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Training as an Optimization Problem

• Training a neural network is an optimization 
problem.

• In an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
– Define a quantitative optimization criterion.

• For any choice of parameters, this criterion will measure will tell 
us how good they are.

• If we have two different choices, this criterion will tell us which 
choice one is better.

– Define an optimization algorithm for finding a good set of 
parameters.
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Parameters We Optimize

• In a neural network, what parameters 
are we optimizing?
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Parameters We Optimize

• In a neural network, what parameters 
are we optimizing?

– Bias weights b and regular weights w.
– In our toy example, this gives us three 

values that we have to optimize: 𝑏𝑏2,1, 
𝑤𝑤2,1,1, 𝑤𝑤2,1,2.
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Optimization Criterion

• Suppose that we are considering some 
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to 
measure how good (or bad) those values 
are?

– One commonly used measure: sum of squared 
differences.
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Squared Differences
• A neural network defines a mathematical function 𝑓𝑓 𝒃𝒃,𝒘𝒘,𝒙𝒙 :

– 𝒃𝒃, a list that specifies all the bias weights in the network.
– 𝒘𝒘, a list that specifies all other weights (non-bias weights) in the network.
– 𝒙𝒙, the vector that is given as input to the network.

• For any training example 𝒙𝒙𝑛𝑛, we define the loss 𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) as:

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 =
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is the squared difference between the output of the 
neural network and the target output, multiplied (for reasons of 

convenience, explained later) by 1
2
.
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Sum of Squared Differences

• The loss 𝐸𝐸 over the entire training set is defined as: 

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• This is called the sum of squared differences (SSD) loss function. 
– We simply sum up, over all training examples, the squared difference 

(squared error) that we get  for each example.

• Note that 𝐸𝐸 𝒃𝒃,𝒘𝒘 is a function of network parameters 𝒃𝒃 and 𝒘𝒘.
– Different choices of 𝒃𝒃 and 𝒘𝒘 give a different loss value 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Our training goal is to find values of 𝒃𝒃 and 𝒘𝒘 that minimize loss 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Finding a global minimum is too slow, so we look for a local minimum. 7



Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
• For neural networks, what is that?

– Define a quantitative optimization criterion.
• For neural networks, what is that?

– Define an optimization algorithm for finding a good set 
of parameters.

• For neural networks, what is that?
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Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also 

called the search space (the space of possible choices).
• For neural networks, we search over 𝒃𝒃 and 𝒘𝒘.

– Define a quantitative optimization criterion.
• For neural networks, we defined the SSD loss function, which 

we want to minimize. We will also see and use other choices 
this semester.

– Define an optimization algorithm for finding a good set 
of parameters.

• Gradient descent. When used specifically for training neural 
networks, it is called backpropagation.
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Perceptron Learning

• Suppose that a perceptron is using the step function 
as its activation function ℎ.

• Can we apply gradient descent in that case?
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Perceptron Learning

• Suppose that a perceptron is using the step function 
as its activation function ℎ.

• Can we apply gradient descent in that case?
• No, because 𝐸𝐸(𝑏𝑏,𝒘𝒘) gives gradients of 0.

– This is because the derivative of the step function is zero 
everywhere, except at 0 where it is not continuous.

• This means that we never update the initial point that 
we start the gradient descent from.
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• A better option is setting ℎ to the sigmoid function: 

𝑧𝑧 𝒙𝒙 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 =
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙

• Then, measured just on a single training object 𝒙𝒙𝑛𝑛, the loss 
𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) is defined as: 

𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 =
1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
=

1
2

𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• Reminder: if our neural network is a single perceptron, then the 
target output 𝑡𝑡𝑛𝑛 must be one-dimensional. These formulas, so far, 
deal only with training a single perceptron.
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Computing the Gradient

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• In this form, 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is differentiable. 

• We want to update 𝑏𝑏 and 𝒘𝒘 using gradient descent.

