
Neural Networks – Part 2
• Training as an Optimization Problem.
• Gradient Descent

CSE 4311 – Neural Networks and Deep Learning
Vassilis Athitsos

Computer Science and Engineering Department
University of Texas at Arlington

1

Training a Neural Network

• To train a neural network we need:
– Values for hyperparameters specifying the network topology

(number of layers, units per layer, connectivity of layers).
– Other hyperparameters, besides network topology.

• More details later.

– A training set.
• This is a typical supervised learning problem, so each element of a

training set is a pair of an example input and a target output.
• Typically, both the input and the output are multidimensional.

– An optimization criterion.
• This is a quantitative performance measure, that tells us how well the

network performs on the training data.

2

Plan
• We start with training the simplest neural network:

– A single perceptron.

• Training a neural network is an optimization problem.
– We will define what that means.

• In general, optimization problems can be solved in
different ways.

• For neural networks in particular, we will solve the
optimization problem using gradient descent.
– Again, we will define what that means.

• We will apply gradient descent to train a perceptron.
• Then, we will address more general neural networks.

3

Training the AND Perceptron

• When we discussed the AND perceptron before, we
hardcoded the weights.

4

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Training the AND Perceptron

• When we discussed the AND perceptron before, we
hardcoded the weights.

• Now, as a toy example, we will see how we could train this
perceptron, so that we learn the weights using training data.

5

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Drawing This as a Neural Network

• If we think of the AND perceptron as a neural network, what
topology does it have?
– How many layers?
– How many units in each layer?

6

𝑧𝑧 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙
𝑥𝑥1

1

𝑥𝑥2

Output: 𝑧𝑧

Drawing This as a Neural Network

• If we think of the AND perceptron as a neural network, what
topology does it have?
– How many layers? Two (don’t forget the input layer).
– How many units in each layer?

• Input layer: 2 units
• Output layer: 1 unit (the actual perceptron).

7

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

Training Set

• This is a toy problem, there are only four possible cases:
– 𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
– 𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
– 𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
– 𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

8

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

Perceptron Training:
Notation for Training Set

• We have a set 𝑋𝑋 of N training inputs.
– 𝑋𝑋 = {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁}

• Each 𝒙𝒙𝑛𝑛 is a D-dimensional column vector.
– 𝒙𝒙𝑛𝑛 = (𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝐷𝐷)′

• We also have a set 𝑇𝑇 of N target outputs.
– 𝑇𝑇 = 𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑁𝑁
– 𝒕𝒕𝑛𝑛 is the target output for training example 𝒙𝒙𝑛𝑛.

• If we are training a single perceptron, then each 𝒕𝒕𝑛𝑛 is a real
number.

• In the general case, each 𝒕𝒕𝑛𝑛 is a K-dimensional column vector:
– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)′

9

Training Goal

• What do we want our training to
achieve?

10

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Training Goal

• What do we want our training to
achieve?
– Intuitively, we want to come up with weights

so that each input is mapped to the correct
output.

– We want a general approach, that can be
applied to any training set.

11

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Training as an Optimization Problem

• Training a neural network is an optimization
problem.

• In an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
– Define a quantitative optimization criterion.

• For any choice of parameters, this criterion will measure will tell us
how good they are.

• If we have two different choices, this criterion will tell us which
choice one is better.

– Define an optimization algorithm for finding a good set of
parameters.

12

Parameters We Optimize

• In a neural network, what parameters are
we optimizing?

13

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Parameters We Optimize

• In a neural network, what parameters are
we optimizing?
– Bias weights b and regular weights w.
– In our toy example, this gives us three values

that we have to optimize: 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

14

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Optimization Criterion

• Suppose that we are considering some
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to
measure how good (or bad) those values
are?

15

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Optimization Criterion

• Suppose that we are considering some
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to
measure how good (or bad) those values
are?
– One commonly used measure: sum of

squared differences.

