
Neural Networks
Part 1 – Introduction, the Inference

Module

CSE 4311 – Neural Networks and Deep Learning
Vassilis Athitsos

Computer Science and Engineering Department
University of Texas at Arlington

1

Neural Networks are Graphs

2

𝑈𝑈2,1

Output layer

𝑈𝑈2,3

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈4,1

𝑈𝑈4,2𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

Input layer

1st Hidden Layer 2nd Hidden Layer

• This is an example of a neural network.
• The drawing will make more sense later.
• What is important at this point is that a neural network is a

weighted directed graph.

Neural Networks are Graphs

3

𝑈𝑈2,1

Output layer

𝑈𝑈2,3

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈4,1

𝑈𝑈4,2𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

Input layer

1st Hidden Layer 2nd Hidden Layer

• A directed graph consists of nodes and directed edges.
• Each node (also called unit) produces some output.
• Edges go from the output of a unit to the input of another

unit.

Input Units and Perceptrons

4

𝑈𝑈2,1

Output layer

𝑈𝑈2,3

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈4,1

𝑈𝑈4,2𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

Input layer

1st Hidden Layer 2nd Hidden Layer

• There are various types of units. The two most simple are:
– Input units. They make up the input layer.
– Perceptrons. They make up the rest of the layers. They are the

computational units of the neural network.

Input Units

5

𝑈𝑈2,1

Output layer

𝑈𝑈2,3

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈4,1

𝑈𝑈4,2𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

Input layer

1st Hidden Layer 2nd Hidden Layer

• Input units are very simple.
– They represent the input to the neural network.
– We will define them more formally a bit later, but they are basically a

notational convenience.

Perceptrons

• A perceptron is a function that maps
D-dimensional vectors to real numbers.

• For notational convenience, we add an
extra input, called the bias input.
The bias input is always equal to 1.

• 𝑏𝑏 is called the bias weight. It is optimized during training.
• 𝑤𝑤1, … ,𝑤𝑤𝐷𝐷 are also weights that are optimized during training. 6

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

input vector 𝐱𝐱 =

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
…
𝑥𝑥𝐷𝐷

Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1: 𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

Step 2: 𝑧𝑧 = ℎ 𝑎𝑎

• ℎ is called an activation function.

• For example, ℎ could be the sigmoid function 𝜎𝜎 𝑎𝑎 = 1
1+𝑒𝑒−𝑎𝑎 7

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1: 𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

Step 2: 𝑧𝑧 = ℎ 𝑎𝑎

• In a single formula: 𝑧𝑧 = ℎ 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
8

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?

9

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?

• 𝒘𝒘 is the vector of weights 𝑤𝑤1, …, 𝑤𝑤𝐷𝐷. It is a column
vector.
– By default, a vector is a column vector, unless specified

otherwise.
10

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is ???

11

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result of multiplying a row vector by a column vector is
???

12

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result of multiplying a row vector by a column vector is a
single number (also called a scalar, also called a 1D vector, also
called a 1x1 matrix).

13

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result is: 𝒘𝒘𝑇𝑇𝒙𝒙 = ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 .

• We also call 𝒘𝒘𝑇𝑇𝒙𝒙 the dot product of 𝒘𝒘 and 𝒙𝒙.
• This is all fundamental linear algebra (course prereq). 14

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Notation for
Bias Weight

• There is an alternative representation that we will not use, where
𝑏𝑏 is denoted as 𝑤𝑤0, and weight vector 𝒘𝒘 = 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝐷𝐷 .

• Then, instead of writing 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 we can simply write
𝑧𝑧 = ℎ 𝒘𝒘𝑇𝑇𝒙𝒙 .

• In our slides, we will denote the bias weight as 𝑏𝑏 and treat it
separately from the other weights. That will make life easier later.

15

𝑧𝑧 = ℎ 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1: 𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙

Step 2: 𝑧𝑧 = ℎ 𝑎𝑎

• ℎ is called an activation function.
• We will use several different activation functions this semester.

16

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Activation
Functions

• A perceptron produces
output 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 .

• A simple choice for the
activation function ℎ:
the step function.

ℎ 𝑎𝑎 = �0, if 𝑎𝑎 < 0
1, if 𝑎𝑎 ≥ 0

• The step function is useful for providing some intuitive examples.
• It is not useful for actual real-world systems.

– Reason (will be explained later in detail): it is not differentiable, it does not
allow optimization via gradient descent.

17

Activation
Functions

• A perceptron produces
output 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 .

• Another choice for the
activation function ℎ(𝑎𝑎):
the sigmoid function.

