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Neural Networks are Graphs
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• This is an example of a neural network.
• The drawing will make more sense later.
• What is important at this point is that a neural network is a 

weighted directed graph.



Neural Networks are Graphs
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• A directed graph consists of nodes and directed edges.
• Each node (also called unit) produces some output.
• Edges go from the output of a unit to the input of another 

unit.



Input Units and Perceptrons
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• There are various types of units. The two most simple are:
– Input units. They make up the input layer.
– Perceptrons. They make up the rest of the layers. They are the 

computational units of the neural network.



Input Units
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• Input units are very simple.
– They represent the input to the neural network.
– We will define them more formally a bit later, but they are basically a 

notational convenience.



Perceptrons

• A perceptron is a function that maps 
D-dimensional vectors to real numbers. 

• For notational convenience, we add an
extra input, called the bias input. 
The bias input is always equal to 1.

• 𝑏𝑏 is called the bias weight. It is optimized during training.
• 𝑤𝑤1, … ,𝑤𝑤𝐷𝐷 are also weights that are optimized during training. 6

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
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Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1:    𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

Step 2:   𝑧𝑧 = ℎ 𝑎𝑎

• ℎ is called an activation function.

• For example, ℎ could be the sigmoid function 𝜎𝜎 𝑎𝑎 = 1
1+𝑒𝑒−𝑎𝑎 7
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Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1:    𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

Step 2:   𝑧𝑧 = ℎ 𝑎𝑎

• In a single formula:     𝑧𝑧 = ℎ 𝑏𝑏 + ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
8

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
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Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?
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Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?

• 𝒘𝒘 is the vector of weights 𝑤𝑤1, …, 𝑤𝑤𝐷𝐷. It is a column 
vector.
– By default, a vector is a column vector, unless specified 

otherwise.
10

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧



Notation

• 𝒘𝒘𝑇𝑇𝒙𝒙 is notation that we will be using a lot this semester.
– What does it mean?What is 𝒘𝒘, what is 𝒘𝒘𝑇𝑇, what is 𝒙𝒙?

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is ???

11

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

𝑥𝑥𝐷𝐷

…

Output: 𝑧𝑧



Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result of multiplying a row vector by a column vector is 
???
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Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result of multiplying a row vector by a column vector is a 
single number (also called a scalar, also called a 1D vector, also 
called a 1x1 matrix). 
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Notation

• 𝒘𝒘𝑇𝑇is the transpose of vector 𝒘𝒘. It is a row vector.
• 𝒙𝒙 is the vector of inputs 𝑥𝑥1, …, 𝑥𝑥𝐷𝐷. It is a column vector.
• 𝒘𝒘𝑇𝑇𝒙𝒙 is matrix multiplication. We multiply 𝒘𝒘𝑇𝑇 by 𝒙𝒙.

– The result is: 𝒘𝒘𝑇𝑇𝒙𝒙 = ∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 .

• We also call 𝒘𝒘𝑇𝑇𝒙𝒙 the dot product of 𝒘𝒘 and 𝒙𝒙.
• This is all fundamental linear algebra (course prereq). 14
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Notation for 
Bias Weight

• There is an alternative representation that we will not use, where 
𝑏𝑏 is denoted as 𝑤𝑤0, and weight vector 𝒘𝒘 = 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝐷𝐷 .

• Then, instead of writing 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 we can simply write 
𝑧𝑧 = ℎ 𝒘𝒘𝑇𝑇𝒙𝒙 .

• In our slides, we will denote the bias weight as 𝑏𝑏 and treat it 
separately from the other weights. That will make life easier later.
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Perceptrons

• A perceptron computes its output 𝑧𝑧 in two steps:

Step 1:    𝑎𝑎 = 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙

Step 2:   𝑧𝑧 = ℎ 𝑎𝑎

• ℎ is called an activation function.
• We will use several different activation functions this semester.
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Activation 
Functions

• A perceptron produces 
output 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 .

• A simple choice for the 
activation function ℎ: 
the step function.

