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Training a Neural Network

• To train a neural network we need:
– Values for hyperparameters specifying the network topology 

(number of layers, units per layer, connectivity of layers).
– Other hyperparameters, besides network topology.

• More details later.

– A training set.
• This is a typical supervised learning problem, so each element of a 

training set is a pair of an example input and a target output.
• Typically, both the input and the output are multidimensional.

– An optimization criterion.
• This is a quantitative performance measure, that tells us how well the 

network performs on the training data.
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Plan
• We start with training the simplest neural network:

– A single perceptron.

• Training a neural network is an optimization problem.
– We will define what that means.

• In general, optimization problems can be solved in 
different ways.

• For neural networks in particular, we will solve the 
optimization problem using gradient descent.
– Again, we will define what that means.

• We will apply gradient descent to train a perceptron.
• Then, we will address more general neural networks.
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Training the AND Perceptron

• When we discussed the AND perceptron before, we 
hardcoded the weights.
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Training the AND Perceptron

• When we discussed the AND perceptron before, we 
hardcoded the weights.

• Now, as a toy example, we will see how we could train this 
perceptron, so that we learn the weights using training data.
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Drawing This as a Neural Network

• If we think of the AND perceptron as a neural network, what 
topology does it have?
– How many layers?
– How many units in each layer?
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Drawing This as a Neural Network

• If we think of the AND perceptron as a neural network, what 
topology does it have?
– How many layers? Two (don’t forget the input layer).
– How many units in each layer?

• Input layer: 2 units
• Output layer: 1 unit (the actual perceptron).
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Training Set

• This is a toy problem, there are only four possible cases:
– 𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
– 𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
– 𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
– 𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1
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Perceptron Training: 
Notation for Training Set

• We have a set 𝑋𝑋 of N training inputs.
– 𝑋𝑋 = {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁}

• Each 𝒙𝒙𝑛𝑛 is a D-dimensional column vector.
– 𝒙𝒙𝑛𝑛 = (𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝐷𝐷)′

• We also have a set 𝑇𝑇 of N target outputs.
– 𝑇𝑇 = 𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑁𝑁
– 𝒕𝒕𝑛𝑛 is the target output for training example 𝒙𝒙𝑛𝑛.

• If we are training a single perceptron, then each 𝒕𝒕𝑛𝑛 is a real 
number.

• In the general case, each 𝒕𝒕𝑛𝑛 is a K-dimensional column vector:
– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)′
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Training Goal

• What do we want our training to 
achieve?
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Training Goal

• What do we want our training to 
achieve?
– Intuitively, we want to come up with weights 

so that each input is mapped to the correct 
output.

– We want a general approach, that can be 
applied to any training set.
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Training as an Optimization Problem

• Training a neural network is an optimization 
problem.

• In an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
– Define a quantitative optimization criterion.

• For any choice of parameters, this criterion will measure will tell us 
how good they are.

• If we have two different choices, this criterion will tell us which 
choice one is better.

– Define an optimization algorithm for finding a good set of 
parameters.
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Parameters We Optimize

• In a neural network, what parameters are 
we optimizing?
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Parameters We Optimize

• In a neural network, what parameters are 
we optimizing?
– Bias weights b and regular weights w.
– In our toy example, this gives us three values 

that we have to optimize: 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.
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Optimization Criterion

• Suppose that we are considering some 
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to 
measure how good (or bad) those values 
are?
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Optimization Criterion

• Suppose that we are considering some 
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to 
measure how good (or bad) those values 
are?
– One commonly used measure: sum of 

squared differences.
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Squared Differences
• A neural network defines a mathematical function 𝑓𝑓 𝒃𝒃,𝒘𝒘,𝒙𝒙 :

– 𝒃𝒃, a list that specifies all the bias weights in the network.
– 𝒘𝒘, a list that specifies all other weights (non-bias weights) in the network.
– 𝒙𝒙, the vector that is given as input to the network.