• Therefore, we have to take these steps:

– Compute 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

– Compute 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

– Change 𝑏𝑏 and 𝒘𝒘 in the direction opposite to the gradient:

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

,                             𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘
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Updates, One Example at a Time

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• We update 𝑏𝑏 and 𝒘𝒘 based on the gradients:
𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑏𝑏
,                             𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝒘𝒘

• Note: the update formulas are based on 𝐸𝐸𝑛𝑛 (the loss 
corresponding to the n-th training example).

– This means that we compute gradients and update 𝑏𝑏 and 𝒘𝒘
separately for each training example.

– Overall, we loop over all training examples, and for each 
example we update 𝑏𝑏 and 𝒘𝒘 using those formulas.
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Batch Processing Preview

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• We update 𝑏𝑏 and 𝒘𝒘 based on the gradients:
𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑏𝑏
,                             𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝒘𝒘

• A more common approach is to compute the updates to 
𝑏𝑏 and 𝒘𝒘 using multiple training examples 
simultaneously.

– That is called “batch processing”, and those multiple training 
examples are called a “batch”.

– For now, to keep things simple, each batch is a single example. 
Later we will see how to generalize this.
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Chain Rule for Derivatives

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• So, to do gradient descent, we need to compute the gradients  𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

and  
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

.

• We start with 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

, which is more simple, since 𝑏𝑏 is a scalar.

• 𝐸𝐸𝑛𝑛 is a complicated formula, its derivative is not obvious.

• In such cases, the chain rule can be used:

• Strategy: 
– Write 𝐸𝐸𝑛𝑛 as a composition of simple functions, whose derivatives is obvious.
– Use the chain rule to compute the gradients of 𝐸𝐸𝑛𝑛.
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A Note on the Chain Rule

• I have seen the chain rule defined in two different (but 
equivalent) ways:

1. 𝑓𝑓°𝑔𝑔 ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 ∗ 𝑔𝑔′ 𝑥𝑥

2. 𝜕𝜕 𝑓𝑓°𝑔𝑔
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑓𝑓
𝜕𝜕𝑔𝑔
∗ 𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

• I have always found the second one easier to 
remember and use.

– This is the version we use in these slides.
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Decomposing 𝐸𝐸𝑛𝑛
• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1

2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• This is one possible decomposition that works:
– 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
– 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

= 1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2 = 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 𝑓𝑓5 𝑓𝑓4 𝑓𝑓3 𝑓𝑓2 𝑓𝑓1 𝑏𝑏,𝒘𝒘

• Usually we write this as: 𝐸𝐸𝑛𝑛 = 𝑓𝑓5°𝑓𝑓4°𝑓𝑓3°𝑓𝑓2°𝑓𝑓1
18



Using the Chain Rule
• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1

2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3
• 𝑓𝑓5 𝑓𝑓4 = 1

2
𝑓𝑓4 2

• 𝐸𝐸𝑛𝑛 = 𝑓𝑓5°𝑓𝑓4°𝑓𝑓3°𝑓𝑓2°𝑓𝑓1
• Then, according to the chain rule: 

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

=
𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

=? ? ?
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

= −1

• Why? Based on the rule that 𝜕𝜕(−𝑥𝑥−𝑐𝑐)
𝜕𝜕𝑥𝑥

= −1

• Note that when we compute 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

, the term 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 is treated as a 
constant 𝑐𝑐, since it does not depend on 𝑏𝑏.
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

=? ? ?
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

= 𝑒𝑒𝑓𝑓1

• Why? Based on the rule that 𝜕𝜕(𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝑒𝑒𝑥𝑥.

• Again, note that  𝜕𝜕(1+𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜕𝜕(𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

, since 1 is a constant.
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

=? ? ?
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

= − 1
𝑓𝑓2 2

• Why? 1
𝑓𝑓2

= 𝑓𝑓2 −1, and 𝜕𝜕(𝑥𝑥𝑛𝑛)
𝜕𝜕𝑥𝑥

= 𝑛𝑛𝑥𝑥𝑛𝑛−1.
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3

• 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

=? ? ?
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3

• 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

= −1

• Why? 𝜕𝜕(𝑐𝑐−𝑥𝑥)
𝜕𝜕𝑥𝑥

= −1.
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2

• 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

=? ? ?
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Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2

