Neural Networks Part 4 – Training with Backpropagation

CSE 4311 – Neural Networks and Deep Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

Review: A Multiclass Example

Suppose we have this training set:

$$-x_1 = (0.5, 2.4, 8.3, 1.2, 4.5)^T, q_1 = dog$$

$$-x_2 = (3.4, 0.6, 4.4, 6.2, 1.0)^T, q_2 = dog$$

$$-x_3 = (4.7, 1.9, 6.7, 1.2, 3.9)^T, q_3 = cat$$

$$-x_4 = (2.6, 1.3, 9.4, 0.7, 5.1)^T, q_4 = fox$$

$$-x_5 = (8.5, 4.6, 3.6, 2.0, 6.2)^T, q_5 = cat$$

$$-x_6 = (5.2, 8.1, 7.3, 4.2, 1.6)^T, q_6 = fox$$

- In this training set:
 - We have three classes.
 - Each training input is a five-dimensional vector.

Review: Generating One-Hot Vectors

- Before we train a neural network, we must convert class labels to one-hot-vectors.
- Step 1: convert class labels q_n to new class labels s_n , which are integers between 1 and K.
 - -K is the number of classes, K=3 in our example.
- Step 2: convert labels s_n to K-dimensional one-hot vectors t_n .
- Result: training set with new class labels s_n and one-hot vectors t_n :

$$-x_1 = (0.5, 2.4, 8.3, 1.2, 4.5)^T, s_1 = 1 t_1 = (1, 0, 0)^T
-x_2 = (3.4, 0.6, 4.4, 6.2, 1.0)^T, s_2 = 1 t_2 = (1, 0, 0)^T
-x_3 = (4.7, 1.9, 6.7, 1.2, 3.9)^T, s_3 = 2 t_3 = (0, 1, 0)^T
-x_4 = (2.6, 1.3, 9.4, 0.7, 5.1)^T, s_4 = 3 t_4 = (0, 0, 1)^T
-x_5 = (8.5, 4.6, 3.6, 2.0, 6.2)^T, s_5 = 2 t_5 = (0, 1, 0)^T
-x_6 = (5.2, 8.1, 7.3, 4.2, 1.6)^T, s_6 = 3 t_6 = (0, 0, 1)^T$$

Review: Multiclass Neural Networks

- For perceptrons, we saw that we can perform multiclass (i.e., for more than two classes) classification by training one perceptron for each class.
- For neural networks, we will train a SINGLE neural network, with MULTIPLE output units.
 - The number of output units will be equal to the number of classes.

Review: A Network for Our Example

Neural Network Notation

- L is the total number of layers in the neural network.
- *D* is the number of dimensions of the input.
- *K* is the number of classes we want to recognize.
- Each unit, is denoted as $U_{l,i}$, where :

```
1 \leq l \leq L, and l is the layer index 1 \leq i, and l is the index of the unit within layer l. Layer 1 is the input layer. Units U_{1,1}, \ldots, U_{1,D} are the input units. Layer L is the output layer. Units U_{L,1}, \ldots, U_{L,K} are the output units.
```

• We denote by $w_{l,i,j}$ the weight of the edge connecting the output of unit $U_{l-1,j}$ to an input of unit $U_{l,i}$.

```
j is the index of the unit in layer l-1. i is the index of the unit in layer l.
```

• We denote by $b_{l,i}$ the bias weight of $U_{l,i}$.

Neural Network Notation

- We denote by J_l the number of units in layer l.
 - For the input layer, $J_1 = D$.
 - For the output layer, $J_L = K$ (the number of classes).
 - For each hidden layer l, J_l is a hyperparameter.
- We denote by $a_{l,i}$ the weighted sum that is calculated at $U_{l,i}$.

$$a_{l,i} = b_{l,i} + \sum_{j=1}^{J_{l-1}} (w_{l,i,j} * z_{l-1,j})$$

- Note that this weighted sum is NOT applicable when l=1, it only starts getting calculated for $l\geq 2$. So, $a_{1,i}$ is not defined.
- We denote by $z_{l,i}$ the output of unit $U_{l,i}$.
 - If l = 1, then $z_{1,i} = x_i$.
 - If $l \ge 2$, then $z_{l,i} = \sigma(a_{l,i}) = \frac{1}{1 + e^{-a_{l,i}}}$

