.




Maximizing Separation of Means

* Asecond not very useful answer: maximize the separation of the
means of the classes, subject to |[|w]|| = 1.

* The solution according to this criterion is shown on the left figure.

— Do you see any problems?

4 o 4
. s e ® *
ST e .t
. %% W * o .
. R ? \aehe
~ . . .'.::"'- A ’ °"' .
ol \\.'," ot
oy,
2t -2F
'.%




Maximizing Separation of Means

* Asecond not very useful answer: maximize the separation of the
means of the classes, subject to |[|w]|| = 1.

* The solution according to this criterion is shown on the left figure.
— The projection on the right figure gives more accurate classification.
— Our criterion fails to identify that far better solution.

. " e * -
.. ; ® . se .
. * o Y L]

Y 3
':.U{ ::-l;._‘ * . oo,

- - - . . % % o 8, ]
27 C2ak C
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s
L/
Y,

-2 2 6 -2 2 6



Between Class Variance,
Within-Class Variance,

« wl'(m; —m,) is called the between-class variance.

— It measures how far (on average) a point from class C is
from a point in class C;.

* We can also define the within-class variance (s;)*:

— How far (on average) a point from class Cj, is from another
point in the same class Cy,.

(507= ) (W', — wmy)?

necy



Fisher Criterion

* Fisher criterion: maximize the ratio /(w) of between-class
variance over within-class variance.

(wim,; —wlim,)*
(Sg)2+(s1)?

J(w) =

* Intuition: we want, at the same time, a projection where:

— Between-class variance is large (inputs belonging to different
classes should map to points that are far from each other).

— Within-class variance is small (inputs belonging to the same
class should map to points that are close to each other).



Maximizing J(w)

 We will use the following definitions:

— S is the between-class covariance matrix.

Sp = (my —my)(m; —my)"

— Sy is the total within-class covariance matrix.

S = <Z (tn — o) (2, - mo>T> ; (Z (Gt — ) (- ml)T>

TlECO TlECl

WTSBW

— Then: J(w) = TS W



Maximizing J(w)

We want to find the w that maximizes:

wTSBw

J(w) =

wl'Sy,w

Differentiating J(w) with respect to w, and solving equation
V](w) = 0, we get this solution:

w o (Sy) "t (my —my)

The symbol & means that w is proportional to (Sy,) "1 (m; — m,).
Therefore, w = (Sy,) "1 (m; — my) is a solution.
For any real number ¢, w = ¢(Sy,) "1 (m; — m,) is also a solution.