𝜎𝜎 𝑎𝑎 = 1
1+𝑒𝑒−𝑎𝑎

• The sigmoid is often used in real-world systems.
• It is a differentiable function, it allows use of gradient descent

(will be explained later).

18

Perceptrons
and

Neurons

• Perceptrons are inspired by neurons.
– Neurons are the cells forming the nervous system, and the brain.
– Neurons somehow sum up their inputs, and if the sum exceeds a

threshold, they "fire".

• Since brains are "intelligent", computer scientists have been
hoping that perceptron-based systems can be used to model
intelligence. 19

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧

Separate Modules: Training,
Inference

• Neural networks are supervised learning models.
• Typically, implementing a supervised learning model

requires implementing two separate modules:
– A training module, that uses training data to construct the

model.
– An inference module, that applies the model to new data,

to recognize the class that the new data belong to.

20

Separate Modules: Training,
Inference

• In the real world, training is done before inference.
– We cannot use a model before we construct that model.

• For teaching purposes, we start with the inference module. It
is more simple to understand and implement.
– The training module includes the inference module as a

subcomponent.

• We will start by seeing some simple examples of perceptrons
and neural networks.
– We just want to see how to apply them to test data.
– We will NOT worry (for now) about training them.

• Still, just as a preview: the job of training is to assign values to
the weights.
– At inference time, the weights are fixed. 21

Example: The AND Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean AND function:

22

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

false AND false = false
false AND true = false
true AND false = false
true AND true = true

Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 0 + 1 ∗ 0 = −1.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −1.5 = 0.

• Corresponds to case false AND false = false.

23

false AND false = false
false AND true = false
true AND false = false
true AND true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 0 + 1 ∗ 1 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case false AND true = false.

24

false AND false = false
false AND true = false
true AND false = false
true AND true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 1 + 1 ∗ 0 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case true AND false = false.

25

false AND false = false
false AND true = false
true AND false = false
true AND true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 1 + 1 ∗ 1 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case true AND true = true.

26

false AND false = false
false AND true = false
true AND false = false
true AND true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The OR Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean OR function:

27

false OR false = false
false OR true = true
true OR false = true
true OR true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 0 + 1 ∗ 0 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case false OR false = false.

28

false OR false = false
false OR true = true
true OR false = true
true OR true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 0 + 1 ∗ 1 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case false OR true = true.

29

false OR false = false
false OR true = true
true OR false = true
true OR true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 1 + 1 ∗ 0 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case true OR false = true.

30

false OR false = false
false OR true = true
true OR false = true
true OR true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 1 + 1 ∗ 1 = 1.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 1.5 = 1.

• Corresponds to case true OR true = true.

31

false OR false = false
false OR true = true
true OR false = true
true OR true = true

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Example: The NOT Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean NOT function:

32

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧

NOT(false) = true
NOT(true) = false

Example: The NOT Perceptron

• Verification: If 𝑥𝑥1 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 0.5 − 1 ∗ 0 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case NOT(false) = true.

33

NOT(false) = true
NOT(true) = false

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧

Example: The NOT Perceptron

• Verification: If 𝑥𝑥1 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 0.5 − 1 ∗ 1 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case NOT(true) = false.

34

NOT(false) = true
NOT(true) = false

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧

The XOR
Function

• As before, false is 0, true is 1.
• The figure shows the four input points of the XOR function.

– red corresponds to output value true.
– green corresponds to output value false.

• The two classes (true and false) are not linearly separable.
– This means that we cannot separate them with a straight line.

• It can be proven that no perceptron can compute the XOR
function (because the dot product is a linear operation). 35

false XOR false = false
false XOR true = true
true XOR false = true
true XOR true = false

Our First Neural Network: XOR
• A neural network is built using perceptrons as building blocks.
• The inputs to some perceptrons are outputs of other perceptrons.
• Here is an example neural network computing the XOR function.

36

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR
• Terminology: inputs and perceptrons are all called “units”.
• Units are grouped in layers: layer 1 (input), layer 2, layer 3 (output).
• The input layer just represents the inputs to the network.

– There are two inputs: 𝑥𝑥1 and 𝑥𝑥2.

3737

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR
• Such networks are called layered networks, more details later.
• Each unit is indexed by two numbers (layer index, unit index).
• Each bias weight 𝑏𝑏 is indexed by the same two numbers as its unit.
• Each weight 𝑤𝑤 is indexed by three numbers (layer, unit, weight).

3838

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR
• Note: every weight is associated with two units: it connects the

output of a unit with an input of another unit.
– Which of the two units do we use to index the weight?

