Neural Networks
Part 4 — Training with Backpropagation

CSE 4311 — Neural Networks and Deep Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington



Review: A Multiclass Example

 Suppose we have this training set:
— x, = (0.5,2.4,8.3,1.2,4.5)7, g, = dog
— x, = (3.4,0.6,4.4,6.2,1.0)7, g, = dog
— x; =(47,19,6.7,1.2,3.9)7, g, = cat
—x, =(2.6,1.3,9.4,0.7,5.1)7, g, = fox
— x: = (8.5,4.6,3.6,2.0,6.2)T, gc = cat
— x, = (5.2,8.1,7.3,4.2,1.6)7, g, = fox
* |n this training set:
— We have three classes.

— Each training input is a five-dimensional vector.



Review: Generating One-Hot Vectors

Before we train a neural network, we must convert class labels to
one-hot-vectors.

Step 1: convert class labels g,, to new class labels s,,, which are
integers between 1 and K.

— K is the number of classes, K = 3 in our example.

Step 2: convert labels s,, to K-dimensional one-hot vectors t,,.

Result: training set with new class labels s,, and one-hot vectors ¢,,:

— x, =(0.5,2.4,8.3,1.2,4.5)7, s =1 t, = (1,0,0)7
— x, = (3.4,0.6,4.4,6.2,1.0)7, s, =1 t, =(1,0,0)7
— x5 =(4.7,19,6.7,1.2,3.9)T, Sq =2 t. = (0,1,0)7
— x, =(2.6,1.3,9.4,0.7,5.1)7, S. =3 t, = (0,0,1)7
— xc = (8.5,4.6,3.6,2.0,6.2)T, Se =2 t- = (0,1,0)7

— x¢ =(5.2,8.1,7.3,4.2,1.6)7, S¢ =3 t. = (0,0,1)7



Review: Multiclass Neural Networks

* For perceptrons, we saw that we can perform
multiclass (i.e., for more than two classes)
classification by training one perceptron for each
class.

e For neural networks, we will train a SINGLE neural
network, with MULTIPLE output units.

— The number of output units will be equal to the number of
classes.



Review: A Network for Our Example

(Inpu tl ayer) (1t Hdd (2" Hidden  (Qutput

@\ Layer) Ly er) jayer)
«vn‘ »4\ “
( (& 0" M‘e Uss >
4“‘9#}"{",%

@/




Neural Network Notation

L is the total number of layers in the neural network.
D is the number of dimensions of the input.
K is the number of classes we want to recognize.

Each unit, is denoted as U; ;, where :
1 <1< L,andlisthe layer index
1 < i, and i is the index of the unit within layer [.
Layer 1 is the input layer. Units Uy 4, ..., U; p are the input units.

Layer L is the output layer. Units Uy 4, ..., Uy ¢ are the output units.
We denote by w; ; ; the weight of the edge connecting the output
of unit U;_4 j to an input of unit U ;.

j is the index of the unit in layer [ — 1.
[ is the index of the unit in layer L.

We denote by b, ; the bias weight of U, ;.



Neural Network Notation

 We denote by J; the number of units in layer [.
— For the input layer, J; = D.
— For the output layer, /; = K (the number of classes).
— For each hidden layer [, J; is a hyperparameter.

* We denote by a;; the weighted sum that is calculated at U ;.
Ji-1

a; = by; + Z(Wu,j * Zl—l,j)
Jj=1

— Note that this weighted sum is NOT applicable when [ = 1, it only starts
getting calculated for [ = 2. So, a, ; is not defined.

* We denote by z;; the output of unit U; ;.
— Ifl =1, thenzy; = x;.

— Ifl = 2,thenz;; = o(ay;) = 1+ 1

e aLi



Neural Network Notation

e We denote by J; the number of units in layer [.
— For the input layer, J; = D.
— For the output layer, /; = K (the number of classes).
— For each hidden layer [, J; is a hyperparameter.

* We denote by a;; the weighted sum that is calculated at U ;.
Ji-1

a; = by; + Z(Wu,j * Zl—l,j)
Jj=1

— Note that this weighted sum is NOT applicable when [ = 1, it only starts
getting calculated for [ = 2. So, a, ; is not defined.

