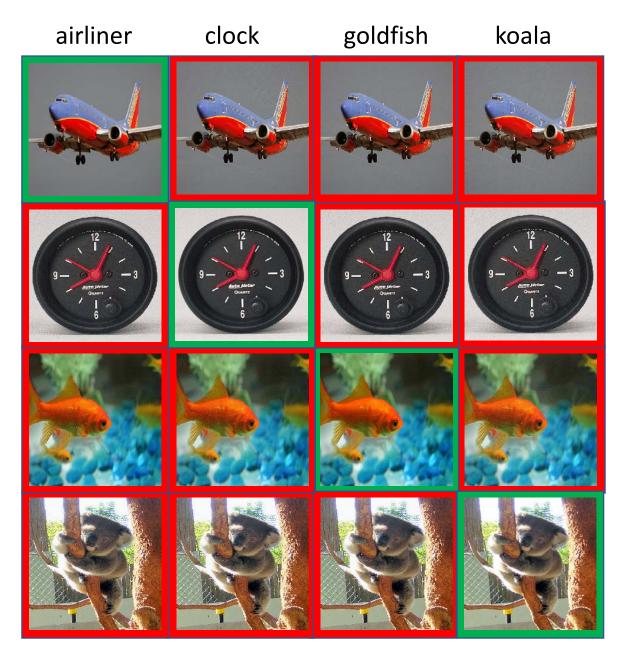
Gradient Ascent: Generating Model Inputs that Maximize Model Outputs

Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

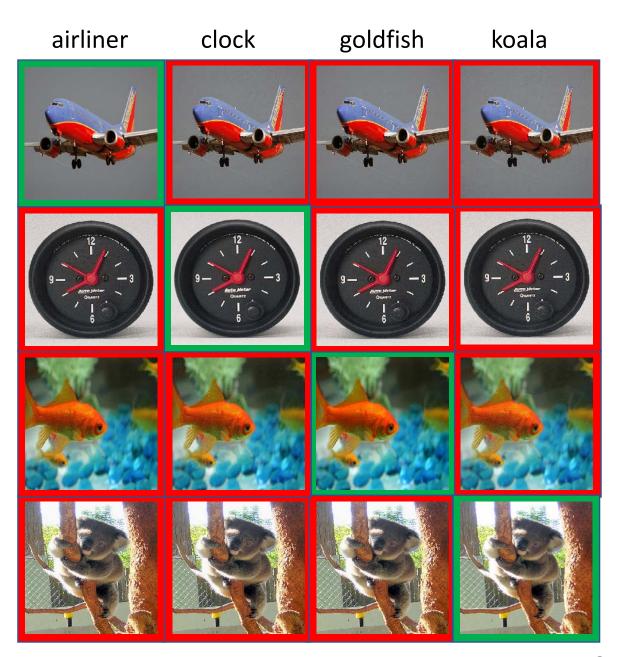
Application 1: Tricking a Model

- The images with green background are real.
 - Part of ImageNet.
 - Classified correctly by pretrained model ResNet50V2.
- The images with red background are changed versions of the real images.
 - We used the method described in these slides to make changes that would trick ResNet50V2.
 - The heading of each column shows the class label that ResNet50V2 produced for the images in that column.



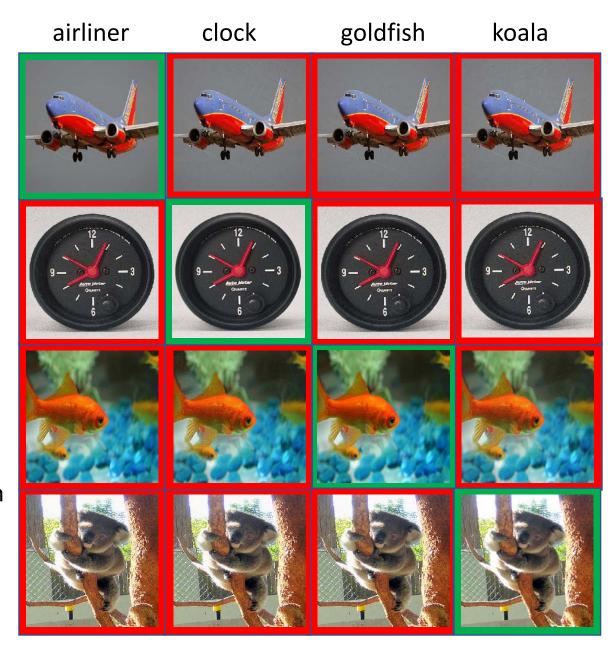
Application 1: Tricking a Model

 Why would it be useful to produce such changed images?



