Templates and Detection

CSE 4310 — Computer Vision
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

The Detection Problem

One can define the detection problem in
various ways.

In this class, the detection problem is the
problem of finding the bounding boxes
where some specific type of object
appears in an image.

Example: face detection.

— Find the bounding boxes of faces.

Note: we do not know how many times
the type of object we are looking for
appears in the image.

— Can be zero, one, multiple times.

— For example, for face detection, the input
image may have zero, one, or multiple faces.

What is a Template?

A template is an example of how an object looks.

In template matching, the goal is to find locations in the image
that look similar to the template.

What example would be appropriate if we are looking for a face?
— A reasonable starting point is another face.

So, our first approach for first detection is:
— Pick an example face image as a template.

— Look for the image locations that are the most similar to the template.
Have we fully specified the algorithm we will use?
No. We need to define what we mean by “most similar”.

— We need to define how to measure similarity between an image location
and a template.

Sum of Squared Differences

A simple way to measure similarity is using sums of
squared differences (SSD) between each image
subwindow and the template.

First, let’s define the SSD between two vectors.

Let v, w be D-dimensional vectors.
Y= (Ul,vz, ...,UD), W = (Wl,Wz, ...,WD)

The sum of squared differences SSD(v, w) is defined as:

D
SSD(v,w) =) (v, —wy,)?
; d — Wq

Defining Similarity Using SSD

e To find the image subwindow that is the most similar to the
template, we need to measure the SSD between each subwindow
and the template.

— We define a function ssd_scores(image, template).
— This function returns a result of the same size as the image.

— result(i,j) is the sum of squared differences between the template and the
image subwindow centered at (i,]).

— Specifically, if the template has R rows and C columns (R, C should be odd):

R C 2
R C
result(i,j) = z z (image (i — [E‘ +r,j— [ﬂ + c) — template(r, c))
r=1c=1

— We canignore boundary pixels (i,j), where no full R X C image subwindow
centered at (i,j) can be extracted.

e Good matches correspond to low SSD scores.

SSD Pseudocode

e |nput arguments: grayscale image, template.
e result = 2D array of the same size as the image.
e |nitialize all values of result to -1.

e For every location (i,j) in image.
— window = image subwindow centered at (i,j), of same size as the template.
— window_vector = window(:) % vector containing the values of window
— template_vector = template(:) % vector containing the values of template
— diff_vector = window_vector — template_vector
— squared_diffs = diff vector .* diff vector
— ssd_score = sum(squared_diffs)
— result(i,j) = ssd_score

e Return result

Comments on Pseudocode

e |n the pseudocode we just saw, the result array has these values:

— Boundary pixels (where we could not extract a valid subwindow of the
same size as the template) receive values of -1.

— Interior pixels receive SSD scores.

e The caller function will typically look for the lowest scores in the
result, since lowest scores correspond to best matches with the
template.

— The caller function should ignore boundary values when looking for lowest
scores. We mark those values with -1, to make them easy to identify.
e Obviously, your code can use different conventions to mark
invalid scores in boundary pixels. The pseudocode just provides
an example of how to handle this issue.

— It is important to emphasize, though, that we should always be careful
about marking valid and invalid values in our result images.

A Good Result Using SSD Scores

input
image

SSD scores window with lowest score

A Bad Result Using SSD Scores

SSD scores window with lowest score

Some Obvious Shortcomings

The face detection method we have just outlined is extremely
simple.

There are some obvious shortcomings.

Can you think of cases where this method would be rather
unlikely to succeed?

Here is a summary of shortcomings.

— This method works if the face in the image has similar brightness and
contrast as the face in the template. We will fix this.

— This method works if the face in the image has the same size as the face in
the template. We will fix this.

— This method works if the face in the image is rotated in the same way as
the face in the template. We will partially fix this.

— This method works if the face in the image is fully visible. We will NOT fix

this (at least not using templates).
10

input
image
(original
version)

Brightness Variations

o

window with lowest score

input
image

(brighter e

version) §

.r
window with lowest score

11

Brightness Variations and SSD

e Changing the brightness changes the SSD scores.

diff _vector
result(i,j)

subwindow_1j(:) — template(:)
sum(diff_vector .* diff_vector)

e |f the face subwindow is substantially brighter or darker
than the template, the SSD score will be high.

* |n some cases, we are OK with that.

— If we are confident that the template and its match in the
image should be similarly bright, then we DO want to penalize
windows that are much brighter or darker than the template.

e |n other cases (like generic face detection) we want to

tolerate changes in brightness.

12

Solution: Normalize For Brightness

e We can subtract from every window its average intensity value.

— Then, the average intensity value of all windows will be O.

e For this to work correctly:

— The template is normalized, by subtracting from it its average intensity.

template = template — mean(template(:))

— Each image subwindow is normalized, by subtracting from it its average
intensity, right before measuring its SSD with the (normalized) template.

subwindow 1j = subwindow _1jJ — mean(subwindow 1j(:))

diff_vecto subwindow_1j(:) — template(:)
sum(diff_vector .* diff_vector)

r
result(r,j)

e DO NOT simply normalize the entire input image in a single step.
— We want each individual window to have a mean brightness of O.

