Neural Networks – Part 2

- Training as an Optimization Problem.
- Gradient Descent

CSE 4311 – Neural Networks and Deep Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Training a Neural Network

- To train a neural network we need:
 - Values for hyperparameters specifying the network topology (number of layers, units per layer, connectivity of layers).
 - Other hyperparameters, besides network topology.
 - More details later.
 - A training set.
 - This is a typical supervised learning problem, so each element of a training set is a pair of an example input and a target output.
 - Typically, both the input and the output are multidimensional.
 - An optimization criterion.
 - This is a quantitative performance measure, that tells us how well the network performs on the training data.

Plan

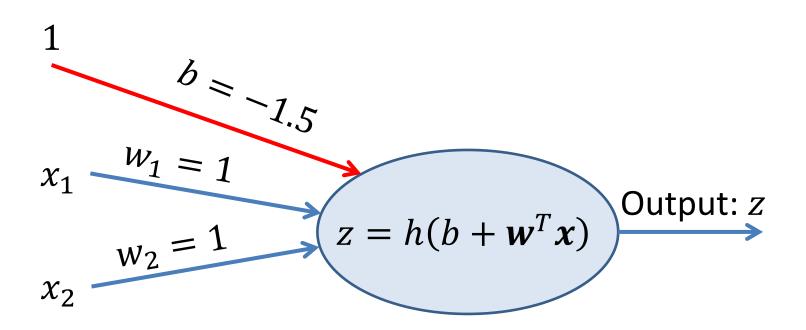
- We start with training the simplest neural network:
 A single perceptron.
- Training a neural network is an <u>optimization problem</u>.
 We will define what that means.
- In general, optimization problems can be solved in different ways.
- For neural networks in particular, we will solve the optimization problem using **gradient descent**.

- Again, we will define what that means.

- We will apply gradient descent to train a perceptron.
- Then, we will address more general neural networks.

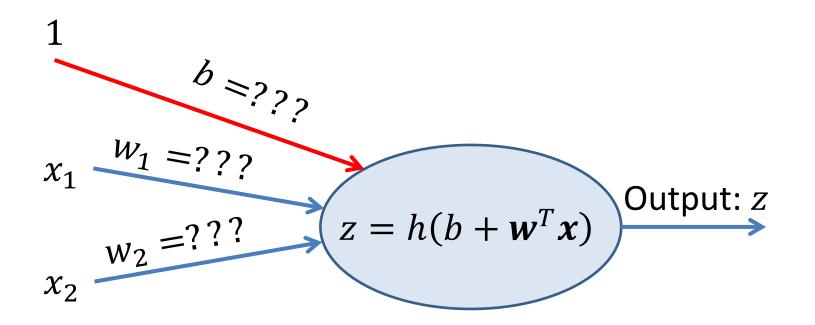
Training the AND Perceptron

• When we discussed the AND perceptron before, we hardcoded the weights.



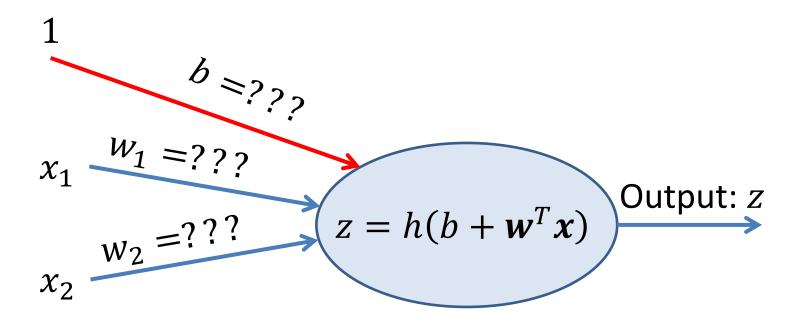
Training the AND Perceptron

- When we discussed the AND perceptron before, we hardcoded the weights.
- Now, as a toy example, we will see how we could train this perceptron, so that we learn the weights using training data.



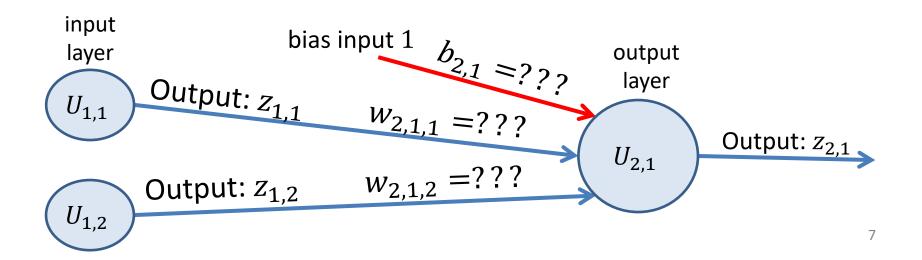
Drawing This as a Neural Network

- If we think of the AND perceptron as a neural network, what topology does it have?
 - How many layers?
 - How many units in each layer?



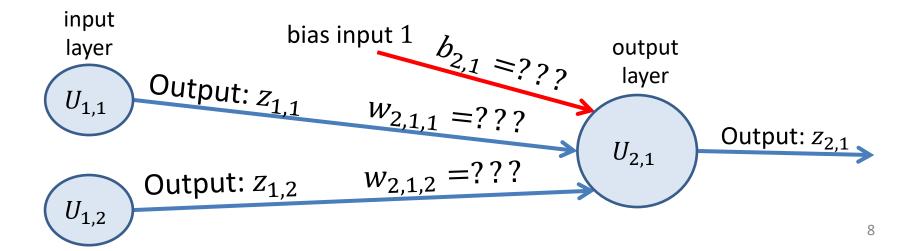
Drawing This as a Neural Network

- If we think of the AND perceptron as a neural network, what topology does it have?
 - How many layers? Two (don't forget the input layer).
 - How many units in each layer?
 - Input layer: 2 units
 - Output layer: 1 unit (the actual perceptron).