Neural Network Notation

- We denote by J_l the number of units in layer l.
 - For the input layer, $J_1 = D$.
 - For the output layer, $J_L = K$ (the number of classes).
 - For each hidden layer l, J_l is a hyperparameter.
- We denote by $a_{l,i}$ the weighted sum that is calculated at $U_{l,i}$.

$$a_{l,i} = b_{l,i} + \sum_{j=1}^{J_{l-1}} (w_{l,i,j} * z_{l-1,j})$$

- Note that this weighted sum is NOT applicable when l=1, it only starts getting calculated for $l\geq 2$. So, $a_{1,l}$ is not defined.
- We denote by $z_{l,i}$ the output of unit $U_{l,i}$.
 - If l = 1, then $z_{1,i} = x_i$.
 - If $l \ge 2$, then $z_{l,i} = \sigma(a_{l,i}) = \frac{1}{1 + e^{-a_{l,i}}}$

In these slides, we assume that we are using the sigmoid as activation function.

Squared Error for Neural Networks

- In neural networks, the optimization criterion is usually called the loss function.
 - In these slides, the loss function will be the sum of squared differences.
- We denote by \boldsymbol{b} the vector of all bias weights $b_{l,i}$.
- We denote by w the vector of all weights $w_{l,i,j}$.
- We denote by $E_n(\boldsymbol{b}, \boldsymbol{w})$ the contribution that training input \boldsymbol{x}_n makes to the overall loss function, given $\boldsymbol{b}, \boldsymbol{w}$.

$$E_n(\mathbf{b}, \mathbf{w}) = \frac{1}{2} \sum_{c=1}^{K} \{ (t_{n,c} - z_{L,c})^2 \}$$

- Remember: target output t_n is a one-hot vector.
 - We denote by $t_{n,c}$ the c-th dimension of target output t_n .

In our three-class example:

•
$$E_n = \frac{1}{2} \sum_{c=1}^{K} \left\{ \left(t_{n,c} - z_{L,c} \right)^2 \right\}$$

• What does each $z_{L,c}$ correspond to?

In our three-class example:

•
$$E_n = \frac{1}{2} \sum_{c=1}^{K} \left\{ \left(t_{n,c} - z_{L,c} \right)^2 \right\}$$

•
$$E_n = \frac{1}{2} \left[\left(t_{n,1} - z_{4,1} \right)^2 + \left(t_{n,2} - z_{4,2} \right)^2 + \left(t_{n,3} - z_{4,3} \right)^2 \right]$$

Squared Error for Neural Networks

• We denote by $E(\boldsymbol{b}, \boldsymbol{w})$ the overall loss (or error) over all training examples for the network specified by $\boldsymbol{b}, \boldsymbol{w}$.

$$E(\boldsymbol{b}, \boldsymbol{w}) = \sum_{n=1}^{N} E_n(\boldsymbol{b}, \boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{c=1}^{K} \left\{ \left(t_{n,c} - z_{L,c} \right)^2 \right\}$$

- This is now a double summation.
 - We sum over all training examples x_n .
 - For each x_n , we sum over all perceptrons in the output layer.

Training Neural Networks

- To train a neural network, we use gradient descent.
 - We follow the same approach of sequential learning that we followed for training single perceptrons.
- Given a training example x_n and target output t_n :
 - Compute the training loss $E_n(\boldsymbol{b}, \boldsymbol{w})$.
 - Compute the gradients $\frac{\partial E_n}{\partial \boldsymbol{b}}$ and $\frac{\partial E_n}{\partial \boldsymbol{w}}$.
 - Based on the gradients, we can update all weights \boldsymbol{b} and \boldsymbol{w} .
- The process of computing the gradient and updating neural network weights is called <u>backpropagation</u>.
- We will see the solution when we use the sigmoidal function as activation function h.