13

Result

input
image
(brighter
version)

window with lowest SSD score
using brightness normalization

window with lowest SSD score

14

Contrast

e The brightness of a region corresponds to the average
of the intensity values in that region.

e The contrast of a region corresponds to the standard
deviation of the intensity values in that region.

e High contrast regions are regions whose intensity values
have high standard deviation.

— Many pixels significantly brighter than the average within that
region.

— Many pixels significantly darker than the average within that
region.

15

Examples of High and Low Contrast

e The left image has higher contrast than the right image.

e Both of them have the same average intensity.

e Obviously, lower contrast makes some details harder to
see.

16

Results with High and Low Contrast

These images show the best matches with the face

template, using SSD scores with brightness
normalization.

Contrast makes a difference in the result.

17

Solution: Normalize for Contrast

e Brightness normalization: we subtract from every
window its average intensity value.
— Then, the average intensity value of all windows will be O.

e Contrast normalization (done AFTER brightness
normalization).
— We divide each window by the standard deviation of values in
that window.
e As was the case for brightness normalization:

— The template is normalized separately, based on its own mean
and standard deviation.

— Each image subwindow is normalized separately, based on its
own mean and standard deviation.

18

Normalization Code

e The template is normalized at the beginning.

% normalize template for brightness
template = template — mean(template(:))
% normalize template for contrast
template = template / std(template(:))

e Each image subwindow is normalized, right before measuring its
SSD with the (normalized) template.

% normalize subwindow for brightness

subwindow_1j = subwindow _1j — mean(subwindow_1j(:))
% normalize subwindow for contrast

subwindow_1j = subwindow 1jJ / std(subwindow 1j(:))
diff_vector = subwindow 1jJ(:) — template(:)

result(r,j) = sum(diff_vector .* diff _vector) 19

Results After Brightness and Contrast
Normalization

20

Normalized Cross-correlation

Let v, w be D-dimensional vectors.

Y= (Ul,vz, ...,UD), W = (Wl,Wz, ...,WD)

Let u, and u,, be the means of v and w:

D
- # — Zd:l vd
1% D ’

Let 0, and g, be the standard deviations of v and w:

D
_ 2d=1Wd
w D

v D-1

The normalized cross-correlation C(v, w) is defined as:

Clv,w) =

! w D—-1

- J23=1<vd—uv>2 S J23=1<wd—uw>2

Yo (g — mp) Wy — uy))

Oy Ow

21

Normalized Cross-correlation

e The normalized cross-correlation C(v, w) is defined as:

Yo (g — m) Wy — uy))
O-UO-W

Clv,w) =

e The normalized cross correlation can be interpreted as
the dot product of two unit vectors:

V—=Uy
Op

— First unit vector:

w—Uw
Ow

— Second unit vector:

e Note: g, is the norm of v —u,, ¢,, is the norm of w —u,,.

22

Normalized Cross-correlation

e The normalized cross-correlation C(v, w) is defined as:

Yo (g — m) Wy — uy))
O-UO-W

Clv,w) =

e Properties of normalized cross-correlation C(v, w):

— Highest possible value: 1

e Clv,v) =1
— Lowest possible value: -1
e Clv,—v)=1

— Higher values indicate higher similarity between v and w.
e If v,w are unit vectors, then C(v,w) =1 — [|lv — w]|?.

— The lower the Euclidean distance, the higher the correlation.
23

Normalized Cross-correlation

e Normalized cross-correlation provides an alternative way to find
matches of a template with an image.
— Instead of looking for lowest SSD score, we look for highest normalized
cross-correlation score.
e The detection results we get with normalized cross-correlation
are the same as the results we get with SSD, if we use brightness
and contrast normalization when measuring SSD.

— When we normalize an image window for brightness and contrast, we
convert the window to a unit vector.

— Highest cross-correlation scores correspond to lowest SSD scores.

e Mathematically, both approaches are equivalent.

24

Normalized Cross-correlation in
Matlab

e In Matlab, there is a built-in function called normxcorr2.

e normxcorr2(template, image) returns an array of
normalized cross-correlation scores between the
template and each template-sized subwindow of the
Image.

e However, the result of normxcorr2 does not have the
same size as the image.

— Itincludes extra scores in the boundary.

25

Normalized Cross-correlation in
Matlab

e |n the code posted on the course website, we include a
normalized_correlation function, which serves as a
convenient wrapper function for normxcorr2.

e normalized_correlation(image, template) returns a
result of the same size as the image.

= result(i,j) is the normalized cross-correlation score between
the template and the template-sized image subwindow
centered at pixel (i,j).

= Boundary pixels (where we could not extract a valid
subwindow of the same size as the template) receive values of
0.