Training Set

- This is a toy problem, there are only four possible cases:
 - $x_{1} = (0.0, 0.0)^{T} t_{1} = 0$ $- x_{2} = (0.0, 1.0)^{T} t_{2} = 1$ $- x_{3} = (1.0, 0.0)^{T} t_{3} = 1$ $x_{3} = (1.0, 1.0)^{T} t_{3} = 1$
 - $-x_4 = (1.0, 1.0)^T$ $t_4 = 1$



Perceptron Training: Notation for Training Set

• We have a set *X* of N training inputs.

 $- X = \{x_1, x_2, \dots, x_N\}$

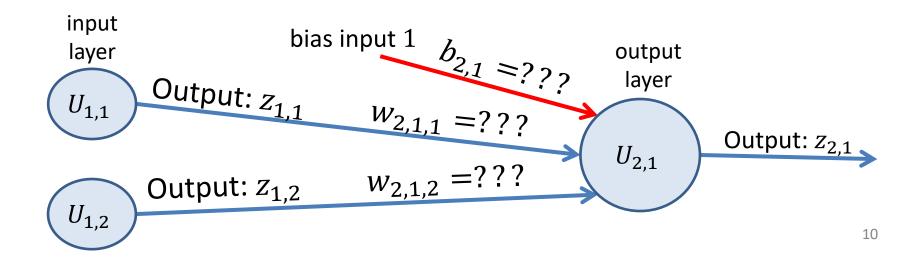
• Each x_n is a D-dimensional column vector.

 $- \mathbf{x}_n = (x_{n,1}, x_{n,2}, \dots, x_{n,D})'$

- We also have a set T of N target outputs.
 - $T = \{t_1, t_2, \dots, t_N\}$
 - t_n is the target output for training example x_n .
- If we are training a single perceptron, then each t_n is a real number.
- In the general case, each t_n is a K-dimensional column vector: - $t_n = (t_{n,1}, t_{n,2}, ..., t_{n,K})'$

Training Goal

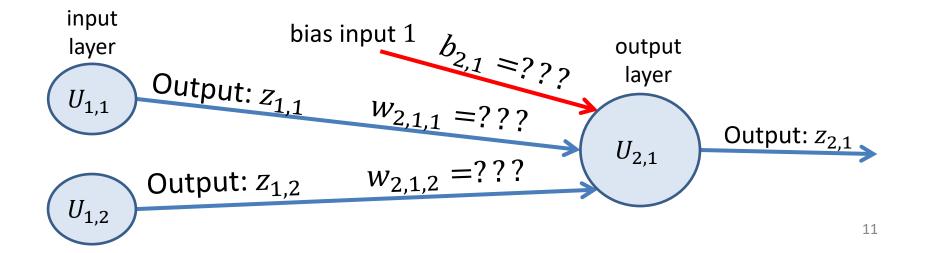
 What do we want our training to achieve? $\begin{aligned} \boldsymbol{x}_1 &= (0.0, \ 0.0)^T & t_1 = 0 \\ \boldsymbol{x}_2 &= (0.0, \ 1.0)^T & t_2 = 1 \\ \boldsymbol{x}_3 &= (1.0, \ 0.0)^T & t_3 = 1 \\ \boldsymbol{x}_4 &= (1.0, \ 1.0)^T & t_4 = 1 \end{aligned}$



Training Goal

- What do we want our training to achieve?
 - Intuitively, we want to come up with weights so that each input is mapped to the correct output.
 - We want a general approach, that can be applied to any training set.

 $\begin{aligned} & \boldsymbol{x}_1 = (0.0, \ 0.0)^T & \boldsymbol{t}_1 = 0 \\ & \boldsymbol{x}_2 = (0.0, \ 1.0)^T & \boldsymbol{t}_2 = 1 \\ & \boldsymbol{x}_3 = (1.0, \ 0.0)^T & \boldsymbol{t}_3 = 1 \\ & \boldsymbol{x}_4 = (1.0, \ 1.0)^T & \boldsymbol{t}_4 = 1 \end{aligned}$

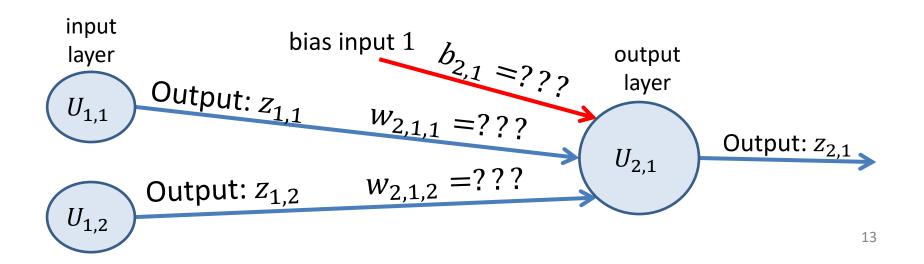


Training as an Optimization Problem

- Training a neural network is an optimization problem.
- In an optimization problem we need to:
 - Define what <u>parameters</u> we are optimizing. This is also called the <u>search space</u> (the space of possible choices).
 - Define a quantitative <u>optimization criterion</u>.
 - For any choice of parameters, this criterion will measure will tell us how good they are.
 - If we have two different choices, this criterion will tell us which choice one is better.
 - Define an <u>optimization algorithm</u> for finding a good set of parameters.

Parameters We Optimize

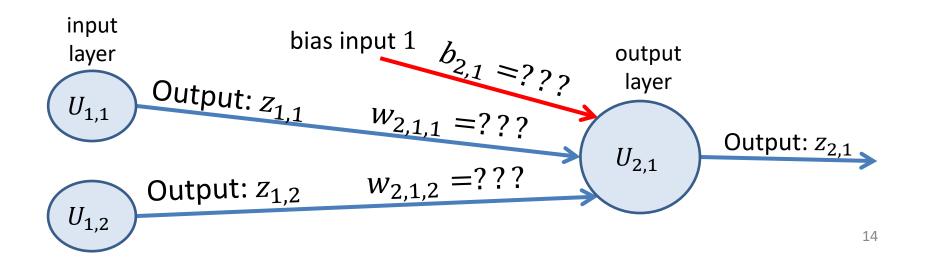
- In a neural network, what parameters are we optimizing?
- $\begin{array}{ll} \boldsymbol{x}_1 = (0.0, \ 0.0)^T & t_1 = 0 \\ \boldsymbol{x}_2 = (0.0, \ 1.0)^T & t_2 = 1 \\ \boldsymbol{x}_3 = (1.0, \ 0.0)^T & t_3 = 1 \\ \boldsymbol{x}_4 = (1.0, \ 1.0)^T & t_4 = 1 \end{array}$



Parameters We Optimize

- In a neural network, what parameters are we optimizing?
 - Bias weights b and regular weights w.
 - In our toy example, this gives us three values that we have to optimize: $b_{2,1}$, $w_{2,1,1}$, $w_{2,1,2}$.