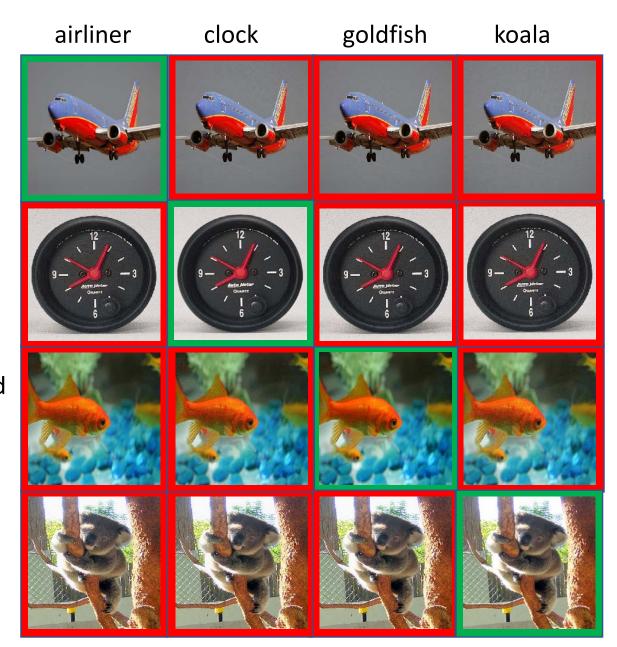
Application 1: Tricking a Model

- Why would it be useful to produce such changed images?
- We may actually want to fool a model, that is operated by adversaries.
- Or, we may want to gain intuition about how well these models match human intelligence.

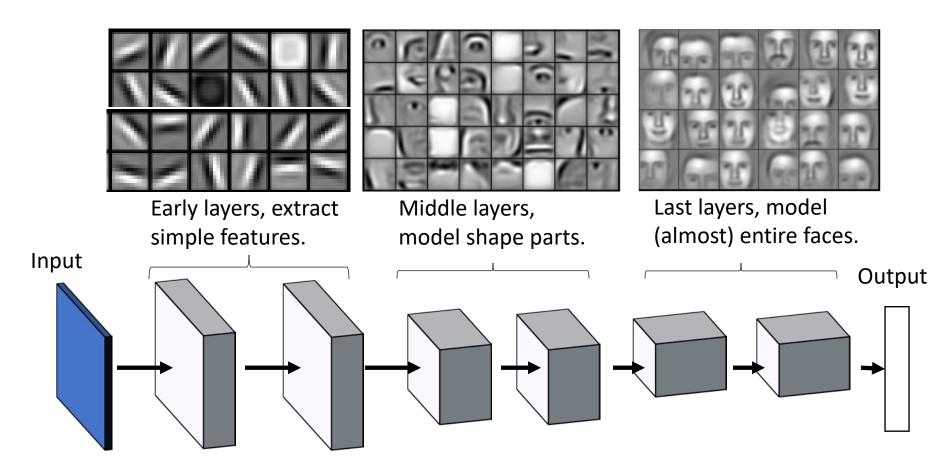


Application 1: Uses Besides Tricking

- Or, imagine that, instead of image classification, our model does mortgage approvals.
- If someone is declined, it can be useful to understand what minimal changes in their profile could have led to approval.

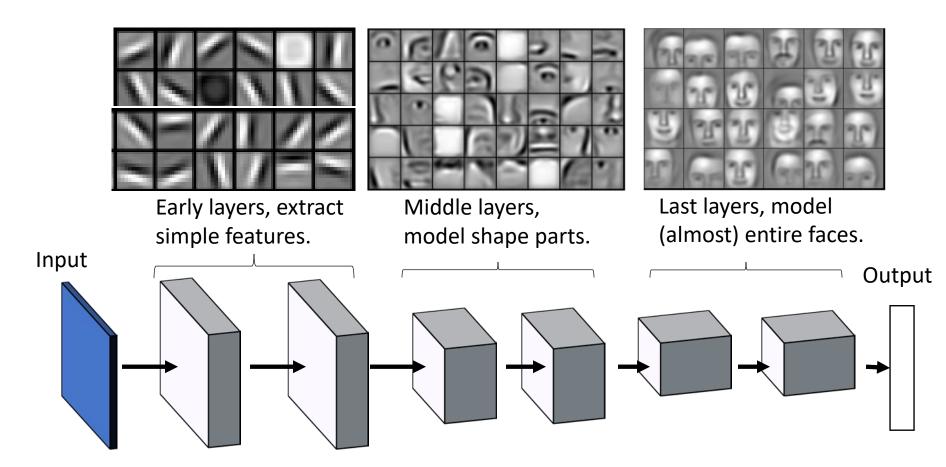


Application 2: CNN Visualization



- (We have seen this before): Visualization of a neural network trained with face images.
 - Credit for feature visualizations: [Lee09] Honglak Lee, Roger Grosse, Rajesh
 Ranganath and Andrew Y. Ng., ICML 2009.