26

Detection at Different Scales

e This is an example we saw before, where the face is
detected successfully.

template

SEQUOIR & KNGS [L'E'I.'_ﬂ"_t"'.'."r_'{
A HAT O 'F"Fl'f'i'h-

., o

27

Detection at Different Scales

e Here is the result on a 23% smaller version of the image.
e The face is now somewhat smaller than the template.

e Normalized cross-correlation (same as SSD with
brightness/contrast normalization) cannot handle that.

template

CEQUDIR & KNGS LAY
“'dup..'_ R PRAK

"N

— \;m_'_ 'k 28

Detection at Different Scales

e Here is the result on a 23% larger version of the image.
* The face is now somewhat bigger than the template.

template
SEQUOIR & KINGS CRNYON

NATIN 'PH'F
_ g
. ; AN ‘:.-.'?rhl -

29

Detection at Different Scales

e SSD and normalized cross-correlation assume that the
object that we want to detect is about as large as the
template.

e This is too much of a restriction.

— Typically we do not know in advance how large or small
objects of interest are in an image.

— A detector should be able to detect objects regardless of how
big they appear (unless they appear so small that they cannot
be seen clearly).

30

Scaling the Image

e What can we do to detect the face if we know that the
face is about three times larger than the template?

template

Original image, face about three times
larger than in the template. 31

Scaling the Image

e What can we do to detect the face if we know that the
face is about three times larger than the template?

e First approach: scale down the image.
— Scale the image down by a factor of three.

— Get normalized cross-correlation scores between the scaled
down image and the template.

e |n the scaled-down image, the face is about the same size as the
template.

— Scale up the cross-correlation scores by a factor of three.

e So that scores(i,j) corresponds to the subwindow centered at (i,j) in the
original image.

— Find maximum score location in the scaled-up scores.

32

Example

REHUEIH o -')

HA
-q-

Original image, face about three times
larger than in the template.

o

template

33

Example

Scaled down image,
three time smaller

template

34

Example

Normalized correlation
scores between small
image and template

template

35

Example

Normalized cross-correlation scores scaled up
three times, so that they match the original image.

=

template

36

Example

COUDIA & KINGS DANRIN

HATIO

Window of the original image corresponding

to best score (according to the scaled up scores).

o

template

37

Matlab Code

scale = 1/3;

scaled 1mage = imresize(my_image, scale);

scaled scores = normalized correlation(scaled i1mage, template);
scores = 1mresize(scaled _scores, size(my_image), “nearest”);

% the rest of the code 1s just useful for showing the result.
max_value = max(scores(:));
[rows, cols] = find(scores == max_value);

y = rows(l);
X = cols(l);

[template rows, template cols] = size(template);

face rows = round(template rows/scale);

face cols = round(template cols/scale);

result = draw_rectangle2(my_image, y, X, face rows, face cols);
imshow(result, [0 255]);

38

Matlab Code

scale = 1/3;
scaled 1mage = imresize(my_image, scale);
scaled scores = normalized correlation(scaled i1mage, template);

scores = 1mresize(scaled _scores, size(my_image), “nearest”);

e These are the important lines that show how to do
template-based face detection if the face is three times
larger in the image than on the template.

e Note the three main steps:

e Scale down image.

e Do normalized correlation of scaled-down image with
template.

e Scale up scores, to match the size of the original image.

39

Matlab Code

scale = 1/3;

scaled 1mage = imresize(my_image, scale);

scaled scores = normalized correlation(scaled i1mage, template);
scores = 1mresize(scaled _scores, size(my_image), “nearest”);

e Notes on scaling up the scores using imresize:

e We use the ‘nearest’ option, which does not use interpolation,
but simply uses the value of the nearest corresponding pixel
from the original image.

e By passing size(my_image) as second argument to imresize,
we ensure that the result will have the same number of rows
and columns as the input image.

40

Alternative: Scaling the Template

e What can we do to detect the face if we know that the
face is about three times larger than the template?

e We saw before that we can scale the image down by a
factor of three.

e Alternatively???

41

Alternative: Scaling the Template

e What can we do to detect the face if we know that the
face is about three times larger than the template?

e We saw before that we can scale the image down by a
factor of three.

e Alternatively, we can:
— scale up the template by a factor of three.

— Get normalized cross-correlation scores between the image
and the scaled-up template.

e The face is about the same size as the scaled-up template.

— Find maximum score location in the scores.

e No scaling of the scores is needed, since normalized correlation
scores were obtained using the original image.