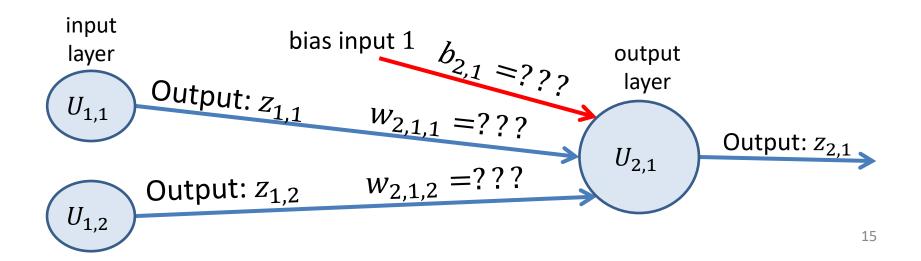
$$\begin{aligned} \boldsymbol{x}_1 &= (0.0, \ 0.0)^T & t_1 = 0 \\ \boldsymbol{x}_2 &= (0.0, \ 1.0)^T & t_2 = 1 \\ \boldsymbol{x}_3 &= (1.0, \ 0.0)^T & t_3 = 1 \\ \boldsymbol{x}_4 &= (1.0, \ 1.0)^T & t_4 = 1 \end{aligned}$$



Optimization Criterion

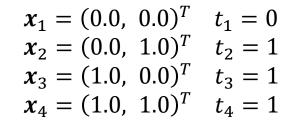
- Suppose that we are considering some values for b_{2,1}, w_{2,1,1}, w_{2,1,2}.
- What quantitative criterion can we use to measure how good (or bad) those values are?

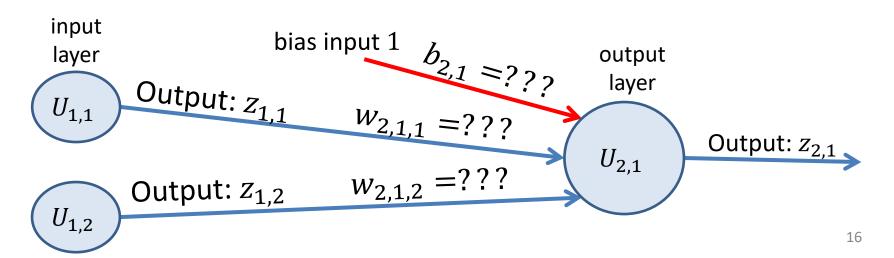
$$\begin{aligned} & \boldsymbol{x}_1 = (0.0, \ 0.0)^T & \boldsymbol{t}_1 = 0 \\ & \boldsymbol{x}_2 = (0.0, \ 1.0)^T & \boldsymbol{t}_2 = 1 \\ & \boldsymbol{x}_3 = (1.0, \ 0.0)^T & \boldsymbol{t}_3 = 1 \\ & \boldsymbol{x}_4 = (1.0, \ 1.0)^T & \boldsymbol{t}_4 = 1 \end{aligned}$$



Optimization Criterion

- Suppose that we are considering some values for b_{2,1}, w_{2,1,1}, w_{2,1,2}.
- What quantitative criterion can we use to measure how good (or bad) those values are?
 - One commonly used measure: sum of squared differences.





Squared Differences

- A neural network defines a mathematical function $f(\boldsymbol{b}, \boldsymbol{w}, \boldsymbol{x})$:
 - b, a list that specifies all the bias weights in the network.
 - -w, a list that specifies all other weights (non-bias weights) in the network.
 - -x, the vector that is given as input to the network.
- For our AND example:
 - **b** is a single number: $b_{2,1}$.
 - w contains two numbers: $w_{2,1,1}$ and $w_{2,1,2}$.
 - -x can be any 2-dimensional vector.
- For any training example x_n , we define error $E_n(b, w)$ as: $E_n(b, w) = \frac{1}{2}(f(b, w, x_n) - t_n)^2$
- In words, $E_n(b, w)$ is the <u>squared difference</u> between the output of the neural network and the target output, multiplied (for reasons of convenience, explained later) by $\frac{1}{2}$.

Sum of Squared Differences

• The error *E* over the entire training set is defined as:

$$E(\mathbf{b}, \mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{b}, \mathbf{w}) = \sum_{n=1}^{N} \left[\frac{1}{2} (f(\mathbf{b}, \mathbf{w}, \mathbf{x}_n) - t_n)^2 \right]$$

- This is called the sum of squared differences (SSD) error.
 - We simply sum up, over all training examples, the squared difference (squared error) that we get for each example.
- Note that $E(\mathbf{b}, \mathbf{w})$ is a function of network parameters \mathbf{b} and \mathbf{w} .
 - Different choices of \boldsymbol{b} and \boldsymbol{w} give a different error $E(\boldsymbol{b}, \boldsymbol{w})$.
 - Our training goal is to find values of \boldsymbol{b} and \boldsymbol{w} that <u>minimize</u> error $E(\boldsymbol{b}, \boldsymbol{w})$.

- Optimization can be maximization or minimization.
 - We typically want to maximize if our optimization criterion relates to accuracy, fitness, utility...
 - We typically want to minimize if our optimization criterion relates to error, cost, time or space complexity...
- In our case, our optimization criterion is SSD error, so we want to minimize that.
- An <u>optimum</u> is a <u>maximum</u> when we want to maximize, and a <u>minimum</u> when we want to minimize.
- The goal in optimization is to find an optimum.