16

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 1
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 1
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Squared Differences
• A neural network defines a mathematical function 𝑓𝑓 𝒃𝒃,𝒘𝒘,𝒙𝒙 :

– 𝒃𝒃, a list that specifies all the bias weights in the network.
– 𝒘𝒘, a list that specifies all other weights (non-bias weights) in the network.
– 𝒙𝒙, the vector that is given as input to the network.

• For our AND example:
– 𝒃𝒃 is a single number: 𝑏𝑏2,1.
– 𝒘𝒘 contains two numbers: 𝑤𝑤2,1,1 and 𝑤𝑤2,1,2.
– 𝒙𝒙 can be any 2-dimensional vector.

• For any training example 𝒙𝒙𝑛𝑛, we define error 𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) as:

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 =
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• In words, 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is the squared difference between the output
of the neural network and the target output, multiplied (for
reasons of convenience, explained later) by 1

2
. 17

Sum of Squared Differences

• The error 𝐸𝐸 over the entire training set is defined as:

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• This is called the sum of squared differences (SSD) error.
– We simply sum up, over all training examples, the squared difference

(squared error) that we get for each example.

• Note that 𝐸𝐸 𝒃𝒃,𝒘𝒘 is a function of network parameters 𝒃𝒃 and 𝒘𝒘.
– Different choices of 𝒃𝒃 and 𝒘𝒘 give a different error 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Our training goal is to find values of 𝒃𝒃 and 𝒘𝒘 that minimize error 𝐸𝐸 𝒃𝒃,𝒘𝒘 .

18

Global and Local Optima

• Optimization can be maximization or minimization.
– We typically want to maximize if our optimization criterion

relates to accuracy, fitness, utility…
– We typically want to minimize if our optimization criterion

relates to error, cost, time or space complexity…

• In our case, our optimization criterion is SSD error, so
we want to minimize that.

• An optimum is a maximum when we want to
maximize, and a minimum when we want to
minimize.

• The goal in optimization is to find an optimum.
19

Global and Local Optima

• What does it mean if we say that a choice of values 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and
𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 minimizes the SSD error?

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• A term like “minimum”, “maximum”, “optimum” can be
unclear, unless we specify whether it is global or local.

• To say that 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 are globally optimal, they must
satisfy this property:

∀ 𝒃𝒃,𝒘𝒘 ,𝐸𝐸 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕,𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 ≤ 𝐸𝐸 𝒃𝒃,𝒘𝒘

• That is, no other choice for 𝒃𝒃 and 𝒘𝒘 can give a lower error.
20

Global and Local Optima

• For 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 to be locally optimal, they must satisfy a
far weaker property:

∃𝜀𝜀, such that ∀ 𝒃𝒃,𝒘𝒘 :
if 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 − 𝒃𝒃 < 𝜀𝜀 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 − 𝒘𝒘 < 𝜀𝜀
then 𝐸𝐸 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕,𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 ≤ 𝐸𝐸 𝒃𝒃,𝒘𝒘

• Remember that 𝒙𝒙 denotes the Euclidean norm.
• In words, if 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕 are locally optimal, it means that

we can find no better values for 𝒃𝒃,𝒘𝒘 that are relatively close
𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕.
– There may be values 𝒃𝒃,𝒘𝒘 that give a far lower SSD error, but they are

not very close to 𝒃𝒃𝒐𝒐𝒐𝒐𝒕𝒕 and 𝒘𝒘𝒐𝒐𝒐𝒐𝒕𝒕.

21

Global and Local Optima

• In any optimization method, it is important to
understand if the result is globally or locally optimal.

• For neural networks, we do not have any method
that finds globally optimal solutions in a reasonable
amount of time (like polynomial time).

• The standard training algorithm (called
backpropagation) finds a locally optimal solution.
– Mathematically we wish we could do better.
– In practice, the results are often good enough, otherwise

neural networks would not be as popular.

22

Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
• For neural networks, what is that?