Computing the Gradient

- Overall, we want to compute $\frac{\partial E_n}{\partial \boldsymbol{b}}$ and $\frac{\partial E_n}{\partial \boldsymbol{w}}$.
- This is the same as computing:
 - For each bias weight $b_{l,i}$, the partial derivative $\frac{\partial E_n}{\partial b_{l,i}}$
 - For each $w_{l,i,j}$, the partial derivative $\frac{\partial E_n}{\partial w_{l,i,j}}$.
- To compute $\frac{\partial E_n}{\partial b_{l,i}}$ and $\frac{\partial E_n}{\partial w_{l,i,j}}$, we will use this strategy:
 - Decompose E_n into a composition of simpler functions.
 - Compute the derivative of each of those simpler functions.
 - Apply the chain rule to obtain $\frac{\partial E_n}{\partial b_{l,i}}$ and $\frac{\partial E_n}{\partial w_{l,i,j}}$.

Decomposing the Loss Function

- Let $U_{l,i}$ be a perceptron in the neural network.
- Define $a_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})$ to be the weighted sum of the inputs of $U_{l,i}$, given input \mathbf{x}_n and given the current values of \mathbf{b} and \mathbf{w} .

$$a_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = b_{l,i} + \sum_{j=1}^{J_{l-1}} \left(w_{l,i,j} * z_{l-1,j}(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) \right)$$

• Remember that $z_{l,i}$ is the output of unit $U_{l,i}$, and it is obtained by applying the sigmoid function on top of $a_{l,i}(x_n, \mathbf{b}, \mathbf{w})$.

$$z_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = \sigma\left(a_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})\right) = \frac{1}{1 + e^{-a_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})}}$$

Decomposing the Loss Function

- Define \mathbf{z}_l to be a vector containing the outputs of all units at layer l.
 - Using our notation, $\mathbf{z}_l = \left(z_{l,1}, z_{l,2}, \dots, z_{l,J_l}\right)^T$, where J_l is the number of units at layer l.
- Define function $E_{n,l}(\mathbf{z}_l, \mathbf{b}, \mathbf{w})$ to be the loss of the network given outputs \mathbf{z}_l .
- Intuition for $E_{n,l}(\mathbf{z}_l, \mathbf{b}, \mathbf{w})$:
 - Suppose that you know \mathbf{z}_l , and the weights for all layers after layer l.
 - Then, you can still compute the output of the network, and the loss $E_n(\mathbf{b}, \mathbf{w})$.

Visualizing Function $E_{n,l}$

- Suppose we know the target output \mathbf{t}_n , and all weights \boldsymbol{b} and \boldsymbol{w} .
- If we know the output \mathbf{z}_l of layer l:
 - Can we compute the output of the network?
 - Can we compute the loss value E_n ?

Layers 1 to 4, not shown.

Visualizing Function $E_{n,l}$

- In this example, the network has six layers.
 - We have no idea what happens in layers 1 to 4.
 - However, we are given the output z_4 of layer 4.
 - Can we compute the output of the network?
 - Can we compute the loss E_n ?

Layers 1 to 4, not shown.

Visualizing Function $E_{n,l}$

- In this example, given the output z_4 of layer 4, if we know all weights b and w, we can compute the final output and the loss.
 - Given z_4 , we can compute the output z_5 of layer 5.
 - Given z_5 , we can compute the output z_6 of layer 6, (the output layer).
 - Given \mathbf{z}_6 and target output \mathbf{t}_n , we can compute the loss $E_{n,l}(\mathbf{z}_l, \mathbf{b}, \mathbf{w})$.

Layers 1 to 4, not shown.

Decomposing the Loss Function

- We have three auxiliary functions:
 - $-a_{l,i}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})$
 - $-\sigma(\alpha)$
 - $-E_{n,l}(\mathbf{z}_l,\mathbf{b},\mathbf{w})$
- Then, E_n is a composition of functions $E_{n,l}$, σ , $a_{l,i}$.

$$E_n(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = E_{n,l}(\mathbf{z}_l, \mathbf{b}, \mathbf{w})$$

$$= E_{n,l}\left(\left(\sigma\left(a_{l,1}(\boldsymbol{x}_n, \mathbf{b}, \mathbf{w})\right), \dots, \sigma\left(a_{l,J_l}(\boldsymbol{x}_n, \mathbf{b}, \mathbf{w})\right)\right), \mathbf{b}, \mathbf{w}\right)$$