• For our AND example:
– 𝒃𝒃 is a single number: 𝑏𝑏2,1.
– 𝒘𝒘 contains two numbers: 𝑤𝑤2,1,1 and 𝑤𝑤2,1,2.
– 𝒙𝒙 can be any 2-dimensional vector.

• For any training example 𝒙𝒙𝑛𝑛, we define error 𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) as:

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 =
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• In words, 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is the squared difference between the output 
of the neural network and the target output, multiplied (for 
reasons of convenience, explained later) by 1

2
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Sum of Squared Differences

• The error 𝐸𝐸 over the entire training set is defined as: 

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• This is called the sum of squared differences (SSD) error. 
– We simply sum up, over all training examples, the squared difference 

(squared error) that we get  for each example.

• Note that 𝐸𝐸 𝒃𝒃,𝒘𝒘 is a function of network parameters 𝒃𝒃 and 𝒘𝒘.
– Different choices of 𝒃𝒃 and 𝒘𝒘 give a different error 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Our training goal is to find values of 𝒃𝒃 and 𝒘𝒘 that minimize error 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
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Global and Local Optima

• Optimization can be maximization or minimization.
– We typically want to maximize if our optimization criterion 

relates to accuracy, fitness, utility…
– We typically want to minimize if our optimization criterion 

relates to error, cost, time or space complexity…

• In our case, our optimization criterion is SSD error, so 
we want to minimize that.

• An optimum is a maximum when we want to 
maximize, and a minimum when we want to 
minimize.

• The goal in optimization is to find an optimum.
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Global and Local Optima

• What does it mean if we say that a choice of values 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 
𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 minimizes the SSD error?

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• A term like “minimum”, “maximum”, “optimum” can be 
unclear, unless we specify whether it is global or local.

• To say that 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 are globally optimal, they must 
satisfy this property:

∀ 𝒃𝒃,𝒘𝒘 ,𝐸𝐸 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕,𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 ≤ 𝐸𝐸 𝒃𝒃,𝒘𝒘

• That is, no other choice for 𝒃𝒃 and 𝒘𝒘 can give a lower error.
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Global and Local Optima

• For 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 to be locally optimal, they must satisfy a 
far weaker property:

∃𝜀𝜀, such that ∀ 𝒃𝒃,𝒘𝒘 :
if 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 − 𝒃𝒃 < 𝜀𝜀 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 − 𝒘𝒘 < 𝜀𝜀
then 𝐸𝐸 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕,𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 ≤ 𝐸𝐸 𝒃𝒃,𝒘𝒘

• Remember that 𝒙𝒙 denotes the Euclidean norm.
• In words, if 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 are locally optimal, it means that 

we can find no better values for 𝒃𝒃,𝒘𝒘 that are relatively close 
𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕.
– There may be values 𝒃𝒃,𝒘𝒘 that give a far lower SSD error, but they are 

not very close to 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕.
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Global and Local Optima

• In any optimization method, it is important to 
understand if the result is globally or locally optimal.

• For neural networks, we do not have any method 
that finds globally optimal solutions in a reasonable 
amount of time (like polynomial time).

• The standard training algorithm (called 
backpropagation) finds a locally optimal solution.
– Mathematically we wish we could do better.
– In practice, the results are often good enough, otherwise 

neural networks would not be as popular.
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Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
• For neural networks, what is that?

– Define a quantitative optimization criterion.
• For neural networks, what is that?

– Define an optimization algorithm for finding a good set of 
parameters.

• For neural networks, what is that?
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Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
• For neural networks, we search over 𝒃𝒃 and 𝒘𝒘.

– Define a quantitative optimization criterion.
• For neural networks, we defined the SSD error, which we want to 

minimize. We will also see and use other choices this semester.

– Define an optimization algorithm for finding a good set of 
parameters.

• We have not done this yet, that is our next topic.
• Preview: the general method that we will use is called gradient 

descent. When used specifically for training neural networks, it is 
called backpropagation.
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Gradients and Partial Derivatives

• Gradients is something that is covered in the third semester of 
the Calculus sequence.

• For easy reference, here is a quick description.
– Summary: gradients are vectors of partial derivatives.