 What does it mean if we say that a choice of values b_{opt} and w_{opt} <u>minimizes</u> the SSD error?

$$E(\boldsymbol{b}, \boldsymbol{w}) = \sum_{n=1}^{N} \left[\frac{1}{2} (f(\boldsymbol{b}, \boldsymbol{w}, \boldsymbol{x}_n) - t_n)^2 \right]$$

- A term like "minimum", "maximum", "optimum" can be unclear, unless we specify whether it is **global** or **local**.
- To say that b_{opt} and w_{opt} are <u>globally optimal</u>, they must satisfy this property:

$$\forall (\boldsymbol{b}, \boldsymbol{w}), E(\boldsymbol{b}_{opt}, \boldsymbol{w}_{opt}) \leq E(\boldsymbol{b}, \boldsymbol{w})$$

• That is, no other choice for **b** and **w** can give a lower error.

• For b_{opt} and w_{opt} to be <u>locally optimal</u>, they must satisfy a far weaker property:

 $\exists \varepsilon, \text{ such that } \forall (\boldsymbol{b}, \boldsymbol{w}): \\ \text{if } \left[\left(\left\| \boldsymbol{b}_{opt} - \boldsymbol{b} \right\| < \varepsilon \right) \text{ and } \left(\left\| \boldsymbol{w}_{opt} - \boldsymbol{w} \right\| < \varepsilon \right) \right] \\ \text{ then } E \left(\boldsymbol{b}_{opt}, \boldsymbol{w}_{opt} \right) \leq E(\boldsymbol{b}, \boldsymbol{w}) \end{aligned}$

- Remember that ||x|| denotes the Euclidean norm.
- In words, if b_{opt} and w_{opt} are <u>locally optimal</u>, it means that we can find no better values for b, w that are relatively close b_{opt} and w_{opt} .
 - There may be values b, w that give a far lower SSD error, but they are not very close to b_{opt} and w_{opt} .

- In any optimization method, it is important to understand if the result is globally or locally optimal.
- For neural networks, we do <u>**not</u>** have any method that finds globally optimal solutions in a reasonable amount of time (like polynomial time).</u>
- The standard training algorithm (called <u>backpropagation</u>) finds a locally optimal solution.
 - Mathematically we wish we could do better.
 - In practice, the results are often good enough, otherwise neural networks would not be as popular.

Training as an Optimization Problem

- As we said, in an optimization problem we need to:
 - Define what <u>parameters</u> we are optimizing. This is also called the <u>search space</u> (the space of possible choices).
 - For neural networks, what is that?
 - Define a quantitative **optimization criterion**.
 - For neural networks, what is that?
 - Define an <u>optimization algorithm</u> for finding a good set of parameters.
 - For neural networks, what is that?

Training as an Optimization Problem

- As we said, in an optimization problem we need to:
 - Define what <u>parameters</u> we are optimizing. This is also called the <u>search space</u> (the space of possible choices).
 - For neural networks, we search over **b** and **w**.
 - Define a quantitative **optimization criterion**.
 - For neural networks, we defined the SSD error, which we want to minimize. We will also see and use other choices this semester.
 - Define an <u>optimization algorithm</u> for finding a good set of parameters.
 - We have not done this yet, that is our next topic.
 - Preview: the general method that we will use is called <u>gradient</u> <u>descent</u>. When used specifically for training neural networks, it is called <u>backpropagation</u>.

Gradients and Partial Derivatives

- Gradients is something that is covered in the third semester of the Calculus sequence.
- For easy reference, here is a quick description.
 - Summary: gradients are vectors of partial derivatives.
- Consider this function f:

$$f(x,y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

- The partial derivative of f with respect to x is denoted as $\frac{\partial f}{\partial x}$.
- To compute it, we simply compute the derivative with respect to x, pretending that any other variables are constant.
 - In our example, the only other variable is y, so we pretend that y is constant.

 $f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$

• Using the sum rule for derivatives:

$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial x^2}{\partial x} + \frac{\partial 2y^2}{\partial x} + \frac{\partial (-600x)}{\partial x} + \frac{\partial (-800y)}{\partial x} + \frac{\partial xy}{\partial x} + \frac{\partial 50}{\partial x}$$

 $f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$

 $\frac{\partial f(x,y)}{\partial x} = \frac{\partial x^2}{\partial x} + \frac{\partial 2y^2}{\partial x} + \frac{\partial (-600x)}{\partial x} + \frac{\partial (-800y)}{\partial x} + \frac{\partial xy}{\partial x} + \frac{\partial 50}{\partial x}$ • $\frac{\partial x^2}{\partial x} = ???$ • $\frac{\partial 2y^2}{\partial x} = ???$ • $\frac{\partial(-600x)}{\partial x} = ???$ • $\frac{\partial(-800y)}{\partial x} = ???$ • $\frac{\partial xy}{\partial x} = ???$ • $\frac{\partial 50}{\partial x} = ???$

$$f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

 $\frac{\partial f(x,y)}{\partial x} = \frac{\partial x^2}{\partial x} + \frac{\partial 2y^2}{\partial x} + \frac{\partial (-600x)}{\partial x} + \frac{\partial (-800y)}{\partial x} + \frac{\partial xy}{\partial x} + \frac{\partial 50}{\partial x}$ • $\frac{\partial x^2}{\partial x} = 2x$ • $\frac{\partial 2y^2}{\partial y} = 0$. Why? Because we treat y as a constant. • $\frac{\partial(-600x)}{\partial x} = -600$ • $\frac{\partial(-800y)}{\partial y} = 0$. Why? Again, because we treat y as a constant.