42

Example

REHUEIH o -')

HA
-q-

Original image, face about three times
larger than in the template.

o

template

43

Example

COUDIA & KINGS CRNTIN
o 'l':l i ",'I*. PRRK

HA

Original image, face about three times
larger than in the template.

scaled-up
template

44

Example

Normalized cross-correlation scores between
original image and scaled-up template.

scaled-up
template

45

Example

E0UDIA & KINGS R
S PARK

‘;-1]11 OHHD
¥

Window of the original image corresponding
to best score (according to the scaled up scores).

scaled-up
template

46

Matlab Code

scale = 1/3;
scaled template = 1mresize(template, 1/scale);
scores = normalized correlation(my image, scaled template);

% the rest of the code 1s just useful for showing the result.
max_value = max(scores(:));
[rows, cols] = find(scores == max_value);

y = rows(l);
X = cols(l);

[template rows, template cols] = size(template);

face rows = round(template rows / scale);

face cols = round(template cols / scale);

result = draw_rectangle2(my_image, y, X, face rows, face cols);
imshow(result, [0 255]);

47

Matlab Code

scale = 1/3;

scaled template = 1mresize(template, 1/scale);
scores = normalized correlation(my image, scaled template);

e These are the important lines that show how to do
template-based face detection if the face is three times
larger in the image than on the template.

e Note the two main steps:
e Scale up template.

e Do normalized correlation of image with scaled-up template.

48

Multiscale Search

So, when we know the size of the face (or, more
generally, the size of the object to be detected), we can
scale the image or the template so that the object in the
image matches the size of the template.

However, typically we do NOT know the size of the
object(s) we want to detect.

What do we do then?
We search at multiple scales.

For each pixel (i,j), we remember:

— The max normalized correlation score it got over all scales.

— The scale that produced that max score.
49

Multiscale Search: Matlab Code

function
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

for scale = scales;
% for efficiency, we either downsize the image, or the template,
% depending on the current scale
iIT scale >= 1
scaled 1mage = 1mresize(image, 1/scale, “bilinear®);
temp_result = normalized _correlation(scaled i1mage, template);
temp_result = 1mresize(temp _result, size(image), “nearest”);
else
scaled 1mage = 1mage;
scaled _template = imresize(template, scale, °“bilinear”);
temp_result = normalized _correlation(image, scaled template);
end

higher_maxes = (temp_result > result);
max_scales(higher_maxes) = scale;
result(higher_maxes) = temp_result(higher_maxes);
end 50

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

e We will walk through the implementation of
multiscale correlation, which implements multiscale
template search using normalized correlation.

e Arguments:

— Image where we want to detect objects.
— The template that we want to use.

— scales is an array of scales.

e E.g.,scales=[0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2, 1.3, 1.4, 1.5]. o1

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;

max_scales = zeros(size(image));

e scales is an array of scales.
— E.g., scales =[0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2, 1.3, 1.4, 1.5].
— Or, equivalently, scales = 0.5:0.1:1.5.

e |nthe above example, the scales argument only covers scales
between 0.5 and 1.5.

— Assumes that faces will be between 50% and 150% of the size of the face
template.

e Usually this range is too restrictive, we want a larger range.

52

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

The recommended practice for scales is to:
e Cover a wide range of scales.

— “Wide range” is not specific enough, but covering scales from 0.1 to 10 is
usually a better choice than covering scales from 0.5 to 1.5.
e Use a sequence of scales that increases geometrically, not
arithmetically.

e |t makes sense to go from scale 0.1 to scale 0.11, because the increase
from one scale to the next is about 10%. If anything, this type of gap
may be too large in some cases.

e However, going from scale 10.00 to scale 10.01 is usually too
conservative, as the increase is only 0.1%, which is needlessly small. 53

Multiscale Search: Matlab Code

This sample code generates a “reasonable” value for the scales
argument, given a smallest scale, largest scale, and ratio of 1.1

between two consecutive values.
— Remember, though, what is “reasonable” depends on the application and

the data.

low scale = 0.1;

high_scale = 10;

step _ratio = 1.1;

ratio = high scale /7 low _scale;

number_of steps = ceill(log(ratio)/log(step ratio));
scales = low _scale * (step _ratio .~ (O:number_of steps));

e The above code generates an array scales of size 50.

scales = [0.10, O0.11, 0.121, 0.133, 0.146, ..,
7.29, 8.02, 8.82, 9.70, 10.67] 54

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

e Backtothe multiscale correlation function.
e We just talked about the arguments.

e Next: we discuss the return values.

55

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

e Return values.

— result(i,j) will store the maximum normalized correlation score found for
location (i,j) over all scales that we try.

— max_scales(i,j) will store the scale that produced that maximum
normalized correlation score for location (i,j).

e What value is each result(i,j) initialized to, and why?

56

Multiscale Search: Matlab Code

function ...
[result, max_scales] = multiscale correlation(image, template, scales)

result = ones(size(image)) * -10;
max_scales = zeros(size(image));

e Return values.

— result(i,j) will store the maximum normalized correlation score found for
location (i,j) over all scales that we try.

— max_scales(i,j) will store the scale that produced that maximum
normalized correlation score for location (i,j).

e What value is each result(i,j) initialized to, and why?
— result(i,j) is initialized to -10.

— Since result(i,j) will store a maximum normalized correlation value, whose
range is between -1 and 1, it can be initialized to any value less than -1.