• Consider this function f:

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• The partial derivative of 𝑓𝑓 with respect to 𝑥𝑥 is denoted as 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

.

• To compute it, we simply compute the derivative with respect 
to 𝑥𝑥, pretending that any other variables are constant.
– In our example, the only other variable is 𝑦𝑦, so we pretend that 𝑦𝑦 is 

constant.
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Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Using the sum rule for derivatives:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥
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Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
=? ? ?

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
=? ? ?

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕50
𝜕𝜕𝑥𝑥

=? ? ? 27



Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
= 2𝑥𝑥

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
= 0. Why? Because we treat y as a constant.

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑥𝑥

= −600

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑥𝑥

= 0. Why? Again, because we treat y as a constant.

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= 𝑦𝑦. Again, we treat y as a constant.

• 𝜕𝜕50
𝜕𝜕𝑥𝑥

= 0, since 50 is a constant. 28



Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Based on the previous calculations, the partial derivative 
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

is:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 − 600 + 𝑦𝑦
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Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Now, let’s compute the partial derivative of 𝑓𝑓 with respect to 
𝑦𝑦, which is denoted as 𝜕𝜕𝑓𝑓

𝜕𝜕𝑦𝑦
.

• To compute it, we simply compute the derivative with respect 
to 𝑦𝑦, pretending that any other variables are constant.
– In our example, the only other variable is 𝑥𝑥, so we pretend that 𝑥𝑥 is 

constant.
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Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Using the sum rule for derivatives:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦
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Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
=? ? ?

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
=? ? ?

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕50
𝜕𝜕𝑦𝑦

=? ? ? 32



Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
= 0. Now we treat 𝑥𝑥 as a constant.

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
= 4𝑦𝑦

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑦𝑦

= 0. Again, we treat 𝑥𝑥 as a constant.

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑦𝑦

= −800

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

= 𝑥𝑥. Again, we treat 𝑥𝑥 as a constant.

• 𝜕𝜕50
𝜕𝜕𝑦𝑦

= 0, since 50 is a constant. 33



Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Based on the previous calculations, the partial derivative 
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

is:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 4𝑦𝑦 − 800 + 𝑥𝑥
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Gradients

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• So, the two partial derivatives are:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 − 600 + 𝑦𝑦,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 4𝑦𝑦 − 800 + 𝑥𝑥

• The gradient vector 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 is simply the vector of the partial 
derivatives.

𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦,4𝑦𝑦 − 800 + 𝑥𝑥
35



Gradients

• Formally: suppose that 𝑓𝑓 is a function from ℝ𝐷𝐷 to ℝ.
– In other words, the input to 𝑓𝑓 is a 𝐷𝐷-dimensional vector, 

and the output of 𝑓𝑓 is a real number.

• Then, the gradient 𝛻𝛻𝑓𝑓 is a function from ℝ𝐷𝐷 to ℝ𝐷𝐷.
• If 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐷𝐷 is a 𝐷𝐷-dimensional vector, then 

the gradient vector 𝛻𝛻𝑓𝑓 𝒙𝒙 is defined as the vector of 
all partial derivatives 𝜕𝜕𝑓𝑓 𝒙𝒙

𝜕𝜕𝑥𝑥𝑖𝑖
:

𝛻𝛻𝑓𝑓 𝒙𝒙 =
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥2

, … ,
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥𝐷𝐷
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Gradients and Neural Networks

• Gradients can be used to find local minima.
• In training a neural network, we typically want to find 

a local minimum of the optimization criterion.
– For example, the optimization criterion can be the sum of 

squared differences.

• So, we need to review how gradients are used in 
such problems.

• The method is called gradient descent.

37



Direction of the Gradient

• The gradient vector points towards the direction where the 
function increases the fastest.

• The opposite direction is the direction where the function 
increases the slowest.

• If we look at our previous example:

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• If we choose any point 𝑥𝑥,𝑦𝑦 , the gradient vector 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦
tells us towards which direction the function increases and 
decreases the fastest. 38



Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥
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• Here is a visualization of this 
function, for the region: 
0 < x < 400, 0 < y < 400

• Larger values are yellow (see 
bottom left of figure).

