
Neural Networks – Part 3
• Training Perceptrons
• Handling Multiclass Problems

CSE 4311 – Neural Networks and Deep Learning
Vassilis Athitsos

Computer Science and Engineering Department
University of Texas at Arlington

Training as an Optimization Problem

• Training a neural network is an optimization
problem.

• In an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
– Define a quantitative optimization criterion.

• For any choice of parameters, this criterion will measure will tell
us how good they are.

• If we have two different choices, this criterion will tell us which
choice one is better.

– Define an optimization algorithm for finding a good set of
parameters.

2

Parameters We Optimize

• In a neural network, what parameters
are we optimizing?

3

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 0
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 0
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Parameters We Optimize

• In a neural network, what parameters
are we optimizing?

– Bias weights b and regular weights w.
– In our toy example, this gives us three

values that we have to optimize: 𝑏𝑏2,1,
𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

4

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 0
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 0
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Optimization Criterion

• Suppose that we are considering some
values for 𝑏𝑏2,1, 𝑤𝑤2,1,1, 𝑤𝑤2,1,2.

• What quantitative criterion can we use to
measure how good (or bad) those values
are?

– One commonly used measure: sum of squared
differences.

5

bias input 1

Output: 𝑧𝑧2,1

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈2,1

input
layer output

layer

𝒙𝒙1 = 0.0, 0.0 𝑇𝑇 𝑡𝑡1 = 0
𝒙𝒙2 = 0.0, 1.0 𝑇𝑇 𝑡𝑡2 = 0
𝒙𝒙3 = 1.0, 0.0 𝑇𝑇 𝑡𝑡3 = 0
𝒙𝒙4 = 1.0, 1.0 𝑇𝑇 𝑡𝑡4 = 1

Squared Differences
• A neural network defines a mathematical function 𝑓𝑓 𝒃𝒃,𝒘𝒘,𝒙𝒙 :

– 𝒃𝒃, a list that specifies all the bias weights in the network.
– 𝒘𝒘, a list that specifies all other weights (non-bias weights) in the network.
– 𝒙𝒙, the vector that is given as input to the network.

• For any training example 𝒙𝒙𝑛𝑛, we define the loss 𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) as:

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 =
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is the squared difference between the output of the
neural network and the target output, multiplied (for reasons of

convenience, explained later) by 1
2
.

6

Sum of Squared Differences

• The loss 𝐸𝐸 over the entire training set is defined as:

𝐸𝐸 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝐸𝐸𝑛𝑛 𝒃𝒃,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑓𝑓(𝒃𝒃,𝒘𝒘,𝒙𝒙𝑛𝑛) − 𝑡𝑡𝑛𝑛 2

• This is called the sum of squared differences (SSD) loss function.
– We simply sum up, over all training examples, the squared difference

(squared error) that we get for each example.

• Note that 𝐸𝐸 𝒃𝒃,𝒘𝒘 is a function of network parameters 𝒃𝒃 and 𝒘𝒘.
– Different choices of 𝒃𝒃 and 𝒘𝒘 give a different loss value 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Our training goal is to find values of 𝒃𝒃 and 𝒘𝒘 that minimize loss 𝐸𝐸 𝒃𝒃,𝒘𝒘 .
– Finding a global minimum is too slow, so we look for a local minimum. 7

Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
• For neural networks, what is that?

– Define a quantitative optimization criterion.
• For neural networks, what is that?

– Define an optimization algorithm for finding a good set
of parameters.

• For neural networks, what is that?

8

Training as an Optimization Problem

• As we said, in an optimization problem we need to:
– Define what parameters we are optimizing. This is also

called the search space (the space of possible choices).
• For neural networks, we search over 𝒃𝒃 and 𝒘𝒘.

– Define a quantitative optimization criterion.
• For neural networks, we defined the SSD loss function, which

we want to minimize. We will also see and use other choices
this semester.

– Define an optimization algorithm for finding a good set
of parameters.

• Gradient descent. When used specifically for training neural
networks, it is called backpropagation.

9

Perceptron Learning

• Suppose that a perceptron is using the step function
as its activation function ℎ.

• Can we apply gradient descent in that case?