Application 2: CNN Visualization



- These slides explain how we can get such visualizations.
- Idea: for any layer, or any unit, we find the input image that maximizes the output of that layer or unit.

Generating Inputs that Trick a Model

- In our case study, we use a pre-trained model, available on Keras, called ResNet50V2.
- The model was trained on a subset of ImageNet called "ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017 image classification and localization dataset".
 - This dataset can be downloaded from:
 https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data
 - However, it takes 167GB of disk space.
 - You do NOT need to download it to run our code.
- This dataset contains 1000 classes.

Example Images from Dataset

• Here are some example images from the dataset, and their associated class labels (out of the 1000 total class labels).

scorpion

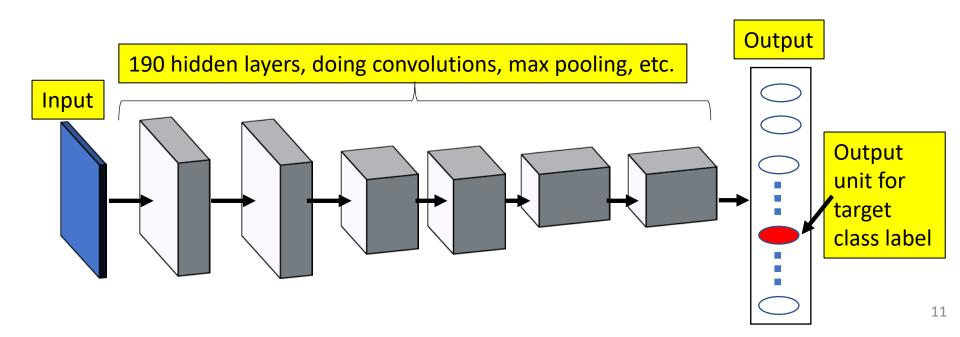
chimpanzee

Our Goal: Trick ResNet50V2

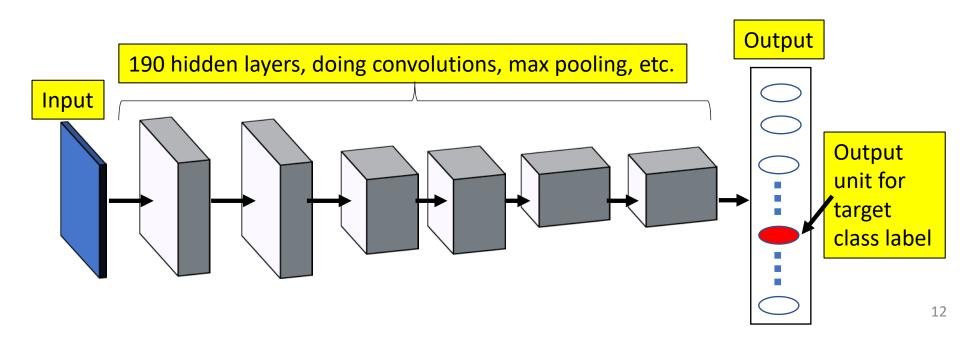
- Inputs to our system:
 - The model we want to trick: ResNet50V2 in our case.
 - A real image. For example:

- A target class label, that does NOT match the real image. For example: "goldfish".
- System output: a changed image, with (hopefully) these two properties:
 - It looks similar to the real image.
 - It gets assigned the target class label by ResNet50V2.
 - For the example inputs, we get this output, which indeed gets classified as "goldfish", and looks very similar to the real image.

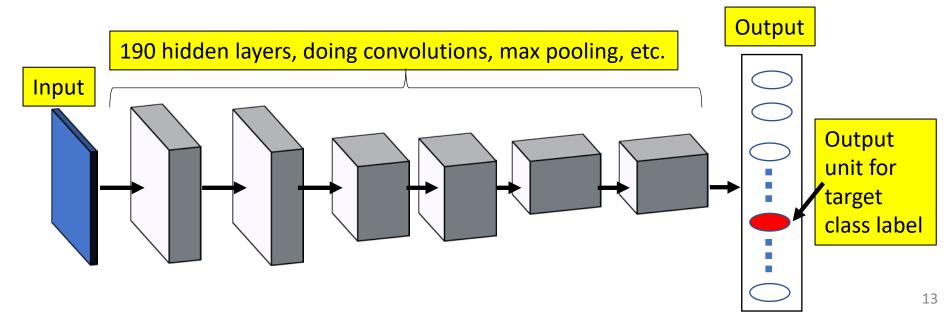
- The actual ResNet50V2 model has 192 layers.
- The drawing below shows a simplified version, keeping the details that are of interest here.