* We denote by z;; the output of unit U; ;.

— Ifl=1,thenz;; = x;. In these slides, we assume

— Ifl > 2,thenz; = G(Cll,i) = ﬁ that we are using the sigmoid
te " as activation function.




Squared Error for Neural Networks

In neural networks, the optimization criterion is usually called the
loss function.

— In these slides, the loss function will be the sum of squared differences.

We denote by b the vector of all bias weights b ;.
We denote by w the vector of all weights w;; ;.

We denote by E,, (b, w) the contribution that training input x,,
makes to the overall loss function, given b, w.

K
E,(b,w) = %z ((tne —20)°]
c=1

Remember: target output t,, is a one-hot vector.

* We denote by t,, . the c-th dimension of target output t,,.






In our three-class example:
1 g 2
* E, 52c=1 {(tn,c — ZL,C) }

@ o Z % (tn1 — Z4,1)2 + (tnz — Z4,2)2 + (tns — Z4'3)2]
XA =)

@ PRGN QW‘»&@
?;’M'Q’A";?fr@ A

TP

- R ADAD




Squared Error for Neural Networks

 We denote by E (b, w) the overall loss (or error) over all
training examples for the network specified by b, w.

N 1 N‘ K‘
Ebw) = ) Enlbw) =5 > > {(tne—2.)°}
n=1 n=1c=1

e This is now a double summation.

— We sum over all training examples x,,.
— For each x,,, we sum over all perceptrons in the output layer.



Training Neural Networks

To train a neural network, we use gradient descent.

— We follow the same approach of sequential learning that we
followed for training single perceptrons.

Given a training example x,, and target output t,;:
— Compute the training loss E,, (b, w).
)

: 0E,
— Compute the gradients ™ and "

— Based on the gradients, we can update all weights b and w.

The process of computing the gradient and updating
neural network weights is called backpropagation.

We will see the solution when we use the sigmoidal
function as activation function h.



Computing the Gradient

0E 0E
e Overall, we want to compute —= and —.
db ow
 This is the same as computing:
. . . .. QE
— For each bias weight b, ;, the partial derivative ab"
Li
— For each wy; j, the partial derivative ——.
e an’i’j
OE OE : :
e To compute —= and ——, we will use this strategy:
abl,,; 6wl,i,]-

— Decompose E,, into a composition of simpler functions.
— Compute the derivative of each of those simpler functions.

0E OE
L and —.
abl,i an,i,j

— Apply the chain rule to obtain



Decomposing the Loss Function

Let U, ; be a perceptron in the neural network.

Define a; ; (x,, b, w) to be the weighted sum of the inputs of

U, ;, given input x;, and given the current values of b and w.
Ji-1

ap;(x,,b,w)=Db;; + z (Wl,i,j * 711 j (X, b, W))
j=1
Remember that z; ; is the output of unit U;;, and it is obtained
by applying the sigmoid function on top of a; ; (x,,, b, w).

1
Zl’l(xn; b; w) — O (al,l (xn’ b’ w)) = 1 + e_al,i(xn'b’w)




Decomposing the Loss Function

Define z; to be a vector containing the outputs of all
units at layer .

T
— Using our notation, z; = (Zl’l,Zl,Z, ...,Zl’]l) , Where J; is the
number of units at layer [.
Define function E}, ;(z;, b, w) to be the loss of the
network given outputs z;.

Intuition for E, ;(z;, b, w):
— Suppose that you know z;, and the weights for all layers after
layer [.

— Then, you can still compute the output of the network, and
the loss E,, (b, w).



Visualizing Function E}, ;

e Suppose we know the target output t,;, and all weights b and w.

e |f we know the output z; of layer [:
— Can we compute the output of the network?
— Can we compute the loss value E,;?

Layers 1to 4,
not shown.




Visualizing Function E}, ;

* In this example, the network has six layers.
— We have no idea what happens in layers 1 to 4.
— However, we are given the output z, of layer 4.
— Can we compute the output of the network?
— Can we compute the loss E,,?

Layers 1to 4,
not shown.




Visualizing Function E}, ;

e Inthis example, given the output z, of layer 4, if we know all
weights b and w, we can compute the final output and the loss.
— Given z,, we can compute the output z: of layer 5.
— Given zs, we can compute the output z¢ of layer 6, (the output layer).
— Given z4 and target output t,,, we can compute the loss E, ;(z;, b, w).