10

𝑧𝑧(𝒙𝒙) = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = �0, if 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 < 0
1, if 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 ≥ 0

ℎ 𝑎𝑎 = �0, if 𝑎𝑎 < 0
1, if 𝑎𝑎 ≥ 0

Perceptron Learning

• Suppose that a perceptron is using the step function
as its activation function ℎ.

• Can we apply gradient descent in that case?
• No, because 𝐸𝐸(𝑏𝑏,𝒘𝒘) gives gradients of 0.

– This is because the derivative of the step function is zero
everywhere, except at 0 where it is not continuous.

• This means that we never update the initial point that
we start the gradient descent from.

11

𝑧𝑧(𝒙𝒙) = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 = �0, if 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 < 0
1, if 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 ≥ 0

ℎ 𝑎𝑎 = �0, if 𝑎𝑎 < 0
1, if 𝑎𝑎 ≥ 0

• A better option is setting ℎ to the sigmoid function:

𝑧𝑧 𝒙𝒙 = ℎ 𝑏𝑏 + 𝒘𝒘𝑇𝑇𝒙𝒙 =
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙

• Then, measured just on a single training object 𝒙𝒙𝑛𝑛, the loss
𝐸𝐸𝑛𝑛(𝑏𝑏,𝒘𝒘) is defined as:

𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 =
1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
=

1
2

𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• Reminder: if our neural network is a single perceptron, then the
target output 𝑡𝑡𝑛𝑛 must be one-dimensional. These formulas, so far,
deal only with training a single perceptron.

12

Perceptron Learning

Computing the Gradient

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• In this form, 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 is differentiable.

• We want to update 𝑏𝑏 and 𝒘𝒘 using gradient descent.

• Therefore, we have to take these steps:

– Compute 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

– Compute 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

– Change 𝑏𝑏 and 𝒘𝒘 in the direction opposite to the gradient:

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

, 𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

13

Updates, One Example at a Time

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• We update 𝑏𝑏 and 𝒘𝒘 based on the gradients:
𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑏𝑏
, 𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝒘𝒘

• Note: the update formulas are based on 𝐸𝐸𝑛𝑛 (the loss
corresponding to the n-th training example).

– This means that we compute gradients and update 𝑏𝑏 and 𝒘𝒘
separately for each training example.

– Overall, we loop over all training examples, and for each
example we update 𝑏𝑏 and 𝒘𝒘 using those formulas.

14

Batch Processing Preview

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• We update 𝑏𝑏 and 𝒘𝒘 based on the gradients:
𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝑏𝑏
, 𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 𝜕𝜕𝐸𝐸𝑛𝑛

𝜕𝜕𝒘𝒘

• A more common approach is to compute the updates to
𝑏𝑏 and 𝒘𝒘 using multiple training examples
simultaneously.

– That is called “batch processing”, and those multiple training
examples are called a “batch”.

– For now, to keep things simple, each batch is a single example.
Later we will see how to generalize this.

15

Chain Rule for Derivatives

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• So, to do gradient descent, we need to compute the gradients 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

and
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

.

• We start with 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

, which is more simple, since 𝑏𝑏 is a scalar.

• 𝐸𝐸𝑛𝑛 is a complicated formula, its derivative is not obvious.

• In such cases, the chain rule can be used:

• Strategy:
– Write 𝐸𝐸𝑛𝑛 as a composition of simple functions, whose derivatives is obvious.
– Use the chain rule to compute the gradients of 𝐸𝐸𝑛𝑛.

16

A Note on the Chain Rule

• I have seen the chain rule defined in two different (but
equivalent) ways:

1. 𝑓𝑓°𝑔𝑔 ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 ∗ 𝑔𝑔′ 𝑥𝑥

2. 𝜕𝜕 𝑓𝑓°𝑔𝑔
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑓𝑓
𝜕𝜕𝑔𝑔
∗ 𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

• I have always found the second one easier to
remember and use.

– This is the version we use in these slides.