- $\frac{\partial xy}{\partial x} = y$. Again, we treat y as a constant.
- $\frac{\partial 50}{\partial x} = 0$, since 50 is a constant.

$$f(x,y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

• Based on the previous calculations, the partial derivative $\frac{\partial f(x,y)}{\partial x}$ is:

$$\frac{\partial f(x,y)}{\partial x} = 2x - 600 + y$$

$$f(x,y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

- Now, let's compute the partial derivative of f with respect to y, which is denoted as $\frac{\partial f}{\partial y}$.
- To compute it, we simply compute the derivative with respect to y, pretending that any other variables are constant.
 - In our example, the only other variable is x, so we pretend that x is constant.

 $f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$

• Using the sum rule for derivatives:

$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial x^2}{\partial y} + \frac{\partial 2y^2}{\partial y} + \frac{\partial (-600x)}{\partial y} + \frac{\partial (-800y)}{\partial y} + \frac{\partial xy}{\partial y} + \frac{\partial 50}{\partial y}$$

$$f(x,y) = x^{2} + 2y^{2} - 600x - 800y + x * y + 50$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial x^{2}}{\partial y} + \frac{\partial 2y^{2}}{\partial y} + \frac{\partial (-600x)}{\partial y} + \frac{\partial (-800y)}{\partial y} + \frac{\partial xy}{\partial y} + \frac{\partial 50}{\partial y}$$

• $\frac{\partial x^{2}}{\partial y} = ???$
• $\frac{\partial 2y^{2}}{\partial y} = ???$
• $\frac{\partial (-600x)}{\partial y} = ???$

•
$$\frac{\partial xy}{\partial y} = ???$$

• $\frac{\partial 50}{\partial y} = ???$

$$f(x,y) = x^{2} + 2y^{2} - 600x - 800y + x * y + 50$$
$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial x^{2}}{\partial y} + \frac{\partial 2y^{2}}{\partial y} + \frac{\partial (-600x)}{\partial y} + \frac{\partial (-800y)}{\partial y} + \frac{\partial xy}{\partial y} + \frac{\partial 50}{\partial y}$$

- $\frac{\partial x^2}{\partial y} = 0$. Now we treat x as a constant.
- $\frac{\partial 2y^2}{\partial y} = 4y$
- $\frac{\partial (-600x)}{\partial y} = 0$. Again, we treat x as a constant.
- $\frac{\partial(-800y)}{\partial y} = -800$
- $\frac{\partial xy}{\partial y} = x$. Again, we treat x as a constant.
- $\frac{\partial 50}{\partial y} = 0$, since 50 is a constant.

$$f(x,y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

• Based on the previous calculations, the partial derivative $\frac{\partial f(x,y)}{\partial y}$ is:

$$\frac{\partial f(x, y)}{\partial y} = 4y - 800 + x$$

Gradients

$$f(x,y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

• So, the two partial derivatives are:

$$\frac{\partial f(x,y)}{\partial x} = 2x - 600 + y, \qquad \frac{\partial f(x,y)}{\partial y} = 4y - 800 + x$$

The gradient vector ∇f(x, y) is simply the vector of the partial derivatives.

$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

Gradients

- Formally: suppose that f is a function from \mathbb{R}^D to \mathbb{R} .
 - In other words, the input to f is a D-dimensional vector, and the output of f is a real number.
- Then, the gradient ∇f is a function from \mathbb{R}^D to \mathbb{R}^D .
- If $\mathbf{x} = (x_1, x_2, ..., x_D)$ is a *D*-dimensional vector, then the gradient vector $\nabla f(\mathbf{x})$ is defined as the vector of all partial derivatives $\frac{\partial f(\mathbf{x})}{\partial x_i}$:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_D}\right)$$

Gradients and Neural Networks

- Gradients can be used to find local minima.
- In training a neural network, we typically want to find a local minimum of the optimization criterion.
 - For example, the optimization criterion can be the sum of squared differences.
- So, we need to review how gradients are used in such problems.
- The method is called **gradient descent**.

Direction of the Gradient

- The gradient vector points towards the direction where the function increases the fastest.
- The opposite direction is the direction where the function increases the slowest.
- If we look at our previous example:

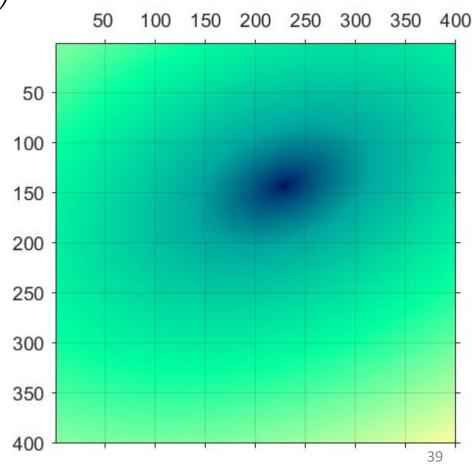
$$f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$$

$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

 If we choose any point (x, y), the gradient vector ∇f(x, y) tells us towards which direction the function increases and decreases the fastest.

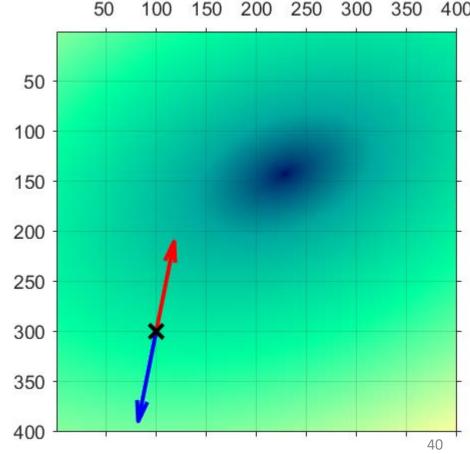
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- Here is a visualization of this function, for the region: 0 < x < 400, 0 < y < 400
- Larger values are yellow (see bottom left of figure).
- Middle values are green.
- Low values are blue.
- The lowest values are black.