57

Multiscale Search: Matlab Code

for scale = scales;
iIT scale >= 1
scaled 1mage = 1mresize(image, 1/scale, "bilinear™);
temp_result normalized correlation(scaled image, template);
temp_result imresize(temp_result, size(image), "nearest”);
else
scaled 1mage = 1mage;
scaled template = imresize(template, scale, "bilinear”);
temp_result = normalized correlation(image, scaled template);
end

e Note how we do the scaling.

— For scales greater than 1 (meaning that the object is larger than the
template), we scale down the image, instead of scaling up the template.

— For scales smaller than 1 (meaning that the object is smaller than the
template), we scale down the template, instead of scaling up the image.

e We prefer scaling down over scaling up, for efficiency.

Multiscale Search: Matlab Code

higher_maxes = (temp_result > result);
max_scales(higher_maxes) = scale;
result(higher_maxes) = temp _result(higher_maxes);

temp_result: normalized correlation scores for current scale.
result(i,j): maximum score found so far for (i,j).
max_scales(i,j): the scale that gave the maximum score for (i,j).

higher_maxes(i,j) is a boolean, indicating if temp_result(i,j) (the
score at the current scale) is larger than result(i,j) (the best score
found before the current scale).

— If higher_maxes(i,j) is true, we must update result(i,j) and max_scales(i,j).

The next two lines update the values in the locations of
max_scales and result that need to be updated.

59

Using Multiscale Search

e This code calls multiscale_correlation and draws the bounding
box of the best matching location (at the right scale).

scales = make scales array(0.25, 4, 1.1);

[scores, scales] = multiscale correlation(photo, template,
scales);

max_score = max(scores(:));

[rows, cols] = find(scores == max_score);

y = rows(l);

X = cols(l);

scale = scales(y, X);

[template rows, template cols] = size(template);

face rows = round(template rows * scale);

face cols round(template cols * scale);

result = draw_rectangle2(photo, y, x, face rows, face cols);
imshow(result, [0 255]);

60

Some Results of Multiscale Search

scales = make_scales_array(0.2, 5, 1.1);
scale of highest score: 0.354

61

Some Results of Multiscale Search

scales = make_scales_array(0.2, 5, 1.1);
scale of highest score: 2.17

62

Some Results of Multiscale Search

scales = make_scales_array(0.2, 5, 1.1);
scale of highest score: 0.22

Obviously, this is the wrong result.
Searching over multiple scales, there are more
potential false matches.

63

Rotations

e |n our previous examples, faces had a very specific
orientation:
— The front of the face was fully visible.
— The orientation of the face was upright.

e The orientation of the face can vary in two different
ways:
— In-plane rotations.
— Out-of-plane rotations.

e |n-plane rotations do not change
what is visible, they simply change
the orientation.

In-Plane Rotations

e |n-plane rotations do not change what is visible, they
simply change the orientation of the visible part.

e |n-plane rotations of faces facing the camera result to
faces still facing the camera.

— The front of the face is still fully visible.
— However, the face is not oriented upright anymore.

65

Out-of-Plane Rotations

e |n out-of-plane rotations, the object rotates in a way
that changes what is visible.

e If we start with a face whose front is visible, an out-of-
plane rotation results to part of the front (or the entire

front) not being visible.
— Other parts become visible, like side/top/back of head.

Handling Rotations

e Handling in-plane rotations can be done similar to the
way we handled multiple scales:

— Search at multiple rotations, keep track at each location of the
rotation that gives the highest score.

— We can rotate the image, or we can rotate the template.
— In Matlab, imrotate can be used to do the rotations.

e However, we must be careful of some practical details:

— If we rotate the image, and get normalized cross-correlation
scores, we should make sure we know what original image
locations those scores correspond to.

— If we rotate the template, we may lose parts of it, or introduce

new parts, that may change the correlation scores.
67

Handling Rotations

e Qut-of-plane rotations cannot be handled, unless we
have templates matching those rotations.

— Note that we did not need new templates to handle different
scales or different in-plane rotations.
e For example, to detect faces seen at profile orientation,
we should use templates corresponding to profile
orientation as well.

e |n this course, we will not worry about handling out-of-
plane rotations.

68

Number of Detection Results

In our examples so far, we have computed scores at all
image locations (and possibly at multiple
scales/orientations), and then shown the best score.

However, we typically do not know how many objects
we should detect.

We need an automatic way to decide the number of
detections.

Standard approach:
— Set a threshold on the score.
— Any score above the threshold qualifies as a detection.

e With one exception...

69

Non-Maxima Suppression

e Here is an example result that we have seen before.

70

Non-Maxima Suppression

e And here is the normalized cross-correlation result on that image.
— Where do you think the second highest score is?

71

Non-Maxima Suppression

e And here is the normalized cross-correlation result on that image.
— Where do you think the second highest score is?

— Right next to the highest score.

72

Non-Maxima Suppression

e |f we want to produce multiple (and meaningful) detection
results, we need to suppress results that are almost identical to
other results.