Computing the Gradient of E_n

$$E_n(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = E_{n,l}\left(\left(z_{l,1}, z_{l,2}, \dots, z_{l,J_l}\right), \mathbf{b}, \mathbf{w}\right)$$

$$= E_{n,l}\left(\left(\sigma\left(a_{l,1}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})\right), \dots, \sigma\left(a_{l,J_l}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})\right)\right), \mathbf{b}, \mathbf{w}\right)$$

- So, E_n is a composition of function $E_{n,l}$, function σ , and functions $a_{l,i}$.
- This allows us to compute $\frac{\partial E_n}{\partial b_{l,i}}$ and $\frac{\partial E_n}{\partial w_{l,i,j}}$ by applying the chain rule.

Computing the Gradient of E_n

$$E_n(\mathbf{x}_n, \mathbf{b}, \mathbf{w}) = E_{n,l}\left(\left(z_{l,1}, z_{l,2}, \dots, z_{l,J_l}\right), \mathbf{b}, \mathbf{w}\right)$$

$$= E_{n,l}\left(\left(\sigma\left(a_{l,1}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})\right), \dots, \sigma\left(a_{l,J_l}(\mathbf{x}_n, \mathbf{b}, \mathbf{w})\right)\right), \mathbf{b}, \mathbf{w}\right)$$

Applying the chain rule:

$$\frac{\partial E_n}{\partial b_{l,i}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial b_{l,i}}$$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

Computing
$$\frac{\partial a_{l,i}}{\partial b_{l,i}}$$
 and $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$

$$\frac{\partial E_n}{\partial b_{l,i}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial b_{l,i}}$$

$$\frac{\partial a_{l,i}}{\partial b_{l,i}} = \frac{\partial \left(b_{l,i} + \sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})\right)}{\partial b_{l,i}}$$

$$=???$$

This is actually very simple. It is of this form:

$$\frac{\partial(x + \text{stuff that is independent of x})}{\partial x} = ???$$

Computing
$$\frac{\partial a_{l,i}}{\partial b_{l,i}}$$
 and $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$

$$\frac{\partial E_n}{\partial b_{l,i}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial b_{l,i}}$$

$$\frac{\partial a_{l,i}}{\partial b_{l,i}} = \frac{\partial \left(b_{l,i} + \sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})\right)}{\partial b_{l,i}}$$

$$= 1$$

This is actually very simple. It is of this form:

$$\frac{\partial(x + \text{stuff that is independent of x})}{\partial x} = 1$$

Computing $\frac{\partial a_{l,i}}{\partial b_{l,i}}$ and $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$\frac{\partial a_{l,i}}{\partial w_{l,i,j}} = \frac{\partial \left(b_{l,i} + \sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})\right)}{\partial w_{l,i,j}}$$

$$=???$$

How does
$$w_{l,i,j}$$
 influence $\sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})$?

Computing $\frac{\partial a_{l,i}}{\partial b_{l,i}}$ and $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$\frac{\partial a_{l,i}}{\partial w_{l,i,j}} = \frac{\partial \left(b_{l,i} + \sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})\right)}{\partial w_{l,i,j}}$$

In $\sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})$, at some point k=j. Then, $w_{l,i,k}$ is multipled by $z_{l-1,j}$. Based on that, $\frac{\partial a_{l,i}}{\partial w_{l,i,i}} = ???$

Computing $\frac{\partial a_{l,i}}{\partial b_{l,i}}$ and $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$\frac{\partial a_{l,i}}{\partial w_{l,i,j}} = \frac{\partial \left(b_{l,i} + \sum_{k=1}^{J_{l-1}} (w_{l,i,k} * z_{l-1,k})\right)}{\partial w_{l,i,j}}$$

$$= z_{l-1,j}$$

Computing $\frac{\partial z_{l,i}}{\partial a_{l,i}}$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$\frac{\partial z_{l,i}}{\partial a_{l,i}} = \frac{\partial \left(\sigma(a_{l,i})\right)}{\partial a_{l,i}} = \sigma(a_{l,i}) * \left(1 - \sigma(a_{l,i})\right) = z_{l,i} * \left(1 - z_{l,i}\right)$$

- We just use the known formula for the derivative of σ .
 - One of the reasons we like using the sigmoidal function for activation is that its derivative has such a simple form.