– Define a quantitative optimization criterion.
• For neural networks, what is that?

– Define an optimization algorithm for finding a good set of
parameters.

• For neural networks, what is that?

23

Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
• For neural networks, we search over 𝒃𝒃 and 𝒘𝒘.

– Define a quantitative optimization criterion.
• For neural networks, we defined the SSD error, which we want to

minimize. We will also see and use other choices this semester.

– Define an optimization algorithm for finding a good set of
parameters.

• We have not done this yet, that is our next topic.
• Preview: the general method that we will use is called gradient

descent. When used specifically for training neural networks, it is
called backpropagation.

24

Gradients and Partial Derivatives

• Gradients is something that is covered in the third semester of
the Calculus sequence.

• For easy reference, here is a quick description.
– Summary: gradients are vectors of partial derivatives.

• Consider this function f:

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• The partial derivative of 𝑓𝑓 with respect to 𝑥𝑥 is denoted as 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

.

• To compute it, we simply compute the derivative with respect
to 𝑥𝑥, pretending that any other variables are constant.
– In our example, the only other variable is 𝑦𝑦, so we pretend that 𝑦𝑦 is

constant.
25

Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Using the sum rule for derivatives:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥

26

Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
=? ? ?

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
=? ? ?

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

=? ? ?

• 𝜕𝜕50
𝜕𝜕𝑥𝑥

=? ? ? 27

Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑥𝑥
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕50
𝜕𝜕𝑥𝑥

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥
= 2𝑥𝑥

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑥𝑥
= 0. Why? Because we treat y as a constant.

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑥𝑥

= −600

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑥𝑥

= 0. Why? Again, because we treat y as a constant.

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

= 𝑦𝑦. Again, we treat y as a constant.

• 𝜕𝜕50
𝜕𝜕𝑥𝑥

= 0, since 50 is a constant. 28

Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Based on the previous calculations, the partial derivative
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

is:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 − 600 + 𝑦𝑦

29

Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Now, let’s compute the partial derivative of 𝑓𝑓 with respect to
𝑦𝑦, which is denoted as 𝜕𝜕𝑓𝑓

𝜕𝜕𝑦𝑦
.

• To compute it, we simply compute the derivative with respect
to 𝑦𝑦, pretending that any other variables are constant.
– In our example, the only other variable is 𝑥𝑥, so we pretend that 𝑥𝑥 is

constant.

30

Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Using the sum rule for derivatives:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦

31

Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
=? ? ?

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
=? ? ?

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

=? ? ?

• 𝜕𝜕50
𝜕𝜕𝑦𝑦

=? ? ? 32

Partial Derivatives
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
+
𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−600𝑥𝑥)

𝜕𝜕𝑦𝑦
+
𝜕𝜕(−800𝑦𝑦)

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕50
𝜕𝜕𝑦𝑦

• 𝜕𝜕𝑥𝑥2

𝜕𝜕𝑦𝑦
= 0. Now we treat 𝑥𝑥 as a constant.

• 𝜕𝜕2𝑦𝑦2

𝜕𝜕𝑦𝑦
= 4𝑦𝑦

• 𝜕𝜕(−600𝑥𝑥)
𝜕𝜕𝑦𝑦

= 0. Again, we treat 𝑥𝑥 as a constant.

• 𝜕𝜕(−800𝑦𝑦)
𝜕𝜕𝑦𝑦

= −800

• 𝜕𝜕𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

= 𝑥𝑥. Again, we treat 𝑥𝑥 as a constant.

• 𝜕𝜕50
𝜕𝜕𝑦𝑦

= 0, since 50 is a constant. 33

Partial Derivatives

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• Based on the previous calculations, the partial derivative
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

is:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 4𝑦𝑦 − 800 + 𝑥𝑥

34

Gradients

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

• So, the two partial derivatives are:

𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 − 600 + 𝑦𝑦,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 4𝑦𝑦 − 800 + 𝑥𝑥

• The gradient vector 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 is simply the vector of the partial
derivatives.

𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦,4𝑦𝑦 − 800 + 𝑥𝑥
35

Gradients

• Formally: suppose that 𝑓𝑓 is a function from ℝ𝐷𝐷 to ℝ.
– In other words, the input to 𝑓𝑓 is a 𝐷𝐷-dimensional vector,

and the output of 𝑓𝑓 is a real number.

• Then, the gradient 𝛻𝛻𝑓𝑓 is a function from ℝ𝐷𝐷 to ℝ𝐷𝐷.
• If 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐷𝐷 is a 𝐷𝐷-dimensional vector, then

the gradient vector 𝛻𝛻𝑓𝑓 𝒙𝒙 is defined as the vector of
all partial derivatives 𝜕𝜕𝑓𝑓 𝒙𝒙

𝜕𝜕𝑥𝑥𝑖𝑖
:

𝛻𝛻𝑓𝑓 𝒙𝒙 =
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥2

, … ,
𝜕𝜕𝑓𝑓 𝒙𝒙
𝜕𝜕𝑥𝑥𝐷𝐷

36

Gradients and Neural Networks

• Gradients can be used to find local minima.
• In training a neural network, we typically want to find

a local minimum of the optimization criterion.
– For example, the optimization criterion can be the sum of

squared differences.

• So, we need to review how gradients are used in
such problems.

• The method is called gradient descent.

37

Direction of the Gradient

• The gradient vector points towards the direction where the
function increases the fastest.

• The opposite direction is the direction where the function
increases the slowest.

• If we look at our previous example:

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• If we choose any point 𝑥𝑥,𝑦𝑦 , the gradient vector 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦
tells us towards which direction the function increases and
decreases the fastest. 38

Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

39

• Here is a visualization of this
function, for the region:
0 < x < 400, 0 < y < 400

• Larger values are yellow (see
bottom left of figure).

• Middle values are green.
• Low values are blue.
• The lowest values are black.

Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We choose (arbitrarily) point
(100, 300), shown as ×.

• We calculate the gradient, it is
equal to (-100, 500).

• We plot two arrows:
– The blue arrow points in

the direction of the
gradient (downwards and
a bit to the left).

– The red arrow points in
the opposite direction.

40

Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We can see that:
– The function values

increase (at least for a
while) if we start moving
towards the direction of
the gradient.

– The function values
decrease (again, at least
for a while) if we start
moving in the opposite
direction.

41

Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• We now choose another
point, (300, 150), shown as X.

• We calculate the gradient, it is
equal to (150, 100).

• Again, we plot two arrows:
– One pointing towards the

direction of the gradient
(downwards and to the
right).

– One pointing in the
opposite direction.

42

Some Examples
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Again, we see that:
– The function values increase

if we start moving (at least
for a while) towards the
direction of the gradient.

– The function values decrease
(at least for a while) in the
opposite direction.
• Note that, in this

example, after a bit the
values start increasing
again.

43

Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we want to find a
local minimum of function 𝑓𝑓.

• Gradient descent is a method for
doing that.

44

Gradient Descent

Gradient descent pseudocode (still too vague, we will see a fully specified
version in a bit):
1. Choose (randomly or however else you want) some starting point 𝑥𝑥,𝑦𝑦 .
2. Compute gradient 𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 .
3. Compute new 𝑥𝑥, 𝑦𝑦 by starting at 𝑥𝑥,𝑦𝑦 and moving opposite to the

direction of the 𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 .
• This is still too vague: How much do we move? We will discuss this

in a bit.
4. Decide whether we are done. If we are done, return the new 𝑥𝑥,𝑦𝑦 .

• For example, check if the distance from the new 𝑥𝑥, 𝑦𝑦 to the old
𝑥𝑥,𝑦𝑦 is less than a threshold 𝜀𝜀.

5. Go back to Step 2.

45

Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we start at position
𝑥𝑥1,𝑦𝑦1 = 300,150 .