3939

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR
• To index a weight 𝑤𝑤, we use the layer number and unit number of

the unit for which 𝑤𝑤 is an incoming weight.
• Weights incoming to unit 𝑙𝑙, 𝑖𝑖 are indexed as 𝑙𝑙, 𝑖𝑖, 𝑗𝑗, where 𝑗𝑗 ranges

from 1 to the number of incoming weights for unit 𝑙𝑙, 𝑖𝑖.

4040

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR
• Weights incoming to unit 𝑙𝑙, 𝑖𝑖 are indexed as 𝑙𝑙, 𝑖𝑖, 𝑗𝑗, where 𝑗𝑗 ranges

from 1 to the number of incoming weights for unit 𝑙𝑙, 𝑖𝑖.
• Since the input layer (which is layer 1) has no incoming weights,

there are no weights indexed as 𝑤𝑤1,𝑖𝑖,𝑗𝑗.

4141

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Our First Neural Network: XOR

• The XOR network shows how individual perceptrons can be
combined to perform more complicated functions.

42

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Logical OR

Logical AND

Logical
A AND (NOT B)

Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 (corresponding to false XOR true).
• For Unit 2,1, which performs a logical OR:

– The output is ℎ −0.5 + 0 ∗ 1 + 1 ∗ 1 = ℎ 0.5 .
– Assuming that ℎ is the step function, ℎ 0.5 = 1, so Unit 2,1 outputs 1.

43

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 0

Input unit,
outputs 1

Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 (corresponding to false XOR true).
• For Unit 2,2, which performs a logical AND:

– The output is ℎ −1.5 + 0 ∗ 1 + 1 ∗ 1 = ℎ −0.5 .
– Since ℎ is the step function, ℎ −0.5 = 0, so Unit 2,2 outputs 0.

44

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 0

Input unit,
outputs 1

Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 =1 (corresponding to false XOR true).
• Unit 3,1 is the output unit, computing the A AND (NOT B) function:

– One input is the output of the OR unit, which is 1.
– The other input is the output of the AND unit, which is 0.

45

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 0

Input unit,
outputs 1

Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 =1 (corresponding to false XOR true).
• For the output unit (computing the A AND (NOT B) function):

– The output is ℎ −0.5 + 1 ∗ 1 + 0 ∗ (−1) = ℎ 0.5 .
– Since ℎ is the step function, ℎ 0.5 = 1, so Unit 3,1 outputs 1.

46

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 0

Input unit,
outputs 1

1

Verifying the XOR Network

• We can follow the same process to compute the output of this
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 0, 𝑥𝑥2 = 0 (corresponding to false XOR false).
– The output is 0, as it should be.

47

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 0

Input unit,
outputs 0

0

Verifying the XOR Network

• We can follow the same process to compute the output of this
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 1, 𝑥𝑥2 = 0 (corresponding to true XOR false).
– The output is 1, as it should be.

48

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 1

Input unit,
outputs 0

1

Verifying the XOR Network

• We can follow the same process to compute the output of this
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 1, 𝑥𝑥2 = 1 (corresponding to true XOR true).
– The output is 0, as it should be.

49

Unit
2,2

(AND)

Unit
2,1

(OR)
Unit
3,1

(A AND
(NOT B))

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 1

Input unit,
outputs 1

0

Neural Networks
• Our XOR neural network consists of five units:

– Two input units, that just represent the two inputs to the network.
– Three perceptrons.

50

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Neural Network Layers
• Usually, as in the XOR example, neural networks are organized into layers.
• The input layer is the initial layer of input units (units 1,1 and 1,2 in our

example).
• The output layer is at the end (unit 3,1 in our example).
• Zero, one or more hidden layers can be between the input and output layers.

51

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Neural Network Layers
• There is only one hidden layer in our example, containing units 2,1 and 2,2.
• Each hidden layer's inputs are outputs from the previous layer.
• Each hidden layer's outputs are inputs to the next layer.
• The first hidden layer's inputs come from the input layer.
• The last hidden layer's outputs are inputs to the output layer.

52

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Feedforward Networks
• Feedforward networks are networks where there are no directed loops.
• If there are no loops, the output of a unit cannot (directly or indirectly)

influence its input.
• There are some varieties of neural networks that are not feedforward or

layered. For start, we focus on layered feedforward networks.

53

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Computing the Output
• Notation: 𝐿𝐿 is the number of layers. Layer 1 is the input layer, layer 𝐿𝐿 is the

output layer.
• The outputs of the units of layer 1 are simply the inputs to the network.
• For (layer 𝑙𝑙 = 2; 𝑙𝑙 ≤ 𝐿𝐿; 𝑙𝑙 = 𝑙𝑙 + 1):

– Compute the outputs of layer 𝑙𝑙, given the outputs of layer 𝑙𝑙 − 1.