• 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

= 𝑓𝑓4

• Why? 
𝜕𝜕(12𝑥𝑥

2)

𝜕𝜕𝑥𝑥
= 1

2
∗ 2𝑥𝑥 = 𝑥𝑥
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Combining the Results

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗ 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗ 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑓𝑓4 ∗ −1 ∗ − 1
𝑓𝑓2 2 ∗ 𝑒𝑒𝑓𝑓1 ∗ −1

• Simplifying: 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −𝑓𝑓4∗𝑒𝑒𝑓𝑓1

𝑓𝑓2 2
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Combining the Results

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗ 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗ 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

= −𝑓𝑓4∗𝑒𝑒𝑓𝑓1

𝑓𝑓2 2

• We want a formula in terms of our original variables: 
𝑏𝑏,𝒘𝒘, 𝑡𝑡𝑛𝑛,𝒙𝒙𝑛𝑛

• So, we need to write out 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓4 as functions of those 
variables.
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Combining the Results
• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −
𝑓𝑓4 ∗ 𝑒𝑒𝑓𝑓1
𝑓𝑓2 2

= − 𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗

1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
2
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Combining the Results
• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −
𝑓𝑓4 ∗ 𝑒𝑒𝑓𝑓1
𝑓𝑓2 2

= − 𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗

1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
2

= − 𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2
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Combining the Results
• What we have so far:

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

• This formula for  𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

is good enough, we know everything we need 
to know (𝑏𝑏,𝒘𝒘 , 𝑡𝑡𝑛𝑛, 𝒙𝒙𝑛𝑛, 𝑧𝑧 𝒙𝒙𝑛𝑛 ), to compute it.

• We simplify the part in red a bit more, by noting that:

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 = 1
𝑧𝑧 𝒙𝒙𝑛𝑛

, and therefore:

𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 = 1
𝑧𝑧 𝒙𝒙𝑛𝑛

− 1 = 1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛 34



Final Formula for  𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

• What we have so far:

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

• Substituting  1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛

for  𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 we get:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛

∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

, and finally:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 35



Gradients

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• As we have seen: 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

• With a similar derivation (which we skip), we can show that:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• Note that 
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

is a D-dimensional vector. It is a scalar (shown in 

red) multiplied by vector 𝒙𝒙𝑛𝑛.
36



Weight Update
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• So, we update the bias weight 𝑏𝑏 and weight vector 𝒘𝒘 as follows: 

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛
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Weight Update
• (From previous slide) Update formulas:

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• As before, 𝜂𝜂 is the learning rate parameter. 
– It is a positive real number that should be chosen carefully, so as not to be 

too big or too small.

• In terms of individual weights 𝑤𝑤𝑑𝑑, the update rule is:

𝑤𝑤𝑑𝑑 = 𝑤𝑤𝑑𝑑 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛,𝑑𝑑
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Perceptron Learning - Summary
• Input: Training inputs 𝒙𝒙1, , … ,𝒙𝒙𝑁𝑁, target outputs 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁

– For a binary classification problem, each 𝑡𝑡𝑛𝑛 is set to 0 or 1.

1. Initialize 𝑏𝑏 and each 𝑤𝑤𝑑𝑑 to small random numbers.
– For example, set 𝑏𝑏 and each 𝑤𝑤𝑑𝑑 to a random value between 
−0.1 and 0.1

2. For n = 1 to N:
a) Compute 𝑧𝑧 𝑥𝑥𝑛𝑛 .

b) 𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
c) For d = 0 to D:

𝑤𝑤𝑑𝑑 = 𝑤𝑤𝑑𝑑 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛,𝑑𝑑

3. If some stopping criterion has been met, exit.

4. Else, go to step 2.
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Stopping Criterion
• At step 3 of the perceptron learning algorithm, we need to decide 

whether to stop or not.

• One thing we can do is:
– Compute the SSD (sum of squared differences) loss 𝐸𝐸 𝑏𝑏,𝒘𝒘 of the 

perceptron at that point over the entire training set.

– Compare the current value of 𝐸𝐸 𝑏𝑏,𝒘𝒘 with the value of 𝐸𝐸 𝑏𝑏,𝒘𝒘 computed 
at the previous iteration.