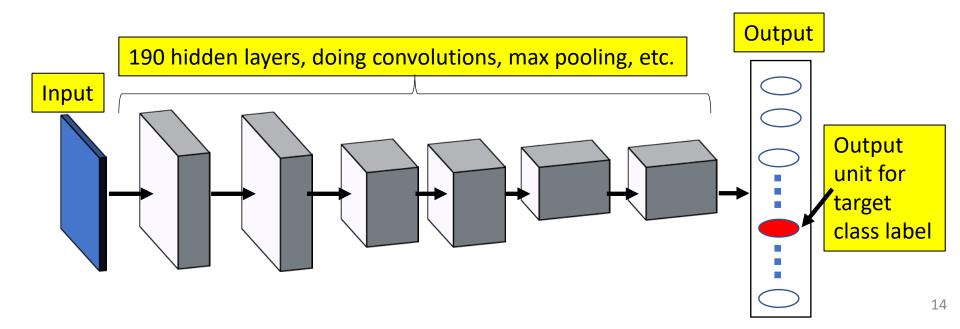
- The output unit shown in red is the one corresponding to the target class label.
 - The output of all output units is between 0 and 1, and sums up to 1.
- We want an image that **maximizes** the red unit's output.



- 1. X = original image we are given as input.
- 2. Compute the output of the network for image X.
- 3. If output of the red unit > threshold, then we are done and we return X.
- 4. Compute the gradient of the red unit's output with respect to image X.
- 5. Update image X by <u>adding</u> to X a small vector in the direction of the gradient. Then, go back to step 2.



- Note that in step 5 we add to X a vector in the direction of the gradient.
- Why are moving towards the gradient, not in the opposite direction as in backpropagation?
- Because here we want to <u>maximize</u> a quantity (the red unit's output), and NOT to minimize a quantity (in backpropagation we minimize the loss function).
- Hence, the method here is called gradient ascent, not gradient descent.



Tensorflow Implementation

See files posted under today's lecture:

- adversarial_input.py: code implementing the approach we are discussing.
- adversarial_imagenet.zip contains inputs and outputs:
 - The data folder contains 24 real images from the ImageNet dataset.
 - The generated_200_1_7 folder contains 288 images, produced using learning_rate = 1. Each image file follows format A_B_C.png, where:
 - A is the original filename.
 - B is the target class used in generating the image.
 - C is the result of ResNet50V2 on the image.
 - For 24 of those 288 images, the target class was the true class, and the result was equal to the corresponding real image stored in the data folder.
 - For the remaining 264 images, they succeeded in tricking the model in 90.5% of the cases (239 out of 264).

Tensorflow Implementation

- The generated_200_10_7 folder contains 288 images, produced using learning_rate = 10. Each image file follows the same format A_B_C.png as explained in the previous slide.
- Again, 24 of those images were equal to real images in the data folder.
- For the remaining 264 images, they succeeded in tricking the model in 98.1% of the cases (259 out of 264).
- The success rate was higher than using learning_rate = 1.
- However, here the generated images look more noisy and more different than the corresponding real images, compared to using learning_rate = 1.

Loading the ResNet50V2 Model

```
model = keras.applications.ResNet50V2(weights="imagenet", include top=True)
path = 'data/001 n01443537 goldfish 1.jpg'
img = image.load_img(path, target_size=(img_width, img_height))
img = image.img to array(img)
x = np.expand dims(img, axis=0)
```

```
preds = model.predict(x)
info = decode predictions(preds, top=3)
print('Predicted:', info[0])
```

x = preprocess input(x)

Output:

Predicted: [('n01443537', 'goldfish', 0.99999905), ('n02606052', 'rock_beauty', 3.0257326e-07), ('n01440764', 'tench', 1.5264698e-07)]

- The line in red loads the pretrained ResNet50V2 model.
- The lines in green load and preprocess an image.
 - expand_dims is used to convert the shape of x from (224, 224, 3) to (1, 224, 224, 3), so that it looks like a batch of size 1.
 - preprocess_input is imported from the resnet_v2 package, to normalize the input as required by ResNet50V2.