54

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Computing the Output
• To compute the outputs of layer 𝑙𝑙 (where 𝑙𝑙 > 1), we simply need

to compute the output of each perceptron belonging to layer 𝑙𝑙 .
– For each such perceptron, its inputs are coming from outputs of units at

layer 𝑙𝑙 − 1, which we have already computed.
– Remember, we compute layer outputs in increasing order of 𝒍𝒍.

55

Unit
2,2

Unit
2,1

Unit
3,1

Output:
Unit
1,1

Unit
1,2

Input unit,
outputs 𝑥𝑥1

Input unit,
outputs 𝑥𝑥2

Multiple Output Units
• The output layer can have multiple units.
• This simply corresponds to the neural network producing a

multidimensional output.
– 3D output here.

56

Unit
2,2

Unit
2,1

Unit
3,1

Output
layer

Unit
1,1

Unit
1,2 Unit

3,3

Unit
3,2

Input
layer

Simplified Drawings
• Drawings of larger neural networks can get very complicated.
• Various conventions can be used to simplify the picture.

– Weight values not shown.
– Biases not shown.
– Unit numbers not shown.
– Edges not shown.

57

Output
layer

Input
layer

A More Complicated Network

58

𝑈𝑈2,1

Layer 4
(Output

layer)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 1
(Input layer)

Layer 2
(1st Hidden

Layer)

Layer 3
(2nd Hidden

Layer)

Fully Connected Layers

• An important property of a layer is how its units are connected
to the previous layer.
– Obviously, this is not applicable to the input layer, that has no previous

layer.

• The most simple type (and most expensive computationally) is a
fully connected layer.
– Every unit in this layer is connected to every unit in the previous layer.

• At first, we will work with fully connected layers.
– This will be the type that you will implement first.

• Then we will talk about other types of layers.
– Convolutional, max-pooling, LSTM are examples of types of layers that we

will study and use in later assignments.

59

What Neural Networks Can Compute

• An individual perceptron is a linear classifier.
– The weights of the perceptron define a linear boundary between two classes.

• Layered feedforward neural networks with one hidden layer can
compute any continuous function.

• Layered feedforward neural networks with two hidden layers can
compute any mathematical function.

• This has been known for decades, and is one reason scientists have
been optimistic about the potential of neural networks to model
intelligent systems.

• Another reason is the analogy between neural networks and
biological brains, which have been a standard of intelligence we are
still trying to achieve.

• There is only one catch: How do we find the right weights?
60

Finding the Right Weights
• The next topic will be how to train a neural network.
• To define a neural network we need to specify two things:

– The topology.
• layers.
• nodes per layer.
• how nodes in one layer are connected to nodes in the next layers.

– The weights of the edges.

• We typically come up with the topology manually.
– Would be great to learn it automatically, but current methods do

not work very well.
– So, typically, topology specifications are hyperparameters.

• The goal of training is to find good values for the weights.
61

	Slide Number 1
	Neural Networks are Graphs
	Neural Networks are Graphs
	Input Units and Perceptrons
	Input Units
	Perceptrons
	Perceptrons
	Perceptrons
	Notation
	Notation
	Notation
	Notation
	Notation
	Notation
	Notation for Bias Weight
	Perceptrons
	Activation Functions
	Activation Functions
	Perceptrons�and Neurons
	Separate Modules: Training, Inference
	Separate Modules: Training, Inference
	Example: The AND Perceptron
	Example: The AND Perceptron
	Example: The AND Perceptron
	Example: The AND Perceptron
	Example: The AND Perceptron
	Example: The OR Perceptron
	Example: The OR Perceptron
	Example: The OR Perceptron
	Example: The OR Perceptron
	Example: The OR Perceptron
	Example: The NOT Perceptron
	Example: The NOT Perceptron
	Example: The NOT Perceptron
	The XOR Function
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Our First Neural Network: XOR
	Computing the Output: An Example
	Computing the Output: An Example
	Computing the Output: An Example
	Computing the Output: An Example
	Verifying the XOR Network
	Verifying the XOR Network
	Verifying the XOR Network
	Neural Networks
	Neural Network Layers
	Neural Network Layers
	Feedforward Networks
	Computing the Output
	Computing the Output
	Multiple Output Units
	Simplified Drawings
	A More Complicated Network
	Fully Connected Layers
	What Neural Networks Can Compute
	Finding the Right Weights