– If the difference is too small (e.g., smaller than 0.00001) we stop.
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Notation for Multiclass Training Set
• We have a set 𝑋𝑋 of N training examples.

– 𝑋𝑋 = {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁}

• Each 𝒙𝒙𝑛𝑛 is a D-dimensional column vector.
– 𝒙𝒙𝑛𝑛 = (𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝐷𝐷)′

• We also have a set 𝑇𝑇 of N target outputs.
– 𝑇𝑇 = 𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑁𝑁
– 𝒕𝒕𝑛𝑛 is the target output for training example 𝒙𝒙𝑛𝑛.

• Each 𝒕𝒕𝑛𝑛 is a K-dimensional column vector:
– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)′

• Note: K typically is not equal to D.
– In your assignment, K is equal to the number of classes.
– K is also equal to the number of units in the output layer.
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Using Perceptrons for Multiclass 
Problems

• “Multiclass” means that we have more than two classes.

• A perceptron outputs a number between 0 and 1.

• This is sufficient only for binary classification problems.

• For more than two classes, there are many different options.

• We will follow a general approach called one-versus-all 
classification (also known as OVA classification).

– This approach is a general method, that can be combined with various 
binary classification methods, so as to solve multiclass problems. Here we 
see the method applied to perceptrons.
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A Multiclass Example

• Suppose we have this training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑞𝑞1 = dog
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑞𝑞2 = dog
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑞𝑞3 = cat
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑞𝑞4 = fox
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑞𝑞5 = cat
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑞𝑞6 = fox

• In this training set:
– We have three classes.
– Each training input 𝒙𝒙𝑛𝑛 is a five-dimensional vector.
– The class labels 𝑞𝑞𝑛𝑛 are strings.
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Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑞𝑞1 = dog, 𝑠𝑠1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑞𝑞2 = dog, 𝑠𝑠2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑞𝑞3 = cat, 𝑠𝑠3 = 2
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑞𝑞4 = fox, 𝑠𝑠4 = 3
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑞𝑞5 = cat, 𝑠𝑠5 = 2
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑞𝑞6 = fox, 𝑠𝑠6 = 3

• Step 1: 
– Generate new class labels 𝑠𝑠𝑛𝑛, where classes are numbered 

sequentially starting from 1. 
• Thus, in our example, the class labels become 1, 2, 3.
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Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• How many dimensions should we use in our example?
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Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = ? , ? , ? 𝑇𝑇

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• In our example we have three classes, so each 𝒕𝒕𝑛𝑛 is 3-dimensional.

– If 𝑠𝑠𝑛𝑛 = 𝑖𝑖, then set the i-th dimension of 𝑡𝑡𝑛𝑛 to 1.
– Otherwise, set the i-th dimension of 𝑡𝑡𝑛𝑛 to 0. 46



Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• In our example we have three classes, so each 𝒕𝒕𝑛𝑛 is 3-dimensional.

– If 𝑠𝑠𝑛𝑛 = 𝑖𝑖, then set the i-th dimension of 𝑡𝑡𝑛𝑛 to 1.
– Otherwise, set the i-th dimension of 𝑡𝑡𝑛𝑛 to 0. 47



Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the 
number of classes).

• For training the first perceptron, use the first dimension 
of each 𝒕𝒕𝑛𝑛 as target output for 𝒙𝒙𝑛𝑛.
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Training Set for the First Perceptron

• Training set used to train the first perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 0
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 0
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 0
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 0

• Essentially, the first perceptron is trained to output “1” 
when:

– The original class label 𝑞𝑞𝑛𝑛 is “dog”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 1.
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Converting to One-Versus-All

• Training set for the multiclass problem:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the 
number of classes).

• For training the second perceptron, use the second
dimension of each 𝑡𝑡𝑛𝑛 as target output for 𝑥𝑥𝑛𝑛.
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Training Set for the Second Perceptron

• Training set used to train the second perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 0
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 0
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 1
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 0
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 1
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 0

• Essentially, the second perceptron is trained to output 
“1” when:

– The original class label 𝑞𝑞𝑛𝑛 is “cat”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 2.