Layers 1to 4,
not shown.




Decomposing the Loss Function

 We have three auxiliary functions:
— al,i (xn, b' W)

— o(a)

— n,l(Zl» b, w)

* Then, E, is a composition of functions E}, ;, g, a; ;.

En (xnr b, W) — En,l (le b, W)

= En, ((0 (am(xn, b, w)) ) e, O (al,]l (x,,b, w))) ,b, w)

N 4
YT

Z




Computing the Gradient of E,

E,(x,,bw)=E,, ((21,1;21,2; ...,Zl’]l),b, w)
B, ((a (@12 Cen b, W), ., 5 (a1, b, W) ). b, w>

* So, E}, is a composition of function E}, ;, function o, and
functions a; ;.

OE OF
~ and L

3by; Wi by applying

* This allows us to compute

the chain rule.



Computing the Gradient of E,

En(xn, b, W) = En,l ((Zl,lizl,z' ""er]l)’ b, W)

B, ((a (@12 Cen b, W), ., 5 (a1, b, W) ). b, w>

e Applying the chain rule:

aEn aEn’l aZl’i aal’i
= 3 k
abl,i aZl’l' aal,i abl,i

6En aEn’l aZl,i 5al,i
— k k
an,i,j Hzl,i aal,i an,i’j



0E,
ob,;

0al,i

ob,

=777

- daj;
Computin =~ and
PULING 0by 0w,

6al,i

aEnl ale aall

ale aall Obll

a(bll + Z]l 1(Wuk * Z]— 1k))

ob,

0 (x + stuff that is independent of x)
0x B

This is actually very simple. It is of this form:

=777

23



- daj;
Computin =~ and
PULING 0by 0w,

6al,i

aEn - aEnl ale aall
dby N 0z aa’ll abll

day; d(by; + Z]l t(Wiik * zi—1x))

ob, ob,

=1

d(x + stuff that is independent of x)
0x B

This is actually very simple. It is of this form:

24



aali

Computing —= and

abl,i

aEn aEnl ale aall
an’l'] ale Oall anl]

day, . a(bl,i ]l 1(Wuk * 2 1k))

6al,i

an,i,j an,l,]

=777

How does w;; ; influence Z]l 1(W“k * Z]_ 1k)?

awl,i’j

25



aali 6al,i

Computin =~ and
PULING 0by 0w,

aEn 6Enl aZl’l' aal’i
3
an’l',] aZl i Oal,i an,i,j

day, . a(bl,i ]l 1(Wuk * 2 1k))

an’i,j an’i’j

—N
P In Z]l Y(Wy ik * Z1_11), at some point
k = j.Then, w;; . is multipled by z,_; ;. Based on that,

0aLi 999
an,i,j

26



: daj;
Computin =~ and
PULING 0by 0w,

aal,i

aEn 6Enl ale aall
an’l'] ale aall anl]

da;; a(bll + Z]l t(Wik * z1211))
an’l"] an’l,]

= Z1-1,j



aZli

Computing o
L1

6En 6Enl aZl’i 5(1”
b S

an’i’J aZl i 6al’i an’i’j

07y _ J (G(al'i)) — G(az,i) * (1 — G(al,i)) =21 * (1 -~ Zl,i)

aal,i aal i

)

e We just use the known formula for the derivative of o.

— One of the reasons we like using the sigmoidal function for activation is
that its derivative has such a simple form.



aEn’l
azu’
If Unit U;; Is an Output Unit

Computing

* If Up; is an output unit, then z;; is an output of the
entire network.