17

Decomposing 𝐸𝐸𝑛𝑛
• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1

2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• This is one possible decomposition that works:
– 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
– 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

= 1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

– 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2 = 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 𝑓𝑓5 𝑓𝑓4 𝑓𝑓3 𝑓𝑓2 𝑓𝑓1 𝑏𝑏,𝒘𝒘

• Usually we write this as: 𝐸𝐸𝑛𝑛 = 𝑓𝑓5°𝑓𝑓4°𝑓𝑓3°𝑓𝑓2°𝑓𝑓1
18

Using the Chain Rule
• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1

2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3
• 𝑓𝑓5 𝑓𝑓4 = 1

2
𝑓𝑓4 2

• 𝐸𝐸𝑛𝑛 = 𝑓𝑓5°𝑓𝑓4°𝑓𝑓3°𝑓𝑓2°𝑓𝑓1
• Then, according to the chain rule:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

=
𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗
𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗
𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

19

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

=? ? ?

20

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 −𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

= −1

• Why? Based on the rule that 𝜕𝜕(−𝑥𝑥−𝑐𝑐)
𝜕𝜕𝑥𝑥

= −1

• Note that when we compute 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

, the term 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 is treated as a
constant 𝑐𝑐, since it does not depend on 𝑏𝑏.

21

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

=? ? ?

22

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1

• 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

= 𝑒𝑒𝑓𝑓1

• Why? Based on the rule that 𝜕𝜕(𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝑒𝑒𝑥𝑥.

• Again, note that 𝜕𝜕(1+𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜕𝜕(𝑒𝑒𝑥𝑥)
𝜕𝜕𝑥𝑥

, since 1 is a constant.
23

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

=? ? ?

24

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓3 𝑓𝑓2 = 1
𝑓𝑓2

• 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

= − 1
𝑓𝑓2 2

• Why? 1
𝑓𝑓2

= 𝑓𝑓2 −1, and 𝜕𝜕(𝑥𝑥𝑛𝑛)
𝜕𝜕𝑥𝑥

= 𝑛𝑛𝑥𝑥𝑛𝑛−1.

25

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3

• 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

=? ? ?

26

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3

• 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

= −1

• Why? 𝜕𝜕(𝑐𝑐−𝑥𝑥)
𝜕𝜕𝑥𝑥

= −1.

27

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2

• 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

=? ? ?

28

Using the Chain Rule

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝑓𝑓5 𝑓𝑓4 = 1
2
𝑓𝑓4 2

• 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

= 𝑓𝑓4

• Why?
𝜕𝜕(12𝑥𝑥

2)

𝜕𝜕𝑥𝑥
= 1

2
∗ 2𝑥𝑥 = 𝑥𝑥

29

Combining the Results

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗ 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗ 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑓𝑓4 ∗ −1 ∗ − 1
𝑓𝑓2 2 ∗ 𝑒𝑒𝑓𝑓1 ∗ −1

• Simplifying: 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −𝑓𝑓4∗𝑒𝑒𝑓𝑓1

𝑓𝑓2 2

30

Combining the Results

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝜕𝜕𝑓𝑓5
𝜕𝜕𝑓𝑓4

∗ 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑓𝑓3

∗ 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑓𝑓2

∗ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓1

∗ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑏𝑏

= −𝑓𝑓4∗𝑒𝑒𝑓𝑓1

𝑓𝑓2 2

• We want a formula in terms of our original variables:
𝑏𝑏,𝒘𝒘, 𝑡𝑡𝑛𝑛,𝒙𝒙𝑛𝑛

• So, we need to write out 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓4 as functions of those
variables.

31

Combining the Results
• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −
𝑓𝑓4 ∗ 𝑒𝑒𝑓𝑓1
𝑓𝑓2 2

= − 𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗

1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
2

32

We can write this in a
more simple way,
because the red part is
just the perceptron
output 𝑧𝑧 𝒙𝒙𝑛𝑛 .

Combining the Results
• 𝑓𝑓1 𝑏𝑏,𝒘𝒘 = −𝑏𝑏 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓2 𝑓𝑓1 = 1 + 𝑒𝑒𝑓𝑓1 = 1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

• 𝑓𝑓4 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 − 𝑓𝑓3 = 𝑡𝑡𝑛𝑛 −
1

1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= −
𝑓𝑓4 ∗ 𝑒𝑒𝑓𝑓1
𝑓𝑓2 2

= − 𝑡𝑡𝑛𝑛 −
1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗

1

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛
2

= − 𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

33

We can write this in a
more simple way,
because the red part is
just the perceptron
output 𝑧𝑧 𝒙𝒙𝑛𝑛 .