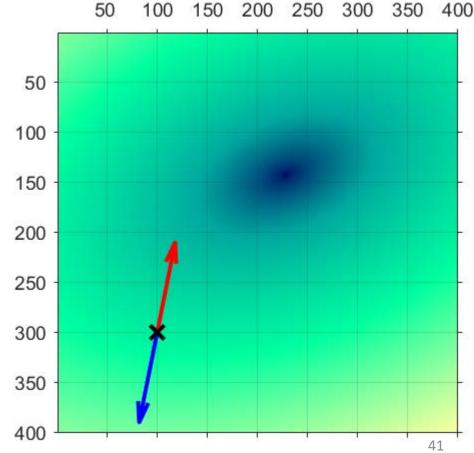
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- We choose (arbitrarily) point (100, 300), shown as ×.
- We calculate the gradient, it is equal to (-100, 500).
- We plot two arrows:
 - The blue arrow points in the direction of the gradient (downwards and a bit to the left).
 - The red arrow points in the opposite direction.



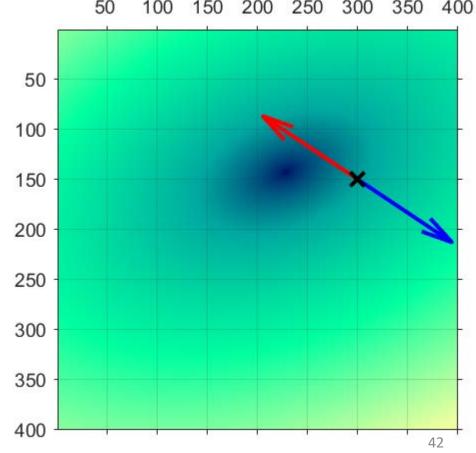
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- We can see that:
 - The function values increase (at least for a while) if we start moving towards the direction of the gradient.
 - The function values decrease (again, at least for a while) if we start moving in the opposite direction.



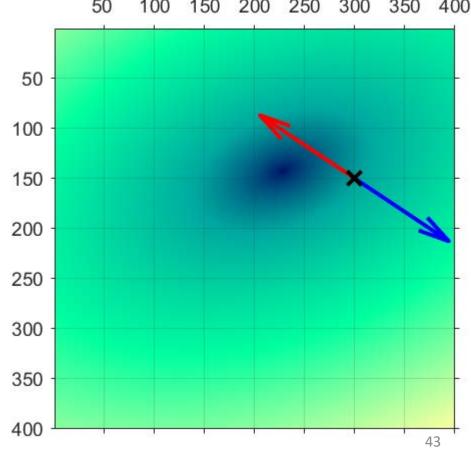
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- We now choose another point, (300, 150), shown as X.
- We calculate the gradient, it is equal to (150, 100).
- Again, we plot two arrows:
 - One pointing towards the direction of the gradient (downwards and to the right).
 - One pointing in the opposite direction.



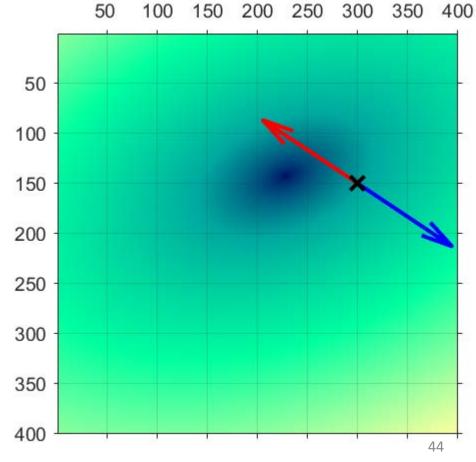
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- Again, we see that:
 - The function values increase if we start moving (at least for a while) towards the direction of the gradient.
 - The function values decrease (at least for a while) in the opposite direction.
 - Note that, in this example, after a bit the values start increasing again.



$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- Suppose that we want to find a local minimum of function *f*.
- <u>Gradient descent</u> is a method for doing that.

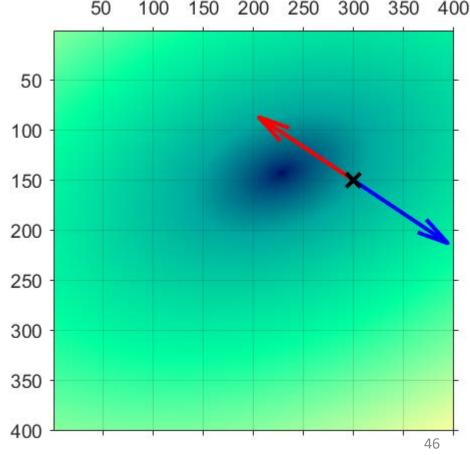


Gradient descent pseudocode (still too vague, we will see a fully specified version in a bit):

- 1. Choose (randomly or however else you want) some starting point (x, y).
- 2. Compute gradient $\nabla f(x, y)$.
- 3. Compute new (x, y) by starting at (x, y) and moving opposite to the direction of the $\nabla f(x, y)$.
 - This is still too vague: <u>How much do we move</u>? We will discuss this in a bit.
- 4. Decide whether we are done. If we are done, return the new (x, y).
 - For example, check if the distance from the new (x, y) to the old (x, y) is less than a threshold ε .
- 5. Go back to Step 2.

$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- Suppose that we start at position $(x_1, y_1) = (300, 150).$
- The gradient there is (150,100).
- The next position (x₂, y₂) should be obtained by moving "in the opposite direction of the gradient".
- Key question: how far do we move?



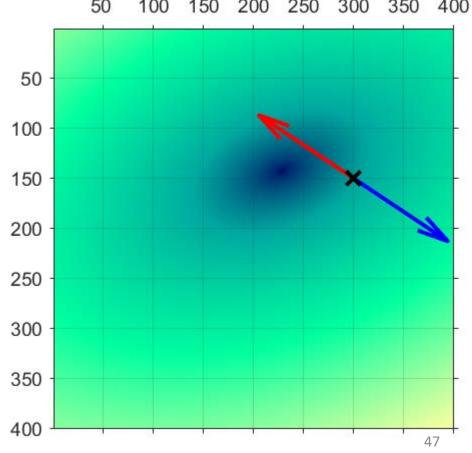
 $f(x, y) = x^2 + 2y^2 - 600x - 800y + x * y + 50$

$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- Suppose that we start at position $(x_1, y_1) = (300, 150).$
- The gradient there is (150,100).
- The next position (x₂, y₂) should be obtained by moving "in the opposite direction of the gradient".
- Mathematically:

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

The question is, what is a good value for η?