. 1 2
* Zz;; contributes to the loss the term > (tn,i — Zl’i) :

e Therefore:

1
aEn,l B af (tn,i o Zl,i)
aZl’l' B aZl,l'

2

= Z1i —ltn;



Updating Weights of Output Units

* If Uy; is an output unit, then we have computed all the

OF
terms we need for ——.
an,i,j
0 0 ,l ale aall

anl] aleX ﬁallel’U\

0FE

n
0 — le_tnl)*zll (1_le *Zl 1,j
Wll]

* So, if Up; is an output unit, we update w; ; ; as:

wii=wr =Nz —tng) %z * (1 —21) * 21



Updating Weights of Output Units

OE,
6bL{

* Similarly, if U;; is an output unit, we can compute

6[21 alﬂll é}le aCQl

éabll é}le 6901;\\<z€ii~\\\\\\\\\\‘

J0E,
abll—(le_tnl *le _le

* So, if Uy; is an output unit, we update b; ; using:

by =by—n(zy —tni) * 2z % (1 —2;)



aEn’l
c’)zu ’

If Unit U;; Is a Hidden Unit

Computing

=~ when Uy; is a hidden unit.
aZl’i !

* We want to compute

* We use the chain rule, to relate E7,; to £ 141.

Ji
0E, _ i (aEn,Hl ) 0Z141k ) aal+1,k)

07y, ] 0Z141k O0Qup1x 07y

* We need to compute these three terms.



aEn’l
c’)zu’
If Unit U;; Is a Hidden Unit

Computing

Ji
0E, 2“ aEn,l+1 0Z141k aCll+1,k
aZl’l’

£ aZl+1k aal+1k aZl,i

0041k _ 0 (bl+1k + Z] —1 (Wl+1kj *Z]j (al,j(xn» b, W))))
aZl’l‘ aZl,i

= Wit1 ki



aEn’l
azu’
If Unit U;; Is a Hidden Unit

Computing

Ji
0E, i(aEn,lﬂ 0Z141k aal+1,k>

aZl,i £ 0Z141k aal+1k aZz,i

0Z) 41,k _ 0 (G(al“'k))

aCll+1,k aCll+1,k

= 0(a41k) * (1 B G(aHl’k))

Derivative of the
=7y * (1 — Zl,i) sigmoid function



aEn’l
c’)zu’
If Unit U;; Is a Hidden Unit

Computing

Ji
0E, i(aEn,lﬂ 0Z141k aal+1,k>

0z i £ 0Zi41 Oy 07

. aZl k aal k

e We can plug in our results for —== and ——=.
0ai+1,k 0z

* So, the formula becomes:

Ji+1

aEn,l . aEn,l+1 1

3 — 3 *Zl+1k * ( — Zl+1,k) *Wit1,k,i
Z1i = \0Z14+1k




0En
~ Case 2:
c’)zu

If Unit U;; Is a Hidden Unit

Computing

Ji+1
aEn,l . aEn,l+1 1
— * Zl+1,k( — Zl+1,k) * Wit ki

0z; ; 0z
i A= \0Z111k
: OE : : ) OE
 Notice that —2* is defined using —2=1,
0zy; 0Z1+1,k

— This is a recursive definition. To compute the values for layer
[, we use the values from the next layer (i.e., layer [ + 1).
— This is why the whole algorithm is called backpropagation.

 We propagate computations from the output layer backwards towards
the input layer.



OE,

for Hidden Units
an,i,j

Computing

e From the previous slides, we have these formulas:

6En 6En,l aZl’i aal’l’
= k X
an’i’j aZl’i 6al’l~ an’i’j

 9Ey,
B Ozl’i

Ji+1

0E oF

nl n,l+1

0 B 2 0 *Ziy1,k ¥ (1 — Zl+1,k) *Wit1k,i
AR e Z1+1,k

(2 —tni) *zpi* (L —2p) * 21

En
an,i,j

e We can combine these formulas, to compute for any

weight of any hidden unit.



OE,,
ab ll

oE, . . . : day;
is similar, we just replace - Wit h :

aEn _ aEnl 62“ 0all
0b,; 0z aa“ 0b, ;

Computing for Hidden Units

e The formula for

(le tni) * Z1i * (1 — Zl,i) * 1

Ji+1
0FE z 0E
n,l . n,l+1
AR Z1+1,k

k=1



Simplifying Notation

 The previous formulas are sufficient and will work, but
look complicated.