ℎ 𝑎𝑎 = �0, if 𝑎𝑎 < 0
1, if 𝑎𝑎 ≥ 0

• The step function is useful for providing some intuitive examples.
• It is not useful for actual real-world systems.

– Reason (will be explained later in detail): it is not differentiable, it does not 
allow optimization via gradient descent.

17



Activation 
Functions

• A perceptron produces 
output 𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 .

• Another choice for the 
activation function ℎ(𝑎𝑎): 
the sigmoid function.

𝜎𝜎 𝑎𝑎 = 1
1+𝑒𝑒−𝑎𝑎

• The sigmoid is often used in real-world systems.
• It is a differentiable function, it allows use of gradient descent 

(will be explained later).
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Perceptrons
and 

Neurons

• Perceptrons are inspired by neurons.
– Neurons are the cells forming the nervous system, and the brain.
– Neurons somehow sum up their inputs, and if the sum exceeds a 

threshold, they "fire".

• Since brains are "intelligent", computer scientists have been 
hoping that perceptron-based systems can be used to model 
intelligence. 19
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Separate Modules: Training, 
Inference

• Neural networks are supervised learning models.
• Typically, implementing  a supervised learning model 

requires implementing two separate modules:
– A training module, that uses training data to construct the 

model.
– An inference module, that applies the model to new data, 

to recognize the class that the new data belong to.

20



Separate Modules: Training, 
Inference

• In the real world, training is done before inference.
– We cannot use a model before we construct that model.

• For teaching purposes, we start with the inference module. It 
is more simple to understand and implement.
– The training module includes the inference module as a 

subcomponent.

• We will start by seeing some simple examples of perceptrons
and neural networks.
– We just want to see how to apply them to test data.
– We will NOT worry (for now) about training them.

• Still, just as a preview: the job of training is to assign values to 
the weights.
– At inference time, the weights are fixed. 21



Example: The AND Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean AND function:
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Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 0 + 1 ∗ 0 = −1.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −1.5 = 0.

• Corresponds to case false AND false = false.
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Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 0 + 1 ∗ 1 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case false AND true = false.
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Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 1 + 1 ∗ 0 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case true AND false = false.
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Example: The AND Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −1.5 + 1 ∗ 1 + 1 ∗ 1 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case true AND true = true.
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Example: The OR Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean OR function:
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Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 0 + 1 ∗ 0 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case false OR false = false.
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Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 0 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 0 + 1 ∗ 1 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case false OR true = true.
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Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 1 + 1 ∗ 0 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case true OR false = true.
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Example: The OR Perceptron

• Verification: If 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = −0.5 + 1 ∗ 1 + 1 ∗ 1 = 1.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 1.5 = 1.

• Corresponds to case true OR true = true.
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Example: The NOT Perceptron
• Suppose we use the step function for activation.
• Suppose boolean value false is represented as number 0.
• Suppose boolean value true is represented as number 1.
• Then, the perceptron below computes the boolean NOT function:
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𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧

NOT(false) = true
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Example: The NOT Perceptron

• Verification: If 𝑥𝑥1 = 0:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 0.5 − 1 ∗ 0 = 0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h 0.5 = 1.

• Corresponds to case NOT(false) = true.
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NOT(false) = true
NOT(true) = false

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧



Example: The NOT Perceptron

• Verification: If 𝑥𝑥1 = 1:
– 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = 0.5 − 1 ∗ 1 = −0.5.
– ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = h −0.5 = 0.

• Corresponds to case NOT(true) = false.
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NOT(false) = true
NOT(true) = false

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑥𝑥1

1

𝑤𝑤1 = −1 Output: 𝑧𝑧



The XOR 
Function

• As before, false is 0, true is 1.
• The figure shows the four input points of the XOR function.

– red corresponds to output value true.
– green corresponds to output value false.

• The two classes (true and false) are not linearly separable.
– This means that we cannot separate them with a straight line.