- If $U_{l,i}$ is an output unit, then $z_{l,i}$ is an output of the entire network.
- $z_{l,i}$ contributes to the loss the term $\frac{1}{2}(t_{n,i}-z_{l,i})^2$.
- Therefore:

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \frac{\partial \frac{1}{2} \left(t_{n,i} - z_{l,i} \right)^2}{\partial z_{l,i}} = z_{l,i} - t_{n,i}$$

Updating Weights of Output Units

• If $U_{l,i}$ is an output unit, then we have computed all the terms we need for $\frac{\partial E_n}{\partial w_{l,i}}$.

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$\frac{\partial E_n}{\partial w_{l,i,j}} = (z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i}) * z_{l-1,j}$$

• So, if $U_{l,i}$ is an output unit, we update $w_{l,i,j}$ as: $w_{l,i,j} = w_{l,i,j} - \eta \big(z_{l,i} - t_{n,i} \big) * z_{l,i} * \big(1 - z_{l,i} \big) * z_{l-1,j}$

Updating Weights of Output Units

• Similarly, if $U_{l,i}$ is an output unit, we can compute $\frac{\partial E_n}{\partial b_{l,i}}$.

$$\frac{\partial E_n}{\partial b_{l,i}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial b_{l,i}}$$

$$\frac{\partial E_n}{\partial b_{l,i}} = (z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i}) * 1$$

• So, if $U_{l,i}$ is an output unit, we update $b_{l,i}$ using:

$$b_{l,i} = b_{l,i} - \eta(z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i})$$

- We want to compute $\frac{\partial E_{n,l}}{\partial z_{l,i}}$ when $U_{l,i}$ is a hidden unit.
- We use the chain rule, to relate $E_{n,l}$ to $E_{n,l+1}$.

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * \frac{\partial z_{l+1,k}}{\partial a_{l+1,k}} * \frac{\partial a_{l+1,k}}{\partial z_{l,i}} \right)$$

We need to compute these three terms.

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * \frac{\partial z_{l+1,k}}{\partial a_{l+1,k}} * \frac{\partial a_{l+1,k}}{\partial z_{l,i}} \right)$$

$$\frac{\partial a_{l+1,k}}{\partial z_{l,i}} = \frac{\partial \left(b_{l+1,k} + \sum_{j=1}^{J_l} \left(w_{l+1,k,j} * z_{l,j} \left(a_{l,j}(\boldsymbol{x}_n, \boldsymbol{b}, \boldsymbol{w})\right)\right)\right)}{\partial z_{l,i}}$$

$$= w_{l+1,k,i}$$

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * \frac{\partial z_{l+1,k}}{\partial a_{l+1,k}} * \frac{\partial a_{l+1,k}}{\partial z_{l,i}} \right)$$

$$\frac{\partial z_{l+1,k}}{\partial a_{l+1,k}} = \frac{\partial \left(\sigma(a_{l+1,k})\right)}{\partial a_{l+1,k}} = \sigma(a_{l+1,k}) * \left(1 - \sigma(a_{l+1,k})\right)$$

$$= z_{l,i} * \left(1 - z_{l,i}\right)$$

Derivative of the sigmoid function

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * \frac{\partial z_{l+1,k}}{\partial a_{l+1,k}} * \frac{\partial a_{l+1,k}}{\partial z_{l,i}} \right)$$

- We can plug in our results for $\frac{\partial z_{l+1,k}}{\partial a_{l+1,k}}$ and $\frac{\partial a_{l+1,k}}{\partial z_{l,i}}$.
- So, the formula becomes:

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * z_{l+1,k} * \left(1 - z_{l+1,k} \right) * w_{l+1,k,i} \right)$$

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * z_{l+1,k} (1 - z_{l+1,k}) * w_{l+1,k,i} \right)$$

- Notice that $\frac{\partial E_{n,l}}{\partial z_{l,i}}$ is defined using $\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}}$.
 - This is a **recursive** definition. To compute the values for layer l, we use the values from the **next** layer (i.e., layer l+1).
 - This is why the whole algorithm is called backpropagation.
 - We propagate computations from the output layer backwards towards the input layer.