 We can simplify the formulas considerably, by defining:
6En’l Hzl,i
= %k

aZl,l' aal,i

0

 Then, if we combine calculations we already did:
— If Uy ; is an output unit, then:
S1i = (210 — ti) * 21 % (1 — zy)
— If U;; is a hidden unit, then:
Ji+1

01; = Z(6l+1,k * Wl+1,k,i) * 2y * (1 — Zl,i)

k=1



Final Backpropagation Formulas

* Using the definition of 0; ; from the previous slide, we
finally get very simple formulas:

0E;,
an,i,j

= 0y * Z1-1,j = 0y

abl,i
* Therefore, given a training input x,,, and given a

positive learning rate 1, weights w;; ; and b; ; are
updated as follows:

Wiij=Wpij—N*0p;*Zj_q; byi =by; —n*d;;



Backpropagation for One Object
Step 1: Initialize Input Layer

 We will now see how to apply backpropagation, step by step, in
pseudocode style, for a single training object.

* NOTE: IN THE PSEUDOCODE, ARRAY INDICES START AT 1, NOT 0.

* First, given a training example x,,, and its target output t,,, we
must initialize the input units:

// 2D array z will store, for every unit U, ;, its output

e double *xx Z = new double*[L] // L isthe number of layers
e Z[1] =new double[D] // D isthe dimensionality of x,,

// Update the input layer, set inputs equal to x,,.

e Forl =1toD:

— z|[1][I] = x,;  // x,;is thei-th dimension of training input x,,. 21



Backpropagation for One Object
Step 2: Compute Outputs

// we create a 2D array a, which will store, for every
// unit U, ;, the weighted sum of the inputs of U ;.

e double **x a = new double*[L]

// Update the rest of the layers:
e Forl = 2toL: //Listhe number of layers

— a|l]=new double[/;] // J; isthe number of units in layer [
— z[l]= new double[/;]

— For each unit Uy ; in layer [:
e all]li] = by; + Z;lz‘ll(wl,i,jz[l — 1][/']) // weighted sum
 2[1J[i] = o(a[l][i]) = —=

1+ e~ 4

g // output of unit Uy ;

42



Backpropagation for One Object
Step 3: Compute New 0 Values

// array & will store, for every unit U, ;, value §; ;.

double ** § = new double*[L]
6[L] = new double*[K] // K is the number of classes

For each output unit UL i

= (2[L][i] — ty;) * [L][i] * (1 — 2[L][i])
For l = L —1to 2. // MUST be in decreasing order of [

— O[l] =new double[];]  // J; isthe number of units in layer [
— For each unit U;; in layer [:

o+ S[[E] = (ZR3(81L + 11[k] * Wi s) ) * 2[1[E] * (L = 2[1][i])

43



Backpropagation for One Object
Step 4: Update Weights

e Forl = 2tolL://Order does not matter here, we can go
// from 2 to L or from L to 2.

— Fori = 1toJ;:
* by = by —n = 8[1]]i]
e Forj = 1toJ;_q:
—wyij = wj—n 0[] = z[l — 1][/]

IMPORTANT: Do Step 3 before Step 4. Do NOT do steps 3 and 4

as a single loop.
e All 6 values must be computed using the old values of weights.

* Then, all weights must be updated using the new ¢ values .




Backpropagation Summary

* |nputs:
— N D-dimensional training objects x4, ..., Xy.
— The associated target values t4, ..., ty, which are K-dimensional vectors.
1. Initialize weights b; ; and w; ; ; to small random numbers.
— For example, set each b;; and w;; ; to a value between -0.1 and 0.1.
last_loss = E(b,w) //sum over all training examples
Forn = 1to N:
— Given x,, update weights b;; and w;; ; as described in the previous slides.
4. loss=E(b,w) //sum over all training examples

5. If |loss —last_loss| < threshold, exit. // threshold can be 0.00001.
6. Else:

7. last_loss = loss
8. gotostep 3.



Classification with Neural Networks

Suppose we have K classes Cy, ..., Cx, where K > 2.
Each class Cj corresponds to an output unit Uy .

As we said before, for training we need to convert
each class label to the appropriate one-hot vector.

At inference time, given a pattern x to classify:

— Compute outputs for all units of the network, working from
the input layer towards the output layer.

— Find the output unit Uy, ,with the highest output z 4.

— Return class Cy,.



Structure of Neural Networks

Backpropagation describes how to learn weights.

However, it does not describe how to learn the
structure:

— How many layers?

— How many units at each layer?