Combining the Results
• What we have so far:

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

• This formula for 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

is good enough, we know everything we need
to know (𝑏𝑏,𝒘𝒘 , 𝑡𝑡𝑛𝑛, 𝒙𝒙𝑛𝑛, 𝑧𝑧 𝒙𝒙𝑛𝑛), to compute it.

• We simplify the part in red a bit more, by noting that:

1 + 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 = 1
𝑧𝑧 𝒙𝒙𝑛𝑛

, and therefore:

𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 = 1
𝑧𝑧 𝒙𝒙𝑛𝑛

− 1 = 1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛 34

Final Formula for 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

• What we have so far:

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

• Substituting 1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛

for 𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 we get:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1−𝑧𝑧 𝒙𝒙𝑛𝑛
𝑧𝑧 𝒙𝒙𝑛𝑛

∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
2

, and finally:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 35

Gradients

• 𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = 1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2
= 1

2
𝑡𝑡𝑛𝑛 −

1
1+𝑒𝑒−𝑏𝑏−𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛

2

• As we have seen: 𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

• With a similar derivation (which we skip), we can show that:

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• Note that
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

is a D-dimensional vector. It is a scalar (shown in

red) multiplied by vector 𝒙𝒙𝑛𝑛.
36

Weight Update
𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝑏𝑏

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛

𝜕𝜕𝐸𝐸𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• So, we update the bias weight 𝑏𝑏 and weight vector 𝒘𝒘 as follows:

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

37

Weight Update
• (From previous slide) Update formulas:

𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛

𝒘𝒘 = 𝒘𝒘− 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝒙𝒙𝑛𝑛

• As before, 𝜂𝜂 is the learning rate parameter.
– It is a positive real number that should be chosen carefully, so as not to be

too big or too small.

• In terms of individual weights 𝑤𝑤𝑑𝑑, the update rule is:

𝑤𝑤𝑑𝑑 = 𝑤𝑤𝑑𝑑 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛,𝑑𝑑

38

Perceptron Learning - Summary
• Input: Training inputs 𝒙𝒙1, , … ,𝒙𝒙𝑁𝑁, target outputs 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁

– For a binary classification problem, each 𝑡𝑡𝑛𝑛 is set to 0 or 1.

1. Initialize 𝑏𝑏 and each 𝑤𝑤𝑑𝑑 to small random numbers.
– For example, set 𝑏𝑏 and each 𝑤𝑤𝑑𝑑 to a random value between
−0.1 and 0.1

2. For n = 1 to N:
a) Compute 𝑧𝑧 𝑥𝑥𝑛𝑛 .

b) 𝑏𝑏 = 𝑏𝑏 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛
c) For d = 0 to D:

𝑤𝑤𝑑𝑑 = 𝑤𝑤𝑑𝑑 − 𝜂𝜂 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 − 𝑡𝑡𝑛𝑛 ∗ 1 − 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑧𝑧 𝒙𝒙𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛,𝑑𝑑

3. If some stopping criterion has been met, exit.

4. Else, go to step 2.
39

Stopping Criterion
• At step 3 of the perceptron learning algorithm, we need to decide

whether to stop or not.

• One thing we can do is:
– Compute the SSD (sum of squared differences) loss 𝐸𝐸 𝑏𝑏,𝒘𝒘 of the

perceptron at that point over the entire training set.

– Compare the current value of 𝐸𝐸 𝑏𝑏,𝒘𝒘 with the value of 𝐸𝐸 𝑏𝑏,𝒘𝒘 computed
at the previous iteration.

– If the difference is too small (e.g., smaller than 0.00001) we stop.
40

𝐸𝐸 𝑏𝑏,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝐸𝐸𝑛𝑛 𝑏𝑏,𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁
1
2
𝑡𝑡𝑛𝑛 − 𝑧𝑧 𝒙𝒙𝑛𝑛

2

Notation for Multiclass Training Set
• We have a set 𝑋𝑋 of N training examples.