Computing $\frac{\partial E_n}{\partial w_{l,i,j}}$ for Hidden Units

From the previous slides, we have these formulas:

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial w_{l,i,j}}$$

$$= \frac{\partial E_{n,l}}{\partial z_{l,i}} * (z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i}) * z_{l-1,j}$$

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * z_{l+1,k} * \left(1 - z_{l+1,k} \right) * w_{l+1,k,i} \right)$$

• We can combine these formulas, to compute $\frac{\partial E_n}{\partial w_{l,i,j}}$ for any weight of any hidden unit.

Computing $\frac{\partial E_n}{\partial b_{l,i}}$ for Hidden Units

• The formula for $\frac{\partial E_n}{\partial b_{l,i}}$ is similar, we just replace $\frac{\partial a_{l,i}}{\partial w_{l,i,j}}$ with $\frac{\partial a_{l,i}}{\partial b_{l,i}}$.

$$\frac{\partial E_n}{\partial b_{l,i}} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}} * \frac{\partial a_{l,i}}{\partial b_{l,i}}$$

$$= \frac{\partial E_{n,l}}{\partial z_{l,i}} * (z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i}) * 1$$

$$\frac{\partial E_{n,l}}{\partial z_{l,i}} = \sum_{k=1}^{J_{l+1}} \left(\frac{\partial E_{n,l+1}}{\partial z_{l+1,k}} * z_{l+1,k} * (1 - z_{l+1,k}) * w_{l+1,k,i} \right)$$

Simplifying Notation

- The previous formulas are sufficient and will work, but look complicated.
- We can simplify the formulas considerably, by defining:

$$\delta_{l,i} = \frac{\partial E_{n,l}}{\partial z_{l,i}} * \frac{\partial z_{l,i}}{\partial a_{l,i}}$$

- Then, if we combine calculations we already did:
 - If $U_{l,i}$ is an output unit, then:

$$\delta_{l,i} = (z_{l,i} - t_{n,i}) * z_{l,i} * (1 - z_{l,i})$$

- If $U_{l,i}$ is a hidden unit, then:

$$\delta_{l,i} = \left(\sum_{k=1}^{J_{l+1}} \left(\delta_{l+1,k} * w_{l+1,k,i}\right)\right) * z_{l,i} * \left(1 - z_{l,i}\right)$$

Final Backpropagation Formulas

• Using the definition of $\delta_{l,i}$ from the previous slide, we finally get very simple formulas:

$$\frac{\partial E_n}{\partial w_{l,i,j}} = \delta_{l,i} * z_{l-1,j} \qquad \frac{\partial E_n}{\partial b_{l,i}} = \delta_{l,i}$$

• Therefore, given a training input x_n , and given a positive learning rate η , weights $w_{l,i,j}$ and $b_{l,i}$ are updated as follows:

$$w_{l,i,j} = w_{l,i,j} - \eta * \delta_{l,i} * z_{l-1,j}$$
 $b_{l,i} = b_{l,i} - \eta * \delta_{l,i}$

Backpropagation for One Object Step 1: Initialize Input Layer

- We will now see how to apply backpropagation, step by step, in pseudocode style, for a single training object.
- NOTE: IN THE PSEUDOCODE, ARRAY INDICES START AT 1, NOT 0.
- First, given a training example x_n , and its target output t_n , we must initialize the input units:
- // 2D array z will store, for every unit $U_{l,i}$, its output
- double ** Z = new double*[L] // L is the number of layers
- Z[1] = new double[D] // D is the dimensionality of x_n
- // Update the input layer, set inputs equal to x_n .
- For I = 1 to D:
 - $-z[1][I] = x_{n,i}$ // $x_{n,i}$ is the i-th dimension of training input x_n .