• It can be proven that no perceptron can compute the XOR 
function (because the dot product is a linear operation). 35

false XOR false = false 
false XOR true = true
true XOR false = true
true XOR true = false 



Our First Neural Network: XOR
• A neural network is built using perceptrons as building blocks.
• The inputs to some perceptrons are outputs of other perceptrons.
• Here is an example neural network computing the XOR function.
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Our First Neural Network: XOR
• Terminology: inputs and perceptrons are all called “units”.
• Units are grouped in layers: layer 1 (input), layer 2, layer 3 (output).
• The input layer just represents the inputs to the network.

– There are two inputs: 𝑥𝑥1 and 𝑥𝑥2.
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Our First Neural Network: XOR
• Such networks are called layered networks, more details later.
• Each unit is indexed by two numbers (layer index, unit index).
• Each bias weight 𝑏𝑏 is indexed by the same two numbers as its unit.
• Each weight 𝑤𝑤 is indexed by three numbers (layer, unit, weight).
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Our First Neural Network: XOR
• Note: every weight is associated with two units: it connects the 

output of a unit with an input of another unit. 
– Which of the two units do we use to index the weight?
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Our First Neural Network: XOR
• To index a weight 𝑤𝑤, we use the layer number and unit number of 

the unit for which 𝑤𝑤 is an incoming weight. 
• Weights incoming to unit 𝑙𝑙, 𝑖𝑖 are indexed as 𝑙𝑙, 𝑖𝑖, 𝑗𝑗, where 𝑗𝑗 ranges 

from 1 to the number of incoming weights for unit 𝑙𝑙, 𝑖𝑖.
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Our First Neural Network: XOR
• Weights incoming to unit 𝑙𝑙, 𝑖𝑖 are indexed as 𝑙𝑙, 𝑖𝑖, 𝑗𝑗, where 𝑗𝑗 ranges 

from 1 to the number of incoming weights for unit 𝑙𝑙, 𝑖𝑖.
• Since the input layer (which is layer 1) has no incoming weights, 

there are no weights indexed as 𝑤𝑤1,𝑖𝑖,𝑗𝑗.
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Our First Neural Network: XOR

• The XOR network shows how individual perceptrons can be 
combined to perform more complicated functions.
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Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 (corresponding to false XOR true).
• For Unit 2,1, which performs a logical OR:

– The output is ℎ −0.5 + 0 ∗ 1 + 1 ∗ 1 = ℎ 0.5 . 
– Assuming that ℎ is the step function, ℎ 0.5 = 1, so Unit 2,1 outputs 1.
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Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 = 1 (corresponding to false XOR true).
• For Unit 2,2, which performs a logical AND:

– The output is ℎ −1.5 + 0 ∗ 1 + 1 ∗ 1 = ℎ −0.5 . 
– Since ℎ is the step function, ℎ −0.5 = 0, so Unit 2,2 outputs 0.
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Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 =1 (corresponding to false XOR true).
• Unit 3,1 is the output unit, computing the A AND (NOT B) function:

– One input is the output of the OR unit, which is 1.
– The other input is the output of the AND unit, which is 0.
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Computing the Output: An Example

• Suppose that 𝑥𝑥1 = 0, 𝑥𝑥2 =1 (corresponding to false XOR true).
• For the output unit (computing the A AND (NOT B) function):

– The output is ℎ −0.5 + 1 ∗ 1 + 0 ∗ (−1) = ℎ 0.5 . 
– Since ℎ is the step function, ℎ 0.5 = 1, so Unit 3,1 outputs 1.
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Verifying the XOR Network

• We can follow the same process to compute the output of this 
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 0, 𝑥𝑥2 = 0 (corresponding to false XOR false).
– The output is 0, as it should be.
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Verifying the XOR Network

• We can follow the same process to compute the output of this 
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 1, 𝑥𝑥2 = 0 (corresponding to true XOR false).
– The output is 1, as it should be.
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Verifying the XOR Network