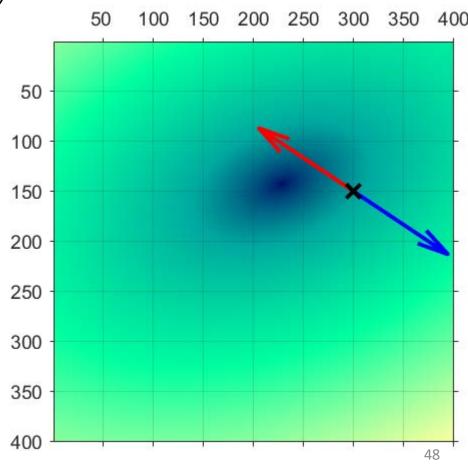


$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right) = (2x - 600 + y, 4y - 800 + x)$$

- $(x_1, y_1) = (300, 150).$
- $\nabla f(x_1, y_1) = (150, 100).$

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

- Parameter η is a hyperparameter.
- There are complicated ways that guarantee a good value for η, in some situations.
- For our example, we will do it the simple and hacky way: start with $\eta = 1$.

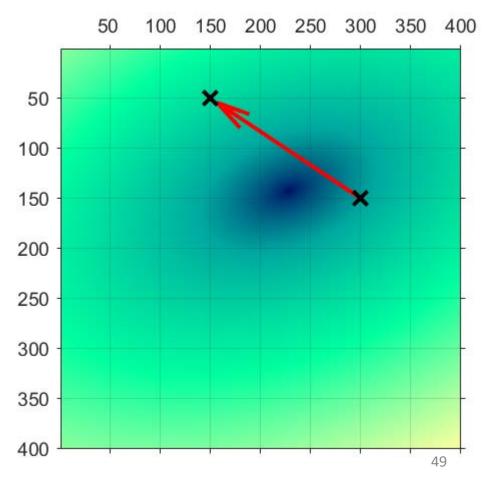


- $(x_1, y_1) = (300, 150).$
- $\nabla f(x_1, y_1) = (150, 100).$

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

= (300,150) - 1 * (150,100)
= (150,50)

- We moved too far.
- Visually, the region around (x₂, y₂) is brighter.
- If we do the math, we can verify that $f(x_2, y_2) > f(x_1, y_1)$.

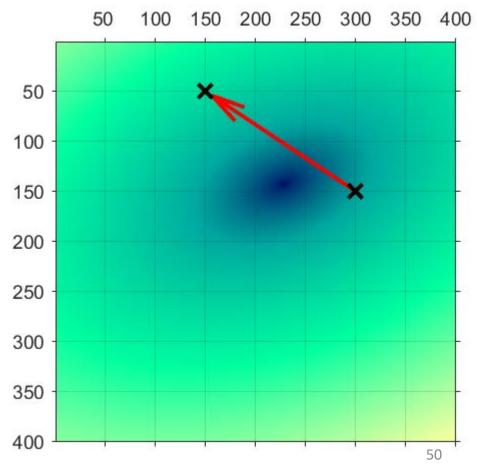


- $(x_1, y_1) = (300, 150).$
- $\nabla f(x_1, y_1) = (150, 100).$

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

= (300,150) - 1 * (150,100)
= (150,50)

- We moved too far.
- However, our code can easily detect and fix this problem.
 - How do we detect the problem?
 - How do we fix it?

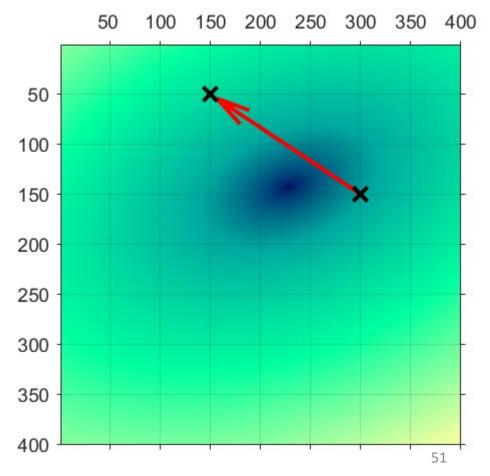


- $(x_1, y_1) = (300, 150).$
- $\nabla f(x_1, y_1) = (150, 100).$

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

= (300,150) - 1 * (150,100)
= (150,50)

- We moved too far.
- How do we detect the problem?
 - If $f(x_2, y_2) > f(x_1, y_1)$, we have a problem.
- How do we fix it?
 - Reset η to a smaller value, like half its previous value, and try again.
- So, what would be the new η ?



• Our new η is 0.5:

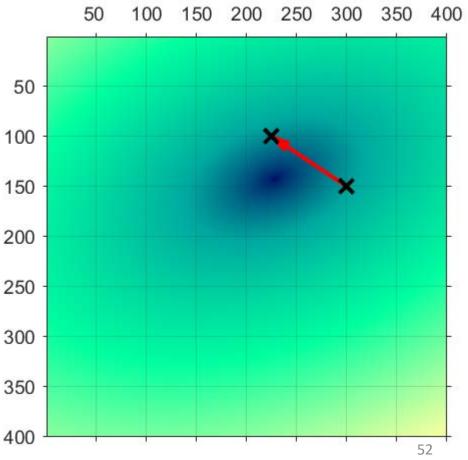
 $(x_1, y_1) = (300, 150).$

 $\nabla f(x_1, y_1) = (150, 100).$

$$(x_2, y_2) = (x_1, y_1) - \eta * \nabla f(x_1, y_1)$$

= (300,150) - 0.5 * (150,100)
= (225,100)

- The function value at (225,100) is indeed smaller than at (300, 150), as we can see by the darker color.
 - Again, we can verify by doing the math.
- What do we do next?