These are parameters that we have to choose somehow.
A good way to choose such parameters is by using a
validation set, containing examples and their class labels.

— The validation set should be separate (disjoint) from the
training set.



Structure of Neural Networks

 To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

e For each choice of parameters:

— We train several neural networks using backpropagation.

— We measure how well each neural network classifies the
validation examples.

— Why not train just one neural network?



Structure of Neural Networks

 To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

e For each choice of parameters:

— We train several neural networks using backpropagation.

— We measure how well each neural network classifies the
validation examples.

— Why not train just one neural network?

— Each network is randomly initialized, so after backpropagation
it can end up being different from the other networks.

e At the end, we select the neural network that did best
on the validation set.



	Slide Number 1
	Review: A Multiclass Example
	Review: Generating One-Hot Vectors
	Review: Multiclass Neural Networks
	Review: A Network for Our Example
	Neural Network Notation
	Neural Network Notation
	Neural Network Notation
	Squared Error for Neural Networks
	Slide Number 10
	Slide Number 11
	Squared Error for Neural Networks
	Training Neural Networks
	Computing the Gradient
	Decomposing the Loss Function
	Decomposing the Loss Function
	Visualizing Function  𝐸 𝑛,𝑙 
	Visualizing Function  𝐸 𝑛,𝑙 
	Visualizing Function  𝐸 𝑛,𝑙 
	Decomposing the Loss Function
	Computing the Gradient of  𝐸 𝑛  
	Computing the Gradient of  𝐸 𝑛  
	Computing   𝜕 𝑎 𝑙,𝑖  𝜕 𝑏 𝑙,𝑖    and   𝜕 𝑎 𝑙,𝑖  𝜕 𝑤 𝑙,𝑖,𝑗  
	Computing   𝜕 𝑎 𝑙,𝑖  𝜕 𝑏 𝑙,𝑖    and   𝜕 𝑎 𝑙,𝑖  𝜕 𝑤 𝑙,𝑖,𝑗  
	Computing   𝜕 𝑎 𝑙,𝑖  𝜕 𝑏 𝑙,𝑖    and   𝜕 𝑎 𝑙,𝑖  𝜕 𝑤 𝑙,𝑖,𝑗  
	Computing   𝜕 𝑎 𝑙,𝑖  𝜕 𝑏 𝑙,𝑖    and   𝜕 𝑎 𝑙,𝑖  𝜕 𝑤 𝑙,𝑖,𝑗  
	Computing   𝜕 𝑎 𝑙,𝑖  𝜕 𝑏 𝑙,𝑖    and   𝜕 𝑎 𝑙,𝑖  𝜕 𝑤 𝑙,𝑖,𝑗  
	Computing   𝜕 𝑧 𝑙,𝑖  𝜕 𝑎 𝑙,𝑖  
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 1:�If Unit  𝑈 𝑙,𝑖  Is an Output Unit
	Updating Weights of Output Units
	Updating Weights of Output Units
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 2:�If Unit  𝑈 𝑙,𝑖  Is a Hidden Unit
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 2:�If Unit  𝑈 𝑙,𝑖  Is a Hidden Unit
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 2:�If Unit  𝑈 𝑙,𝑖  Is a Hidden Unit
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 2:�If Unit  𝑈 𝑙,𝑖  Is a Hidden Unit
	Computing   𝜕 𝐸 𝑛,𝑙  𝜕 𝑧 𝑙,𝑖  , Case 2:�If Unit  𝑈 𝑙,𝑖  Is a Hidden Unit
	Computing   𝜕 𝐸 𝑛  𝜕 𝑤 𝑙,𝑖,𝑗    for Hidden Units
	Computing   𝜕 𝐸 𝑛  𝜕 𝑏 𝑙,𝑖    for Hidden Units
	Simplifying Notation
	Final Backpropagation Formulas
	Backpropagation for One Object� Step 1: Initialize Input Layer
	Backpropagation for One Object� Step 2: Compute Outputs
	Backpropagation for One Object� Step 3: Compute New 𝛿 Values
	Backpropagation for One Object� Step 4: Update Weights
	Backpropagation Summary
	Classification with Neural Networks
	Structure of Neural Networks
	Structure of Neural Networks
	Structure of Neural Networks

