from tensorflow import keras import numpy as np from dense_mnist_solution import * #%% (training_inputs, training_labels, test_inputs, test_labels) = load_mnist() # Creating the model layers = 4 units_per_layer = [500,400] epochs = 20 hidden_activations = ['tanh', 'sigmoid'] # here is where your create_and_train_model function is called model = create_and_train_model(training_inputs, training_labels, layers, units_per_layer, epochs, hidden_activations) #test_loss, test_acc = model.evaluate(test_inputs, test_labels, verbose=0) #print('\nTest accuracy: %.2f%%' % (test_acc * 100)) # test_loss, test_acc = model.evaluate(test_inputs, test_labels, verbose=0) print('\nTest accuracy: %.2f%%' % (test_acc * 100))