— We call this operation non-maxima suppression.

73

Non-Maxima Suppression

e Returning multiple results while performing non-maxima
suppression of detection results is pretty simple.

e Let T be a detection threshold.

e Pseudocode:

— Let S = normalized cross-correlation scores (optionally at
multiple scales, rotations, etc).
— While (true)
e Let s be maxvalueinsS, and let (i,j) be location of sin S.
e Ifs<T, break.

e Add s to detection locations.

e Zero out an area of S centered at (i,j). How big this area should be is an
implementation choice. For example, it can be the size of the template.

74

Using Average Images as Templates

e |n our examples, we used a face image as a template, to
detect other faces.

e However, using a specific face may be problematic.
— Some faces may work better than others.

e A common approach is to use an average image as a
template.

e An average image is (as the name indicates) the average
of multiple images.

75

Computing an Average Face

e We need aligned face images:
e |n this case, aligned means:

— same size

— significant features (eyes, nose, mouth), to the degree
possible, are in similar pixel locations.

an example set of aligned face images

76

Result: Average Face

-

77

Cropping

e |t may be beneficial to crop a template, so that we keep
the parts of it that are most likely to be present in the
Image:

— Exclude background.
— Exclude forehead (highly variable appearance, due to hair).
— Exclude lower chin.

° &
- L=

face template

average face

78

Measuring Accuracy

Measuring accuracy is an important part of the daily routine in
computer vision work.

We implement various methods, and variations of those
methods, and we want to see what works best.

However, measuring accuracy is not a trivial process.

Different computer vision tasks (detection, recognition, tracking,
segmentation) have their own conventions, that we will learn
when we study each task.

What should be emphasized from the beginning:

— Numbers are meaningless, without a clear explanation of what is being
measured, how it is being measured, and on what data it is being
measured.

— For example, a statement that system X is “99% accurate” does not
provide any useful information, in the absence of such specifications.

Some Standard Steps

In measuring accuracy, we need to specify a test set.

— Accuracy will be measured on images from that set.

For that set, we need to know the “correct” answers.

— So, in addition to images, the test set needs to contain those answers.

These “correct” answers are called ground truth.

Then, the best possible result for the system we are evaluating
would be to produce answers identical to the ground truth.

In the typical case where the system’s answers are not identical
to the ground truth, we need to define quantitative measures of
accuracy, that measure how close the results are to the ground
truth.

80

Measuring Detection Accuracy

e Detection is a good task for introducing such concepts.

e Measuring detection accuracy is more complicated than
measuring other types of accuracy.

81

Ground Truth Annotations

To measure detection accuracy, we need to use some dataset of
images.

For every image in that dataset, we need annotations that specify:
— How many objects of interest are present.

— The bounding box of every object of interest.

Bounding box placement is not an exact science.

— Different people will slightly disagree in
where exactly the corners of the bounding
box should be.

However, establishing some clear
guidelines is useful, to maintain
consinstency as much as possible.

— Does the box go down to the bottom of the
chin? Up to the top of the forehead?

Is @ Detection Correct?

e |nthe image below:
— Suppose that the yellow box is the ground truth annotation.
— Suppose that the red box is the detection result.
— Is that result correct or not?

Is @ Detection Correct?

e |nthe image below:
— Suppose that the yellow box is the ground truth annotation.
— Suppose that the red box is the detection result.
— Is that result correct or not?

e |tisimportant to have specific rules, so that evaluation
of correctness can be done automatically.

e Standard approach: measure the
intersection over union (loU) score
between the detection and the
ground truth.

Intersection Over Union

e |ntersection over Union (loU) is a score that measures
the overlap between two regions A and B.

e |n our case:

— The first region is the ground truth location of the object of
interest.

— The second region is a detected bounding box.
e |oU(A,B) is defined as this ratio:

of pixelsinANB
of pixelsinAUB

e Remember: A N B is intersection, _
A U B is union. 8

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

e |n our example:

- A N B isshown by the green rectangle.
- A U B is the union of the yellow region, the red region, and the green rectangle.

Intersection Over Union

e To determine if a detection result B is correct, we simply
check if there is a ground truth location A such that
loU(A,B) > T, where T is some pre-specified threshold.

e Obviously, the choice of T can make a big difference.

— We typically use several values of T, and we report
performance for each T.