– 𝑋𝑋 = {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁}

• Each 𝒙𝒙𝑛𝑛 is a D-dimensional column vector.
– 𝒙𝒙𝑛𝑛 = (𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝐷𝐷)′

• We also have a set 𝑇𝑇 of N target outputs.
– 𝑇𝑇 = 𝒕𝒕1, 𝒕𝒕2, … , 𝒕𝒕𝑁𝑁
– 𝒕𝒕𝑛𝑛 is the target output for training example 𝒙𝒙𝑛𝑛.

• Each 𝒕𝒕𝑛𝑛 is a K-dimensional column vector:
– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)′

• Note: K typically is not equal to D.
– In your assignment, K is equal to the number of classes.
– K is also equal to the number of units in the output layer.

41

Using Perceptrons for Multiclass
Problems

• “Multiclass” means that we have more than two classes.

• A perceptron outputs a number between 0 and 1.

• This is sufficient only for binary classification problems.

• For more than two classes, there are many different options.

• We will follow a general approach called one-versus-all
classification (also known as OVA classification).

– This approach is a general method, that can be combined with various
binary classification methods, so as to solve multiclass problems. Here we
see the method applied to perceptrons.

42

A Multiclass Example

• Suppose we have this training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑞𝑞1 = dog
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑞𝑞2 = dog
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑞𝑞3 = cat
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑞𝑞4 = fox
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑞𝑞5 = cat
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑞𝑞6 = fox

• In this training set:
– We have three classes.
– Each training input 𝒙𝒙𝑛𝑛 is a five-dimensional vector.
– The class labels 𝑞𝑞𝑛𝑛 are strings.

43

Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑞𝑞1 = dog, 𝑠𝑠1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑞𝑞2 = dog, 𝑠𝑠2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑞𝑞3 = cat, 𝑠𝑠3 = 2
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑞𝑞4 = fox, 𝑠𝑠4 = 3
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑞𝑞5 = cat, 𝑠𝑠5 = 2
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑞𝑞6 = fox, 𝑠𝑠6 = 3

• Step 1:
– Generate new class labels 𝑠𝑠𝑛𝑛, where classes are numbered

sequentially starting from 1.
• Thus, in our example, the class labels become 1, 2, 3.

44

Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• How many dimensions should we use in our example?

45

Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = ? , ? , ? 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = ? , ? , ? 𝑇𝑇

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• In our example we have three classes, so each 𝒕𝒕𝑛𝑛 is 3-dimensional.

– If 𝑠𝑠𝑛𝑛 = 𝑖𝑖, then set the i-th dimension of 𝑡𝑡𝑛𝑛 to 1.
– Otherwise, set the i-th dimension of 𝑡𝑡𝑛𝑛 to 0. 46

Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 2: Convert each label 𝑠𝑠𝑛𝑛 to a one-hot vector 𝒕𝒕𝑛𝑛.
– Vector 𝒕𝒕𝑛𝑛 has as many dimensions as the number of classes.

• In our example we have three classes, so each 𝒕𝒕𝑛𝑛 is 3-dimensional.

– If 𝑠𝑠𝑛𝑛 = 𝑖𝑖, then set the i-th dimension of 𝑡𝑡𝑛𝑛 to 1.
– Otherwise, set the i-th dimension of 𝑡𝑡𝑛𝑛 to 0. 47

Converting to One-Versus-All

• Training set:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the
number of classes).

• For training the first perceptron, use the first dimension
of each 𝒕𝒕𝑛𝑛 as target output for 𝒙𝒙𝑛𝑛.

48

Training Set for the First Perceptron

• Training set used to train the first perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 1
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 1
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 0
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 0
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 0
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 0

• Essentially, the first perceptron is trained to output “1”
when:

– The original class label 𝑞𝑞𝑛𝑛 is “dog”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 1.

49

Converting to One-Versus-All

• Training set for the multiclass problem:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the
number of classes).

• For training the second perceptron, use the second
dimension of each 𝑡𝑡𝑛𝑛 as target output for 𝑥𝑥𝑛𝑛.

50

Training Set for the Second Perceptron

• Training set used to train the second perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 0
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 0
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 1
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 0
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 1
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 0

• Essentially, the second perceptron is trained to output
“1” when:

– The original class label 𝑞𝑞𝑛𝑛 is “cat”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 2.