Applying the ResNet50V2 Model

```
model = keras.applications.ResNet50V2(weights="imagenet", include top=True)
path = 'data/001 n01443537 goldfish 1.jpg'
img = image.load_img(path, target_size=(img_width, img_height))
img = image.img to array(img)
x = np.expand dims(img, axis=0)
x = preprocess_input(x)
```

```
preds = model.predict(x)
info = decode predictions(preds, top=3)
print('Predicted:', info[0])
```

Output:

Predicted: [('n01443537', 'goldfish', 0.99999905), ('n02606052', 'rock beauty', 3.0257326e-07), ('n01440764', 'tench', 1.5264698e-07)]

- The line in red applies the model to x and gets the output.
- decode_predictions is imported from the resnet_v2 package. It converts the model output for each of the top 3 classes to:
 - The imagenet class label.
 - An English version of the class label.
 - The output of the corresponding output unit.

return gain, previous.numpy()[0]

- The make_adversarial function is the top-level function implementing what we want to do.
- It takes an input image img, and it changes it to a result image that (hopefully):
 - looks similar to the input image.
 - gets classified by the model as belonging to the target class label, specified by class_index.

```
def make adversarial(class index, img, thr=0.99, learning rate=1):
  iterations = 200
  for iteration in range(iterations):
    previous = img
    gain, img = gradient ascent step(img,
          model, class index, learning rate)
    if (gain > thr):
      break
return gain, previous.numpy()[0]
```

Inputs:

- class_index is the index of the target class.
- img is the input image, typically a real image.
- thr specifies the minimum value that we want the output unit of the target class to reach.
- learning_rate specifies how much in the direction of the gradient we should move at each step.

return gain, previous.numpy()[0]

- The for loop calls repeatedly gradient_ascent_step, to do the gradient ascent. We will explain this shortly.
- gradient_ascent_step returns gain, which is the current output of the model for the target class, and an updated img.
- Note that we break out of the loop if gain is high enough.

return gain, previous.numpy()[0]

- We return the final **gain**, and the image produced by gradient ascent.
- Note that the result image that we return is previous, not img.
- The reason is that (as we will see shortly), the gain value returned by gradient_ascent_step was attained by previous.

```
def gradient ascent step(img, model, class index, learning rate):
with tf.GradientTape() as tape:
    tape.watch(img)
    outputs = model(img)
    gain = outputs[:, class index]
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning rate * grads
  return gain, img
```

 This function does a single step of gradient ascent.

Inputs:

- img: the current version of the image that we are making changes to.
- model: the model we want to trick.
- class_index: the target class.
- learning rate: specifies how much to change the image.

```
def gradient ascent step(img, model, class index, learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    outputs = model(img)
    gain = outputs[:, class index]
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning rate * grads
  return gain, img
```

- The lines in red highlight how we compute gradients in Tensorflow.
 - In most of our code this semester we did NOT use this approach, because we relied on Keras to hide these details from us.
- We use GradientTape to tell Tensorflow to keep track of gradients when it makes computations.

```
def gradient ascent step(img, model, class index, learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    outputs = model(img)
    gain = outputs[:, class index]
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning rate * grads
  return gain, img
```

- tape.watch(img) tells
 Tensorflow to keep track of gradients with respect to the values of img.
 - Tensorflow needs to be told which gradients to compute, because if it computed all gradients it would be too inefficient.
 - Some values are watched by default, such as a model's trainable weights.

def gradient ascent step(img, model, class index, learning rate):

```
with tf.GradientTape() as tape:
  tape.watch(img)
  outputs = model(img)
  gain = outputs[:, class index]
# Compute gradients.
grads = tape.gradient(gain, img)
# Normalize gradients.
grads = tf.math.l2 normalize(grads)
img += learning rate * grads
return gain, img
```

- The lines in red compute the output of the model given img as input.
- Then, we define variable gain to be the output of the specific output unit corresponding to the target class.
- We call it gain as it is the quantity we want to maximize.
 - Contrast to the term loss, used for the quantity we want to minimize in backpropagation.

```
def gradient ascent step(img, model, class index, learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    outputs = model(img)
    gain = outputs[:, class index]
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning rate * grads
  return gain, img
```

- Note that the model output is computed within the GradientTape scope, so Tensorflow keeps track of gradients of these computations with respect to img.
- Once these computations are done, the line in green calls tape.gradient to retrieve the gradient vector of gain with respect to img.

```
def gradient ascent step(img, model, class index, learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    outputs = model(img)
    gain = outputs[:, class index]
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning rate * grads
  return gain, img
```

- The lines in red update the image by moving it in the direction of the gradient vector.
 - tf.math.l2_normalize normalizes the gradient vector, so that the sum of the squares of its values is equal to 1.
- Notice that the img version that we return is NOT the one that achieved the gain that we return, because it has been updated.
 - That is why in make_adversarial we return the previous image.