• The gradient there is 150,100 .
• The next position 𝑥𝑥2,𝑦𝑦2 should

be obtained by moving “in the
opposite direction of the
gradient”.

• Key question: how far do we
move?

46

Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• Suppose that we start at position
𝑥𝑥1,𝑦𝑦1 = 300,150 .

• The gradient there is 150,100 .
• The next position 𝑥𝑥2,𝑦𝑦2 should

be obtained by moving “in the
opposite direction of the
gradient”.

• Mathematically:

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1, 𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1,𝑦𝑦1

• The question is, what is a good
value for 𝜂𝜂? 47

Gradient Descent
𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝑥𝑥2 + 2𝑦𝑦2 − 600𝑥𝑥 − 800𝑦𝑦 + 𝑥𝑥 ∗ 𝑦𝑦 + 50

𝛻𝛻𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦

= 2𝑥𝑥 − 600 + 𝑦𝑦, 4𝑦𝑦 − 800 + 𝑥𝑥

• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1, 𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1,𝑦𝑦1

• Parameter 𝜂𝜂 is a hyperparameter.
• There are complicated ways that

guarantee a good value for 𝜂𝜂, in
some situations.

• For our example, we will do it the
simple and hacky way: start with
𝜂𝜂 = 1. 48

Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• Visually, the region around 𝑥𝑥2,𝑦𝑦2

is brighter.
• If we do the math, we can verify

that 𝑓𝑓 𝑥𝑥2,𝑦𝑦2 > 𝑓𝑓 𝑥𝑥1,𝑦𝑦1 .

49

Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• However, our code can easily detect

and fix this problem.
• How do we detect the

problem?
• How do we fix it?

50

Gradient Descent
• 𝑥𝑥1,𝑦𝑦1 = 300,150 .

• 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 1 ∗ 150,100
= 150,50

• We moved too far.
• How do we detect the problem?

• If 𝑓𝑓 𝑥𝑥2, 𝑦𝑦2 > 𝑓𝑓 𝑥𝑥1,𝑦𝑦1 , we
have a problem.

• How do we fix it?
• Reset 𝜂𝜂 to a smaller value, like

half its previous value, and try
again.

• So, what would be the new 𝜂𝜂?

51

Gradient Descent
• Our new 𝜂𝜂 is 0.5:

𝑥𝑥1,𝑦𝑦1 = 300,150 .

𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1 = 150,100 .

𝑥𝑥2,𝑦𝑦2 = 𝑥𝑥1,𝑦𝑦1 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥1, 𝑦𝑦1
= 300,150 − 0.5 ∗ 150,100
= 225,100

• The function value at (225,100)
is indeed smaller than at (300, 150),
as we can see by the darker color.
• Again, we can verify by doing the

math.
• What do we do next?

52

Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.5.

• Next step: compute the next point in
our descent, 𝑥𝑥3, 𝑦𝑦3 , based on the
gradient at 𝑥𝑥2, 𝑦𝑦2 .

𝑥𝑥3, 𝑦𝑦3 = 𝑥𝑥2,𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2,𝑦𝑦2
= 225,100 − 0.5 ∗ −50,−175
= 250, 187.50

53

Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.5.

• Next step: compute the next point in
our descent, 𝑥𝑥3, 𝑦𝑦3 , based on the
gradient at 𝑥𝑥2, 𝑦𝑦2 .

𝑥𝑥3, 𝑦𝑦3 = 𝑥𝑥2,𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2,𝑦𝑦2
= 225,100 − 0.5 ∗ −50,−175
= 250, 187.50

• Turns out that, again, 𝜂𝜂 was too
large, and 𝑓𝑓 𝑥𝑥3, 𝑦𝑦3 > 𝑓𝑓 𝑥𝑥2,𝑦𝑦2 .

• So, we try again with new 𝜂𝜂 = 0.25.
54

Gradient Descent
• Our progress so far:

𝑥𝑥1,𝑦𝑦1 = 300,150 .
𝑥𝑥2,𝑦𝑦2 = 225,100 .