• Middle values are green.
• Low values are blue.
• The lowest values are black.



Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We choose (arbitrarily) point 
(100, 300), shown as ×.

• We calculate the gradient, it is 
equal to (-100, 500).

• We plot two arrows:
– The blue arrow points in 

the direction of the 
gradient (downwards and 
a bit to the left).

– The red arrow points in 
the opposite direction.
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Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We can see that:
– The function values 

increase (at least for a 
while) if we start moving 
towards the direction of 
the gradient.

– The function values 
decrease (again, at least 
for a while) if we start 
moving in the opposite 
direction.
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Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We now choose another 
point, (300, 150), shown as X.

• We calculate the gradient, it is 
equal to (150, 100).

• Again, we plot two arrows:
– One pointing towards the 

direction of the gradient 
(downwards and to the 
right).

– One pointing in the 
opposite direction.
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Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Again, we see that:
– The function values increase 

if we start moving (at least 
for a while) towards the 
direction of the gradient.

– The function values decrease 
(at least for a while) in the 
opposite direction.
• Note that, in this 

example, after a bit the 
values start increasing 
again.
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Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we want to find a 
local minimum of function 𝑓𝑓.

• Gradient descent is a method for 
doing that.
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Gradient Descent

Gradient descent pseudocode (still too vague, we will see a fully specified 
version in a bit):
1. Choose (randomly or however else you want) some starting point 𝑥𝑥,𝑦𝑦 .
2. Compute gradient 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 .
3. Compute new 𝑥𝑥, 𝑦𝑦 by starting at 𝑥𝑥,𝑦𝑦 and moving opposite to the 

direction of the 𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 .
• This is still too vague: How much do we move? We will discuss this 

in a bit.
4. Decide whether we are done. If we are done, return the new 𝑥𝑥,𝑦𝑦 .

• For example, check if the distance from the new 𝑥𝑥, 𝑦𝑦 to the old 
𝑥𝑥,𝑦𝑦 is less than a threshold 𝜀𝜀.

5. Go back to Step 2.
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Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we start at position 
𝑥𝑥1,𝑦𝑦1 = 300,150 .

• The gradient there is 150,100 .
• The next position 𝑥𝑥2,𝑦𝑦2 should 

be obtained by moving “in the 
opposite direction of the 
gradient”.

• Key question: how far do we 
move?
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Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we start at position 
𝑥𝑥1,𝑦𝑦1 = 300,150 .

• The gradient there is 150,100 .
• The next position 𝑥𝑥2,𝑦𝑦2 should 

be obtained by moving “in the 
opposite direction of the 
gradient”.

• Mathematically: 

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1, 𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1,𝑦𝑦1

• The question is, what is a good 
value for 𝜂𝜂? 47



Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1, 𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1,𝑦𝑦1

• Parameter 𝜂𝜂 is a hyperparameter.
• There are complicated ways that 

guarantee a good value for 𝜂𝜂, in 
some situations.

• For our example, we will do it the 
simple and hacky way: start with 
𝜂𝜂 = 1. 48



Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• Visually, the region around 𝑥𝑥2,𝑦𝑦2

is brighter.
• If we do the math, we can verify 

that 𝑓𝑓 𝑥𝑥2,𝑦𝑦2 > 𝑓𝑓 𝑥𝑥1,𝑦𝑦1 .
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Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• However, our code can easily detect 

and fix this problem.
• How do we detect the 

problem?
• How do we fix it?
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Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• How do we detect the problem?

• If 𝑓𝑓 𝑥𝑥2, 𝑦𝑦2 > 𝑓𝑓 𝑥𝑥1,𝑦𝑦1 , we 
have a problem.

• How do we fix it?
• Reset 𝜂𝜂 to a smaller value, like 

half its previous value, and try 
again.

• So, what would be the new 𝜂𝜂?
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Gradient Descent
• Our new 𝜂𝜂 is 0.5:

𝑥𝑥1,𝑦𝑦1 = 300,150 .

𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 0.5 ∗ 150,100
= 225,100

• The function value at (225,100)
is indeed smaller than at (300, 150), 
as we can see by the darker color.
• Again, we can verify by doing the 

math.
• What do we do next?
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Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.5.

• Next step: compute the next point in 
our descent, 𝑥𝑥3, 𝑦𝑦3 , based on the 
gradient at 𝑥𝑥2, 𝑦𝑦2 .

𝑥𝑥3, 𝑦𝑦3 = 𝑥𝑥2,𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2,𝑦𝑦2
= 225,100 − 0.5 ∗ −50,−175
= 250, 187.50
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Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.5.

• Next step: compute the next point in 
our descent, 𝑥𝑥3, 𝑦𝑦3 , based on the 
gradient at 𝑥𝑥2, 𝑦𝑦2 .

𝑥𝑥3, 𝑦𝑦3 = 𝑥𝑥2,𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2,𝑦𝑦2
= 225,100 − 0.5 ∗ −50,−175
= 250, 187.50

• Turns out that, again, 𝜂𝜂 was too 
large, and 𝑓𝑓 𝑥𝑥3, 𝑦𝑦3 > 𝑓𝑓 𝑥𝑥2,𝑦𝑦2 .

• So, we try again with new 𝜂𝜂 = 0.25.
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Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.25.

𝑥𝑥3,𝑦𝑦3 = 𝑥𝑥2, 𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2, 𝑦𝑦2
= 225,100 − 0.25 ∗ −50,−175
= 237.5, 143.75

• This move was useful:
𝑓𝑓 𝑥𝑥3,𝑦𝑦3 < 𝑓𝑓 𝑥𝑥2, 𝑦𝑦2 .

• This is a process that is easy to 
implement.

• If we continue, after 25 steps, we get 
(numerically close) to the minimum.
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Gradients at Local Minima

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡

• Mathematically, if 𝑥𝑥,𝑦𝑦 is a local minimum, then 
𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 =? ? ?

56



Gradients at Local Minima

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡

• Mathematically, if 𝑥𝑥,𝑦𝑦 is a local minimum, then 
𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝟎𝟎 (the zero vector, not a single number).

• So, if 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 is a local minimum, there will be no 
updates anymore.

• In practice, as we get closer and closer to the local 
minimum, the gradient eventually starts getting closer 
and closer to the zero vector.

• Therefore, the norm of the gradient vector can be 
used as a stopping criterion. 57



Gradient Descent Pseudocode
# This is a simplified version, but it still works in many cases
# 𝑥𝑥1,𝑦𝑦1 is the starting point for the descent.
GradientDescent(𝑓𝑓, 𝑥𝑥1,𝑦𝑦1, 𝜂𝜂, 𝜀𝜀)

𝑡𝑡 = 1
history = [ 𝑥𝑥1,𝑦𝑦1 ]
while 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 > 𝜀𝜀

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡
If 𝑓𝑓 𝑥𝑥𝑡𝑡+1, 𝑦𝑦𝑡𝑡+1 > 𝑓𝑓 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡

𝜂𝜂 = 𝜂𝜂
2

continue
Else 

add 𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 to end of history
𝑡𝑡 = 𝑡𝑡 + 1

return 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 , ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦
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Further Reading

• Gradient descent is a widely applied method, both in 
machine learning and in many other fields.

• If you are interested in more details (like how to choose 
𝜂𝜂, a good starting point is these Wikipedia articles:
– Gradient descent:

https://en.wikipedia.org/wiki/Gradient_descent
– Stochastic gradient descent: 

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

• Technically, we will train neural networks using 
stochastic gradient descent, but most of the time I will 
just be using the term “gradient descent”.
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Next Steps

• Our topic is (still) how to train a neural network.
• We will first apply gradient descent to train a 

perceptron.
• Then we will apply gradient descent to train a neural 

network.
• As a reminder, the application of gradient descent to 

neural networks is called backpropagation.
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