• We can follow the same process to compute the output of this 
network for the other three cases.
– Here we consider the case where 𝑥𝑥1 = 1, 𝑥𝑥2 = 1 (corresponding to true XOR true).
– The output is 0, as it should be.
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Neural Networks
• Our XOR neural network consists of five units:

– Two input units, that just represent the two inputs to the network.
– Three perceptrons.
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Neural Network Layers
• Usually, as in the XOR example, neural networks are organized into layers.
• The input layer is the initial layer of input units (units 1,1 and 1,2 in our 

example).
• The output layer is at the end (unit 3,1 in our example).
• Zero, one or more hidden layers can be between the input and output layers.
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Neural Network Layers
• There is only one hidden layer in our example, containing units 2,1 and 2,2.
• Each hidden layer's inputs are outputs from the previous layer.
• Each hidden layer's outputs are inputs to the next layer.
• The first hidden layer's inputs come from the input layer.
• The last hidden layer's outputs are inputs to the output layer.
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Feedforward Networks
• Feedforward networks are networks where there are no directed loops.
• If there are no loops, the output of a unit cannot (directly or indirectly) 

influence its input.
• There are some varieties of neural networks that are not feedforward or 

layered. For start, we focus on layered feedforward networks.
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Computing the Output
• Notation: 𝐿𝐿 is the number of layers. Layer 1 is the input layer, layer 𝐿𝐿 is the 

output layer.
• The outputs of the units of layer 1 are simply the inputs to the network. 
• For (layer 𝑙𝑙 = 2; 𝑙𝑙 ≤ 𝐿𝐿; 𝑙𝑙 = 𝑙𝑙 + 1):

– Compute the outputs of layer 𝑙𝑙, given the outputs of layer 𝑙𝑙 − 1.
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Computing the Output
• To compute the outputs of layer 𝑙𝑙 (where 𝑙𝑙 > 1), we simply need 

to compute the output of each perceptron belonging to layer 𝑙𝑙 .
– For each such perceptron, its inputs are coming from outputs of units at 

layer 𝑙𝑙 − 1, which we have already computed.
– Remember, we compute layer outputs in increasing order of 𝒍𝒍.
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Multiple Output Units
• The output layer can have multiple units.
• This simply corresponds to the neural network producing a 

multidimensional output.
– 3D output here.
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Simplified Drawings
• Drawings of larger neural networks can get very complicated.
• Various conventions can be used to simplify the picture.

– Weight values not shown.
– Biases not shown.
– Unit numbers not shown.
– Edges not shown.
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A More Complicated Network
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Fully Connected Layers

• An important property of a layer is how its units are connected 
to the previous layer.
– Obviously, this is not applicable to the input layer, that has no previous 

layer.

• The most simple type (and most expensive computationally) is a 
fully connected layer.
– Every unit in this layer is connected to every unit in the previous layer.

• At first, we will work with fully connected layers.
– This will be the type that you will implement first.

• Then we will talk about other types of layers.
– Convolutional, max-pooling, LSTM are examples of types of layers that we 

will study and use in later assignments.
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What Neural Networks Can Compute

• An individual perceptron is a linear classifier.
– The weights of the perceptron define a linear boundary between two classes.

• Layered feedforward neural networks with one hidden layer can 
compute any continuous function.

• Layered feedforward neural networks with two hidden layers can 
compute any mathematical function.

• This has been known for decades, and is one reason scientists have 
been optimistic about the potential of neural networks to model 
intelligent systems.

• Another reason is the analogy between neural networks and 
biological brains, which have been a standard of intelligence we are 
still trying to achieve.

• There is only one catch: How do we find the right weights?
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Finding the Right Weights
• The next topic will be how to train a neural network.
• To define a neural network we need to specify two things:

– The topology.
• layers.
• nodes per layer.
• how nodes in one layer are connected to nodes in the next layers.

– The weights of the edges.

• We typically come up with the topology manually.
– Would be great to learn it automatically, but current methods do 

not work very well.
– So, typically, topology specifications are hyperparameters.

• The goal of training is to find good values for the weights.
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