Running the Code

```
path = 'data/001 n01443537 goldfish 1.jpg'
img0 = image.load img(path,
                        target size=(224, 224))
img = image.img to array(img0)
x = np.expand dims(img, axis=0)
x = preprocess_input(x)
tx = tf.convert to tensor(x)
thr = 0.7
learning rate = 1
(loss, result) = make_adversarial(105, tx, thr=thr,
                    learning rate=learning rate)
```

- The lines in red load the real image from a file.
- The lines in green preprocess the image:
 - Convert to numpy array.
 - Make 4D (so that the image becomes a batch of one image).
 - preprocess_input is part of the ResNet50V2 package, it normalizes the input image as needed.
 - The last line calls
 make_adversarial with
 appropriate parameters.

Running the Code

```
keras.preprocessing.image.save img("0.png",
                                     result)
img0 = image.load img("0.png",
                        target size=(224, 224))
img = image.img to array(img0)
rx = np.expand dims(img, axis=0)
rx = preprocess input(rx)
preds = model.predict(x)
print('Prediction on original:',
     decode predictions(preds, top=3)[0])
preds = model.predict(rx)
print('Prediction on adversarial:',
      decode_predictions(preds, top=3)[0])
```

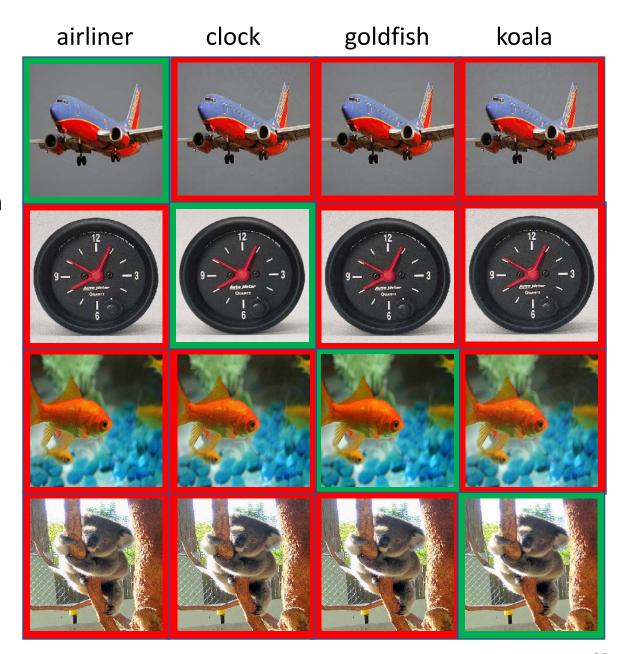
- The first line saves the image to a file.
- The second line loads the image from a file.
- Why are we saving and reloading?

Running the Code

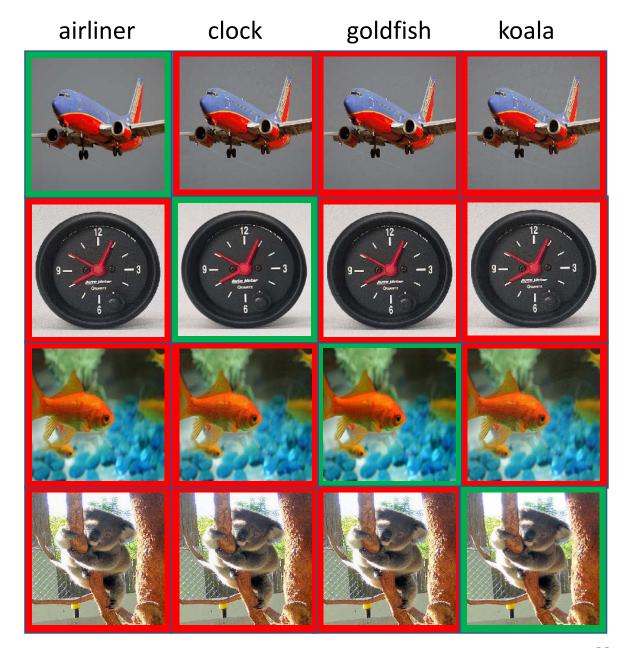
```
keras.preprocessing.image.save img("0.png",
                                     result)
img0 = image.load img("0.png",
                        target size=(224, 224))
img = image.img to array(img0)
rx = np.expand dims(img, axis=0)
rx = preprocess input(rx)
preds = model.predict(x)
print('Prediction on original:',
     decode_predictions(preds, top=3)[0])
preds = model.predict(rx)
print('Prediction on adversarial:',
      decode predictions(preds, top=3)[0])
```