Current value for 𝜂𝜂 is 0.25.

𝑥𝑥3,𝑦𝑦3 = 𝑥𝑥2, 𝑦𝑦2 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥2, 𝑦𝑦2
= 225,100 − 0.25 ∗ −50,−175
= 237.5, 143.75

• This move was useful:
𝑓𝑓 𝑥𝑥3,𝑦𝑦3 < 𝑓𝑓 𝑥𝑥2, 𝑦𝑦2 .

• This is a process that is easy to
implement.

• If we continue, after 25 steps, we get
(numerically close) to the minimum.

55

Gradients at Local Minima

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡

• Mathematically, if 𝑥𝑥,𝑦𝑦 is a local minimum, then
𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 =? ? ?

56

Gradients at Local Minima

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡

• Mathematically, if 𝑥𝑥,𝑦𝑦 is a local minimum, then
𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝟎𝟎 (the zero vector, not a single number).

• So, if 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 is a local minimum, there will be no
updates anymore.

• In practice, as we get closer and closer to the local
minimum, the gradient eventually starts getting closer
and closer to the zero vector.

• Therefore, the norm of the gradient vector can be
used as a stopping criterion. 57

Gradient Descent Pseudocode
This is a simplified version, but it still works in many cases
𝑥𝑥1,𝑦𝑦1 is the starting point for the descent.
GradientDescent(𝑓𝑓, 𝑥𝑥1,𝑦𝑦1, 𝜂𝜂, 𝜀𝜀)

𝑡𝑡 = 1
history = [𝑥𝑥1,𝑦𝑦1]
while 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 > 𝜀𝜀

𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 − 𝜂𝜂 ∗ 𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡
If 𝑓𝑓 𝑥𝑥𝑡𝑡+1, 𝑦𝑦𝑡𝑡+1 > 𝑓𝑓 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡

𝜂𝜂 = 𝜂𝜂
2

continue
Else

add 𝑥𝑥𝑡𝑡+1,𝑦𝑦𝑡𝑡+1 to end of history
𝑡𝑡 = 𝑡𝑡 + 1

return 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 , ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦
58

Further Reading

• Gradient descent is a widely applied method, both in
machine learning and in many other fields.

• If you are interested in more details (like how to choose
𝜂𝜂, a good starting point is these Wikipedia articles:
– Gradient descent:

https://en.wikipedia.org/wiki/Gradient_descent
– Stochastic gradient descent:

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

• Technically, we will train neural networks using
stochastic gradient descent, but most of the time I will
just be using the term “gradient descent”.

59

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Next Steps

• Our topic is (still) how to train a neural network.
• We will first apply gradient descent to train a

perceptron.
• Then we will apply gradient descent to train a neural

network.
• As a reminder, the application of gradient descent to

neural networks is called backpropagation.

60

	Slide Number 1
	Training a Neural Network
	Plan
	Training the AND Perceptron
	Training the AND Perceptron
	Drawing This as a Neural Network
	Drawing This as a Neural Network
	Training Set
	Perceptron Training: �Notation for Training Set
	Training Goal
	Training Goal
	Training as an Optimization Problem
	Parameters We Optimize
	Parameters We Optimize
	Optimization Criterion
	Optimization Criterion
	Squared Differences
	Sum of Squared Differences
	Global and Local Optima
	Global and Local Optima
	Global and Local Optima
	Global and Local Optima
	Training as an Optimization Problem
	Training as an Optimization Problem
	Gradients and Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Partial Derivatives
	Gradients
	Gradients
	Gradients and Neural Networks
	Direction of the Gradient
	Some Examples
	Some Examples
	Some Examples
	Some Examples
	Some Examples
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradients at Local Minima
	Gradients at Local Minima
	Gradient Descent Pseudocode
	Further Reading
	Next Steps