• Our progress so far:

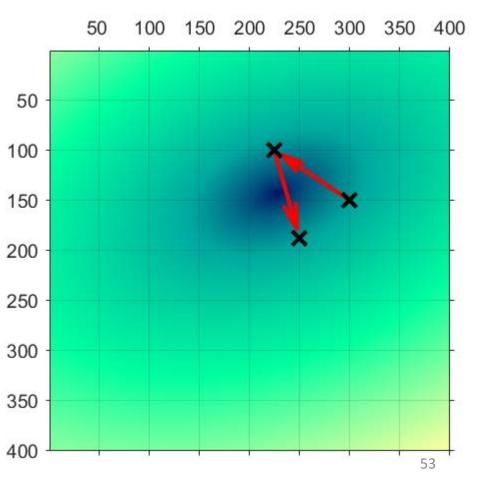
 $(x_1, y_1) = (300, 150).$ $(x_2, y_2) = (225, 100).$

Current value for η is 0.5.

 Next step: compute the next point in our descent, (x₃, y₃), based on the gradient at (x₂, y₂).

$$(x_3, y_3) = (x_2, y_2) - \eta * \nabla f(x_2, y_2)$$

= (225,100) - 0.5 * (-50, -175)
= (250, 187.50)



• Our progress so far:

 $(x_1, y_1) = (300, 150).$ $(x_2, y_2) = (225, 100).$

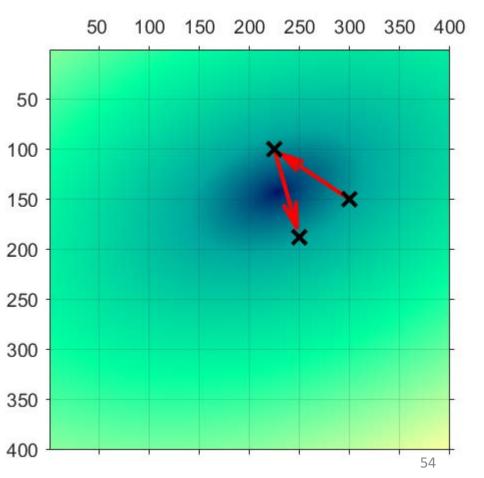
Current value for η is 0.5.

 Next step: compute the next point in our descent, (x₃, y₃), based on the gradient at (x₂, y₂).

$$(x_3, y_3) = (x_2, y_2) - \eta * \nabla f(x_2, y_2)$$

= (225,100) - 0.5 * (-50, -175)
= (250, 187.50)

- Turns out that, again, η was too large, and $f(x_3, y_3) > f(x_2, y_2)$.
- So, we try again with new $\eta = 0.25$.



• Our progress so far:

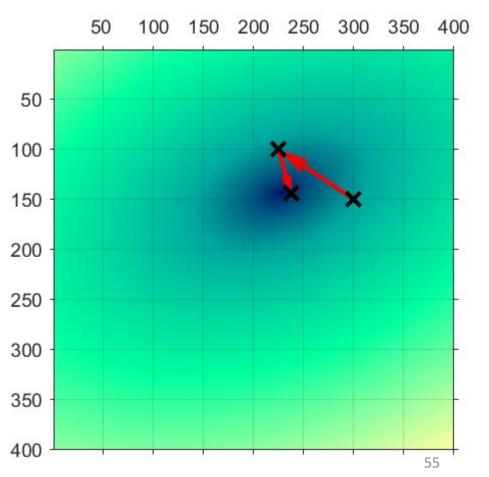
 $(x_1, y_1) = (300, 150).$ $(x_2, y_2) = (225, 100).$

Current value for η is 0.25.

$$(x_3, y_3) = (x_2, y_2) - \eta * \nabla f(x_2, y_2)$$

= (225,100) - 0.25 * (-50, -175)
= (237.5, 143.75)

- This move was useful: $f(x_3, y_3) < f(x_2, y_2).$
- This is a process that is easy to implement.
- If we continue, after 25 steps, we get (numerically close) to the minimum.



Gradients at Local Minima

$$(x_{t+1}, y_{t+1}) = (x_t, y_t) - \eta * \nabla f(x_t, y_t)$$

Mathematically, if (x, y) is a local minimum, then
 ∇f(x, y) =???

Gradients at Local Minima

$$(x_{t+1}, y_{t+1}) = (x_t, y_t) - \eta * \nabla f(x_t, y_t)$$

- Mathematically, if (x, y) is a local minimum, then $\nabla f(x, y) = \mathbf{0}$ (the zero **vector**, not a single number).
- So, if (x_t, y_t) is a local minimum, there will be no updates anymore.
- In practice, as we get closer and closer to the local minimum, the gradient eventually starts getting closer and closer to the zero vector.
- Therefore, the norm of the gradient vector can be used as a stopping criterion.

Gradient Descent Pseudocode

This is a simplified version, but it still works in many cases # (x_1, y_1) is the starting point for the descent. GradientDescent $(f, x_1, y_1, \eta, \varepsilon)$ t = 1history = $[(x_1, y_1)]$ while $(||\nabla f(x_t, y_t)|| > \varepsilon)$ $(x_{t+1}, y_{t+1}) = (x_t, y_t) - \eta * \nabla f(x_t, y_t)$ If $(f(x_{t+1}, y_{t+1}) > f(x_t, y_t))$ $\eta = \frac{\eta}{2}$

continue

Else

```
add (x_{t+1}, y_{t+1}) to end of history

t = t + 1

return (x_t, y_t, history)
```

Further Reading

- Gradient descent is a widely applied method, both in machine learning and in many other fields.
- If you are interested in more details (like how to choose η , a good starting point is these Wikipedia articles:
 - Gradient descent:
 https://en.wikipedia.org/wiki/Gradient_descent
 - Stochastic gradient descent:
 <u>https://en.wikipedia.org/wiki/Stochastic_gradient_descent</u>
- Technically, we will train neural networks using stochastic gradient descent, but most of the time I will just be using the term "gradient descent".

Next Steps

- Our topic is (still) how to train a neural network.
- We will first apply gradient descent to train a perceptron.
- Then we will apply gradient descent to train a neural network.
- As a reminder, the application of gradient descent to neural networks is called **<u>backpropagation</u>**.