51



Converting to One-Versus-All

• Training set for the multiclass problem:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the 
number of classes).

• For training the third perceptron, use the third dimension 
of each 𝑡𝑡𝑛𝑛 as target output for 𝑥𝑥𝑛𝑛.
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Training Set for the Third Perceptron

• Training set used to train the third perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 0
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 0
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 0
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 1
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 0
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 1

• Essentially, the third perceptron is trained to output “1” 
when:

– The original class label 𝑞𝑞𝑛𝑛 is “fox”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 3.
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One-Versus-All Perceptrons: Recap
• Suppose we have 𝐾𝐾 classes 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾 , where 𝐾𝐾 > 2.
• We have training inputs 𝒙𝒙1, , … ,𝒙𝒙𝑁𝑁, and target values 𝒕𝒕1, … , 𝒕𝒕𝑁𝑁.
• Each target value 𝒕𝒕𝑛𝑛 is a K-dimensional vector:  

– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)
– 𝑡𝑡𝑛𝑛,𝑘𝑘 = 0 if the class of 𝒙𝒙𝑛𝑛 is not Ck.
– 𝑡𝑡𝑛𝑛,𝑘𝑘 = 1 if the class of 𝒙𝒙𝑛𝑛 is Ck.

• For each class 𝐶𝐶𝑘𝑘, train a perceptron 𝑧𝑧𝑘𝑘 by using 𝑡𝑡𝑛𝑛,𝑘𝑘 as the target 
value for 𝒙𝒙𝑛𝑛.

– So, perceptron 𝑧𝑧𝑘𝑘 is trained to recognize if an object belongs to class 𝐶𝐶𝑘𝑘 or 
not.

– In total, we train 𝐾𝐾 perceptrons, one for each class.
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One-Versus-All Perceptrons

• At inference time, to classify an input pattern 𝒙𝒙:
– Compute the responses 𝑧𝑧𝑘𝑘(𝒙𝒙) for all 𝐾𝐾 perceptrons.
– Find the perceptron 𝑧𝑧𝑘𝑘∗ such that the value 𝑧𝑧𝑘𝑘∗(𝒙𝒙) is 

higher than all other responses.
– Output that the class of x is 𝐶𝐶𝑘𝑘∗.

• In summary: we assign 𝒙𝒙 to the class whose 
perceptron produced the highest output value for 𝒙𝒙.
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Multiclass Neural Networks

• For perceptrons, we saw that we can perform 
multiclass (i.e., for more than two classes) 
classification using the one-versus-all (OVA) 
approach:

– We train one perceptron for each class.

• These multiple perceptrons can also be thought of 
as a single neural network.
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OVA Perceptrons as a Single Network
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Multiclass Neural Networks

• For perceptrons, we saw that we can perform 
multiclass (i.e., for more than two classes) 
classification using the one-versus-all (OVA) approach:

– We train one perceptron for each class.

• These multiple perceptrons can also be thought of as a 
single neural network.

• In the simplest case, a neural network designed to 
recognize multiple classes looks like the previous 
example.

• In the general case, there are also hidden layers.
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A Network for Our Example
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Input Layer: How many units does it have? Could we have a different 
number? Is the number of input units a hyperparameter?
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In our example, the input layer it must have five units, because each 
input is five-dimensional. We don’t have a choice.
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• This network has two hidden layers, with four units per layer.
• The number of hidden layers and the number of units per layer 

are hyperparameters, they can take different values.
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Output Layer: How many units does it have? Could we have a 
different number? Is the number of output units a 
hyperparameter?
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• In our example, the output layer must have three units, 
because we want to recognize three different classes (dog, cat, 
fox). We have no choice.
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Network connectivity:
• In this neural network, at layers 2, 3, 4, every unit receives as 

input the output of ALL units in the previous layer.
• This is also a hyperparameter, it doesn’t have to be like that.
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Next: Training a Multi-Layer Network

• The next set of slides will describe how to train 
such a network.

• Training a neural network is done using gradient 
descent.

• The specific method is called backpropagation, 
but it really is just a straightforward application of 
gradient descent for neural networks.
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