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

e Typically, in evaluating detection accuracy, A and B are

rectangles, specified by their top, bottom, left and right Ra
coordinates. Ly
— Adis specified as (T4, Ba, La, Ry). Ty L RB;
— Bis specified as (T, Bg, Lg4, Rp).-
- T4, Tg, B4, Bg are row numbers. T
— Ly, Lg, Ry, Rg are column numbers.
By

Bg

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

e Therectangle A N B, if it is not empty,
is specified by these four numbers:
~ Tynp = max{Ty, Tg}
~ Banp = min{By, Bg} Lans
~ Lpnp = max{Ly, Lg}

~ Ranp = min{Ry, Rg} Tang

BAﬂB

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

e The areasof A, B, A N B are computed as: Ring
— Height(A)=B, — T, +1
— Width(A)=R, — L, + 1
— Area(A) = Height(A)* Width(A)
— Height(B)=Bg — T + 1
— Width(B)=Rz — Lg + 1
— Area(B) = Height(B)* Width(B)
— Height(ANB)=Byng — Tynp + 1
— Width(ANB)=Rynp — Lyng +1 DA"B
— Area(A N B) = Height(4A N B)* Width(A N B)

LAﬂB

TAF\.B

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

e The area of A U B is computed as:
Area(A U B) = Area(A)+Area(B)-Area(A N B)

LAﬂB

TAF\.B

BAﬂB

Computing Intersection Over Union

e |oU(A,B) is defined as this ratio:

of pixelsinA N B
of pixelsinA U B

— Height(ANB)=Byng — Tynp + 1
— Width(AN B) =Ryng — Lang + 1 R
— Area(A N B) = Height(4A N B)* Width(A N B)

 How can our code tell when A N B is empty? Lans

— In that case, at least one of
Height(A N B) and Width(A N B)
is zero or negative.

BAﬂB

TAF\.B

— Your code needs to identify such
cases, and report that loU(A,B)=0
in such cases.

Measuring Accuracy over a Dataset

Suppose we have some dataset for face detection.

— Let’s say we have 10,000 images, and the ground truth marks
20,000 face locations on those images.

Suppose we choose an loU threshold of 0.8.

Suppose that 100% of the detected boxes pass the loU
threshold.

— This means that, for each image in the dataset, each of the
detected boxes has an loU score of at least 0.8 with at least
one ground truth location in that image.

Is this a good result?

93

Measuring Accuracy over a Dataset

Suppose we have some dataset for face detection.

— Let’s say we have 10,000 images, and the ground truth marks
20,000 face locations on those images.

Suppose we choose an loU threshold of 0.8.

Suppose that 100% of the detected boxes pass the loU
threshold.

Is this a good result?

This is a classic example of an uninformative and
incomplete result.

Vital missing information: how many ground truth

boxes were NOT matched by any detection result?
94

Measuring Accuracy over a Dataset

Suppose we have some dataset for face detection.

— Let’s say we have 10,000 images, and the ground truth marks
20,000 face locations on those images.

Suppose we choose an loU threshold of 0.8.

Suppose that 100% of the detected boxes pass the loU
threshold.
One extreme example:

— Every ground truth box was matched by one and only one
detected box.

— Then, our detector had perfect accuracy.

95

Measuring Accuracy over a Dataset

Suppose we have some dataset for face detection.

— Let’s say we have 10,000 images, and the ground truth marks
20,000 face locations on those images.

Suppose we choose an loU threshold of 0.8.

Suppose that 100% of the detected boxes pass the loU
threshold.

Another extreme example:

— 10% of the ground truth boxes were matched by one and only

one detected box.
— 90% of ground truth boxes were not matched.

— Then, even though 100% of the detected boxes pass the loU
threshold, the detection accuracy is pretty low.

96

True/False Positives/Negatives

e True positive: a detection box whose loU score with a
ground truth box is over the threshold.

— Intuitively: a true positive is a case where:
e an object is present in an image, and

e the detector correctly detects the location of that object in the image.

97

True/False Positives/Negatives

e True positive: a detection box whose loU score with a
ground truth box is over the threshold.

e False positive: a detection box whose maximum loU

score with all ground truth boxes is under the threshold.

— Intuitively, a false positive is a false detection:
e an object was detected, but
e there is no object at that location.

— In borderline cases that count as false positives:
e there is an object in the detected location, but

e the detected location was not accurate enough, and the loU score

between the detected location and the ground truth location was too
small.

98

True/False Positives/Negatives

e True positive: a detection box whose loU score with a
ground truth box is over the threshold.

e False positive: a detection box whose maximum loU
score with all ground truth boxes is under the threshold.

e False negative: a ground truth box whose maximum loU
score with a ground truth box is over the threshold.

— Intuitively, a false negative is an object that was not detected.
— In borderline cases that count as false negatives:

e there is a detection that overlaps with the ground truth box.

e the detected location was not accurate enough, and the loU score

between the detected location and the ground truth location was too
small.

99

Measuring Accuracy over a Dataset

e To measure detection accuracy over a dataset we must
always report two numbers.

e One number should be about true positives, or false
negatives.

— For example: report the ratio of number of true positives over
number of object locations marked by the ground truth.

e A 93.5% ratio indicates that 93.5% of the objects of interest that were
present in the dataset were correctly detected.

— Alternatively, report the ratio of number of false negatives
over number of object locations marked by the ground truth.

e A 2.3% ratio indicates that 2.3% of the objects of interest that were
present in the dataset were not detected.