51

Converting to One-Versus-All

• Training set for the multiclass problem:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑠𝑠1 = 1 𝒕𝒕1 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑠𝑠2 = 1 𝒕𝒕2 = 1, 0, 0 𝑇𝑇

– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑠𝑠3 = 2 𝒕𝒕3 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑠𝑠4 = 3 𝒕𝒕4 = 0, 0, 1 𝑇𝑇

– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑠𝑠5 = 2 𝒕𝒕5 = 0, 1, 0 𝑇𝑇

– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑠𝑠6 = 3 𝒕𝒕6 = 0, 0, 1 𝑇𝑇

• Step 3: Train three separate perceptrons (as many as the
number of classes).

• For training the third perceptron, use the third dimension
of each 𝑡𝑡𝑛𝑛 as target output for 𝑥𝑥𝑛𝑛.

52

Training Set for the Third Perceptron

• Training set used to train the third perceptron:
– 𝒙𝒙1 = 0.5, 2.4, 8.3, 1.2, 4.5 𝑇𝑇 , 𝑡𝑡1 = 0
– 𝒙𝒙2 = 3.4, 0.6, 4.4, 6.2, 1.0 𝑇𝑇 , 𝑡𝑡2 = 0
– 𝒙𝒙3 = 4.7, 1.9, 6.7, 1.2, 3.9 𝑇𝑇 , 𝑡𝑡3 = 0
– 𝒙𝒙4 = 2.6, 1.3, 9.4, 0.7, 5.1 𝑇𝑇 , 𝑡𝑡4 = 1
– 𝒙𝒙5 = 8.5, 4.6, 3.6, 2.0, 6.2 𝑇𝑇 , 𝑡𝑡5 = 0
– 𝒙𝒙6 = 5.2, 8.1, 7.3, 4.2, 1.6 𝑇𝑇 , 𝑡𝑡6 = 1

• Essentially, the third perceptron is trained to output “1”
when:

– The original class label 𝑞𝑞𝑛𝑛 is “fox”.
– The sequentially numbered class label 𝑠𝑠𝑛𝑛 is 3.

53

One-Versus-All Perceptrons: Recap
• Suppose we have 𝐾𝐾 classes 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾 , where 𝐾𝐾 > 2.
• We have training inputs 𝒙𝒙1, , … ,𝒙𝒙𝑁𝑁, and target values 𝒕𝒕1, … , 𝒕𝒕𝑁𝑁.
• Each target value 𝒕𝒕𝑛𝑛 is a K-dimensional vector:

– 𝒕𝒕𝑛𝑛 = (𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, … , 𝑡𝑡𝑛𝑛,𝐾𝐾)
– 𝑡𝑡𝑛𝑛,𝑘𝑘 = 0 if the class of 𝒙𝒙𝑛𝑛 is not Ck.
– 𝑡𝑡𝑛𝑛,𝑘𝑘 = 1 if the class of 𝒙𝒙𝑛𝑛 is Ck.

• For each class 𝐶𝐶𝑘𝑘, train a perceptron 𝑧𝑧𝑘𝑘 by using 𝑡𝑡𝑛𝑛,𝑘𝑘 as the target
value for 𝒙𝒙𝑛𝑛.

– So, perceptron 𝑧𝑧𝑘𝑘 is trained to recognize if an object belongs to class 𝐶𝐶𝑘𝑘 or
not.

– In total, we train 𝐾𝐾 perceptrons, one for each class.

54

One-Versus-All Perceptrons

• At inference time, to classify an input pattern 𝒙𝒙:
– Compute the responses 𝑧𝑧𝑘𝑘(𝒙𝒙) for all 𝐾𝐾 perceptrons.
– Find the perceptron 𝑧𝑧𝑘𝑘∗ such that the value 𝑧𝑧𝑘𝑘∗(𝒙𝒙) is

higher than all other responses.
– Output that the class of x is 𝐶𝐶𝑘𝑘∗.

• In summary: we assign 𝒙𝒙 to the class whose
perceptron produced the highest output value for 𝒙𝒙.

55

Multiclass Neural Networks

• For perceptrons, we saw that we can perform
multiclass (i.e., for more than two classes)
classification using the one-versus-all (OVA)
approach:

– We train one perceptron for each class.

• These multiple perceptrons can also be thought of
as a single neural network.