- Why are we saving and reloading?
 - The generated image that tricked the model was realvalued, with values in a range we are not quite sure of.
 - We started with values in the [-1, 1] range, but the repeated changes made by gradient ascent may have changed that.
 - When we save and reload, we get values in the [-1, 1] range.
 - There is no guarantee that the reloaded image will fool the model, so we doublecheck.

- These are the results we saw at the beginning.
- The four images with green background are real.
 - Part of ImageNet.
 - Classified correctly by pretrained model ResNet50V2.

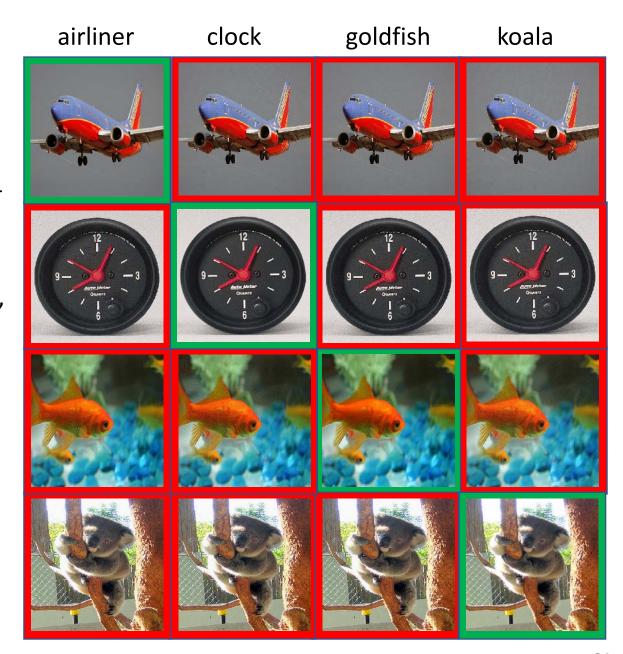


- The 12 images with red background are results of make_adversarial, with the target class equal to the column heading.
 - For example, for images in the left column, the target class was "airliner".
- For each of these 12
 results, the model output
 was indeed the target
 class, so make_adversarial
 was successful in tricking
 the model.

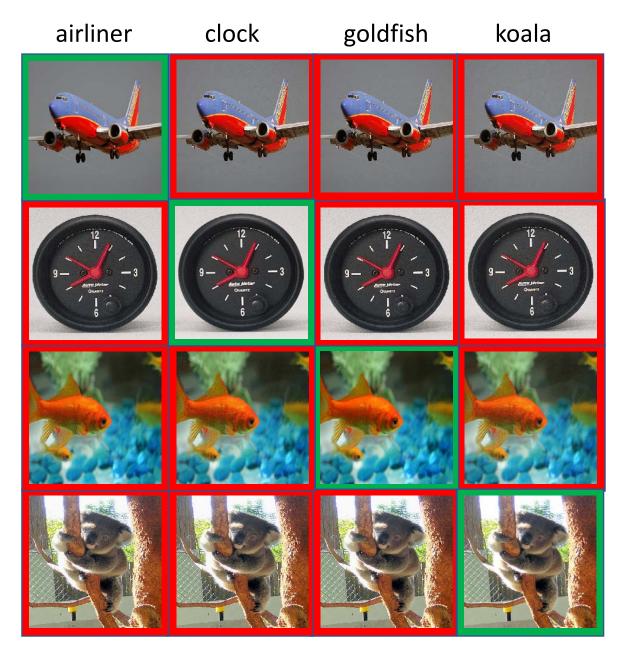


In the posted file <a href="https://doi.org/10.1007/journal-news/apace-10.1

- The data folder contains 24 real images.
- The generated_200_1_7
 folder contains 264 images,
 generated by giving to
 make_adversarial each
 combination of a real
 image and a target class
 (out of 11 target classes).
- Out of those 264 images, for 239 the model indeed produced the target class as output.
- Success rate: 90.5%.