100

Measuring Accuracy over a Dataset

e To measure detection accuracy over a dataset we must
always report two numbers.

e One number should be about true positives, or false
negatives.

e One number should be about false positives.

— For example: report the total number of false positives in the
dataset.

e A number of 635 indicates that there were 635 detections in the dataset
that did not correspond to actual locations of objects of interest.

— Alternatively: report the number of false positives per image.

e A number of 0.4 indicates that, on average, there were 0.4 cases per

image where a detection did not correspond to an actual location of an
object of interest.
101

Thresholds

e |n measuring detection accuracy, we need to use two
thresholds:

e One threshold is the loU threshold.

— 0.5 is a common choice, but it is better to try different values
and report results for each value.

e The second threshold is the detection threshold.

— Usually, for any detector, we need to set a threshold to decide
what constitutes a “detection”.

— For example, for normalized cross-correlation, we need to set
a threshold, such that any score above that threshold should
be treated as a detection (unless that score is removed by

non-maxima suppression).
102

Detection Threshold

Suppose that we are using normalized cross-correlation for
detection.

Consider two detection thresholds:
- T, =0.7
- T, =0.8.
Suppose that we fix the loU threshold to 0.5.

How do we expect the results of the two detection thresholds to
compare to each other?

With T; = 0.7, there should be more detections than with T, =
0.8.

— Some of those extra detections with T; = 0.7 will be correct, so T; will
produce a higher true positive ratio.

— Some of those extra detections with T; = 0.7 will be incorrect, so T; will

produce a higher false positive rate. 103

Detection Threshold

e Changing the detection threshold usually leads to one of the two

numbers (true positives or false positives) getting better and the
other one getting worse.

e Usually, to evaluate a detector, we try several different detection
thresholds.

— Every threshold leads to a true positive ratio and a false positive rate.
e We make a true positive vs. false positive plot, where, for
example:
— The x-axis is the true positive ratio.
— The y-axis is the false positive rate.

— Every point on that plot corresponds to a (true positive, false positive)
result obtained by a specific choice of detection threshold.

104

Detection Threshold

e To compare two detectors A and B, we look at their two plots.
— |If detector A is clearly better, its curve should be lower than B’s curve.

— Lower curve means that for the same x-axis value (same true positive
ratio), the false positive rate is lower.

105

	Slide Number 1
	The Detection Problem
	What is a Template?
	Sum of Squared Differences
	Defining Similarity Using SSD
	SSD Pseudocode
	Comments on Pseudocode
	A Good Result Using SSD Scores
	A Bad Result Using SSD Scores
	Some Obvious Shortcomings
	Brightness Variations
	Brightness Variations and SSD
	Solution: Normalize For Brightness
	Result
	Contrast
	Examples of High and Low Contrast
	Results with High and Low Contrast
	Solution: Normalize for Contrast
	Normalization Code
	Results After Brightness and Contrast Normalization
	Normalized Cross-correlation
	Normalized Cross-correlation
	Normalized Cross-correlation
	Normalized Cross-correlation
	Normalized Cross-correlation in Matlab
	Normalized Cross-correlation in Matlab
	Detection at Different Scales
	Detection at Different Scales
	Detection at Different Scales
	Detection at Different Scales
	Scaling the Image
	Scaling the Image
	Example
	Example
	Example
	Example
	Example
	Matlab Code
	Matlab Code
	Matlab Code
	Alternative: Scaling the Template
	Alternative: Scaling the Template
	Example
	Example
	Example
	Example
	Matlab Code
	Matlab Code
	Multiscale Search
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Multiscale Search: Matlab Code
	Using Multiscale Search
	Some Results of Multiscale Search
	Some Results of Multiscale Search
	Some Results of Multiscale Search
	Rotations
	In-Plane Rotations
	Out-of-Plane Rotations
	Handling Rotations
	Handling Rotations
	Number of Detection Results
	Non-Maxima Suppression
	Non-Maxima Suppression
	Non-Maxima Suppression
	Non-Maxima Suppression
	Non-Maxima Suppression
	Using Average Images as Templates
	Computing an Average Face
	Result: Average Face
	Cropping
	Measuring Accuracy
	Some Standard Steps
	Measuring Detection Accuracy
	Ground Truth Annotations
	Is a Detection Correct?
	Is a Detection Correct?
	Intersection Over Union
	Computing Intersection Over Union
	Intersection Over Union
	Computing Intersection Over Union
	Computing Intersection Over Union
	Computing Intersection Over Union
	Computing Intersection Over Union
	Computing Intersection Over Union
	Measuring Accuracy over a Dataset
	Measuring Accuracy over a Dataset
	Measuring Accuracy over a Dataset
	Measuring Accuracy over a Dataset
	True/False Positives/Negatives
	True/False Positives/Negatives
	True/False Positives/Negatives
	Measuring Accuracy over a Dataset
	Measuring Accuracy over a Dataset
	Thresholds
	Detection Threshold
	Detection Threshold
	Detection Threshold