56

OVA Perceptrons as a Single Network

57

𝑈𝑈2,1

𝑈𝑈2,3

𝑈𝑈2,2

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 1
(Input layer) Layer 2

(Output
layer)

Multiclass Neural Networks

• For perceptrons, we saw that we can perform
multiclass (i.e., for more than two classes)
classification using the one-versus-all (OVA) approach:

– We train one perceptron for each class.

• These multiple perceptrons can also be thought of as a
single neural network.

• In the simplest case, a neural network designed to
recognize multiple classes looks like the previous
example.

• In the general case, there are also hidden layers.

58

A Network for Our Example

59

𝑈𝑈2,1

Layer 4
(Output

layer)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 1
(Input layer)

Layer 2
(1st Hidden

Layer)

Layer 3
(2nd Hidden

Layer)

60

Input Layer: How many units does it have? Could we have a different
number? Is the number of input units a hyperparameter?

𝑈𝑈2,1

Layer 4 (output)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 1 (input) Layer 2
(hidden)

Layer 3
(hidden)

61

In our example, the input layer it must have five units, because each
input is five-dimensional. We don’t have a choice.

𝑈𝑈2,1

Layer 4 (output)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 1 (input) Layer 2
(hidden)

Layer 3
(hidden)

62

• This network has two hidden layers, with four units per layer.
• The number of hidden layers and the number of units per layer

are hyperparameters, they can take different values.

𝑈𝑈2,1

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Layer 2
(hidden)

Layer 3
(hidden)

63

Output Layer: How many units does it have? Could we have a
different number? Is the number of output units a
hyperparameter?

𝑈𝑈2,1

Layer 4
(output)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

64

• In our example, the output layer must have three units,
because we want to recognize three different classes (dog, cat,
fox). We have no choice.

𝑈𝑈2,1

Layer 4
(output)

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

65

Network connectivity:
• In this neural network, at layers 2, 3, 4, every unit receives as

input the output of ALL units in the previous layer.
• This is also a hyperparameter, it doesn’t have to be like that.

𝑈𝑈2,1

𝑈𝑈2,3

𝑈𝑈2,4

𝑈𝑈3,1

𝑈𝑈3,2

𝑈𝑈3,3

𝑈𝑈3,4

𝑈𝑈4,1

𝑈𝑈4,2

𝑈𝑈2,2

𝑈𝑈4,3

𝑈𝑈1,1

𝑈𝑈1,2

𝑈𝑈1,3

𝑈𝑈1,4

𝑈𝑈1,5

Next: Training a Multi-Layer Network

• The next set of slides will describe how to train
such a network.

• Training a neural network is done using gradient
descent.

• The specific method is called backpropagation,
but it really is just a straightforward application of
gradient descent for neural networks.

66

	Slide Number 1
	Training as an Optimization Problem
	Parameters We Optimize
	Parameters We Optimize
	Optimization Criterion
	Squared Differences
	Sum of Squared Differences
	Training as an Optimization Problem
	Training as an Optimization Problem
	Perceptron Learning
	Perceptron Learning
	Perceptron Learning
	Computing the Gradient
	Updates, One Example at a Time
	Batch Processing Preview
	Chain Rule for Derivatives
	A Note on the Chain Rule
	Decomposing 𝐸 𝑛
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Using the Chain Rule
	Combining the Results
	Combining the Results
	Combining the Results
	Combining the Results
	Combining the Results
	Final Formula for 𝜕 𝐸 𝑛 𝜕𝑏
	Gradients
	Weight Update
	Weight Update
	Perceptron Learning - Summary
	Stopping Criterion
	Notation for Multiclass Training Set
	Using Perceptrons for Multiclass Problems
	A Multiclass Example
	Converting to One-Versus-All
	Converting to One-Versus-All
	Converting to One-Versus-All
	Converting to One-Versus-All
	Converting to One-Versus-All
	Training Set for the First Perceptron
	Converting to One-Versus-All
	Training Set for the Second Perceptron
	Converting to One-Versus-All
	Training Set for the Third Perceptron
	One-Versus-All Perceptrons: Recap
	One-Versus-All Perceptrons
	Multiclass Neural Networks
	OVA Perceptrons as a Single Network
	Multiclass Neural Networks
	A Network for Our Example
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Next: Training a Multi-Layer Network