Backpropagation for One Object Step 2: Compute Outputs

```
// we create a 2D array a, which will store, for every // unit U_{l,i}, the weighted sum of the inputs of U_{l,i}.
```

• double ** a = new double*[L]

// Update the rest of the layers:

- For l = 2 to L: // L is the number of layers
 - -a[l] = new double $[J_l]$ // J_l is the number of units in layer l
 - -z[l]= new double[J_l]
 - For each unit $U_{l,i}$ in layer l:
 - $a[l][i] = b_{l,i} + \sum_{j=1}^{J_{l-1}} (w_{l,i,j}z[l-1][j])$ // weighted sum
 - $z[l][i] = \sigma(a[l][i]) = \frac{1}{1 + e^{-a[l][i]}}$ // output of unit $U_{l,i}$

Backpropagation for One Object Step 3: Compute New δ Values

```
// array \delta will store, for every unit U_{l,i}, value \delta_{l,i}.
```

- double ** δ = new double*[L]
- $\delta[L]$ = new double*[K] // K is the number of classes
- For each output unit $U_{L,i}$:

$$-\delta[L][i] = (z[L][i] - t_{n,i}) * z[L][i] * (1 - z[L][i])$$

- For l = L 1 to 2: // MUST be in decreasing order of l
 - $-\delta[l]$ = new double J_l // J_l is the number of units in layer l
 - For each unit $U_{l,i}$ in layer l:

•
$$\delta[l][i] = \left(\sum_{k=1}^{J_{l+1}} \left(\delta[l+1][k] * w_{l+1,k,i}\right)\right) * z[l][i] * (1-z[l][i])$$

Backpropagation for One Object Step 4: Update Weights

- For l=2 to L: // Order does not matter here, we can go // from 2 to L or from L to 2.
 - For i = 1 to J_i :
 - $b_{l,i} = b_{l,i} \eta * \delta[l][i]$
 - For j = 1 to J_{l-1} :

$$-w_{l,i,j} = w_{l,i,j} - \eta * \delta[l][i] * z[l-1][j]$$

IMPORTANT: Do Step 3 before Step 4. Do NOT do steps 3 and 4 as a single loop.

- All δ values must be computed using the old values of weights.
- Then, all weights must be updated using the new δ values . $_{_{44}}$

Backpropagation Summary

Inputs:

- N D-dimensional training objects x_1, \dots, x_N .
- The associated target values t_1, \dots, t_N , which are K-dimensional vectors.
- 1. Initialize weights $b_{l,i}$ and $w_{l,i,j}$ to small random numbers.
 - For example, set each $b_{l,i}$ and $w_{l,i,j}$ to a value between -0.1 and 0.1.
- 2. last_loss = E(b, w) // sum over all training examples
- 3. For n = 1 to N:
 - Given x_n , update weights $b_{l,i}$ and $w_{l,i,j}$ as described in the previous slides.
- 4. loss = E(b, w) // sum over all training examples
- 5. If |loss last_loss | < threshold, exit. // threshold can be 0.00001.
- 6. Else:
 - 7. last_loss = loss
 - 8. go to step 3.

Classification with Neural Networks

- Suppose we have K classes $C_1, ..., C_K$, where K > 2.
- Each class C_k corresponds to an output unit $U_{L,k}$.
- As we said before, for training we need to convert each class label to the appropriate one-hot vector.
- At inference time, given a pattern x to classify:
 - Compute outputs for all units of the network, working from the input layer towards the output layer.
 - Find the output unit $U_{L,k}$ with the highest output $z_{L,k}$.
 - Return class C_k .

Structure of Neural Networks

- Backpropagation describes how to learn weights.
- However, it does not describe how to learn the structure:
 - How many layers?
 - How many units at each layer?
- These are parameters that we have to choose somehow.
- A good way to choose such parameters is by using a validation set, containing examples and their class labels.
 - The validation set should be separate (disjoint) from the training set.

Structure of Neural Networks

- To choose the best structure for a neural network using a validation set, we try many different parameters (number of layers, number of units per layer).
- For each choice of parameters:
 - We train several neural networks using backpropagation.
 - We measure how well each neural network classifies the validation examples.
 - Why not train just one neural network?

Structure of Neural Networks

- To choose the best structure for a neural network using a validation set, we try many different parameters (number of layers, number of units per layer).
- For each choice of parameters:
 - We train several neural networks using backpropagation.
 - We measure how well each neural network classifies the validation examples.
 - Why not train just one neural network?
 - Each network is randomly initialized, so after backpropagation it can end up being different from the other networks.
- At the end, we select the neural network that did best on the validation set.