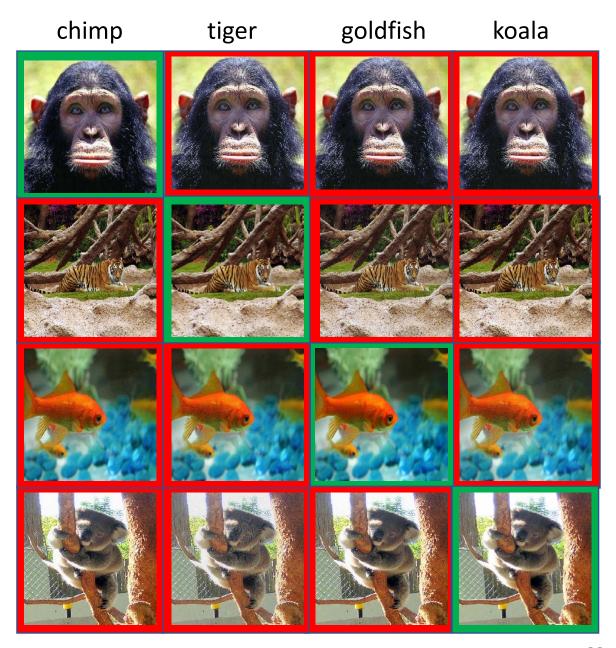


- Minor note: the
 generated_200_1_7 folder
 in
 adversarial imagenet.zip
 actually contains 288
 images, but 24 of those are
 the real images from the
 data folder.
- That is why we only use 264 images in our evaluation.



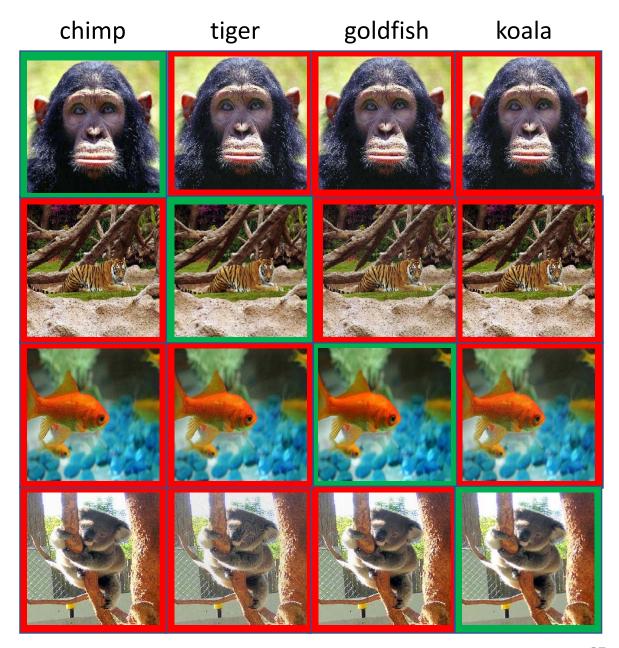
More Results

 Here we see how images of four animals are changed to make the model produce wrong classifications.



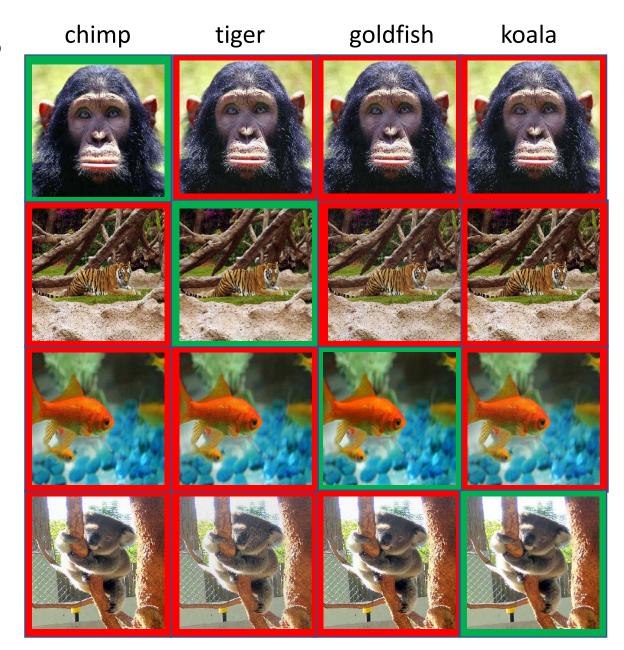
More Results

- Minor note: the koala-to-tiger image (4th row, 2nd column) was generated with learning_rate = 10, because the result with learning_rate = 1 did not trick the model.
- Images generated with learning_rate = 10 are in the generated_200_10_7 folder of adversarial imagenet.zip



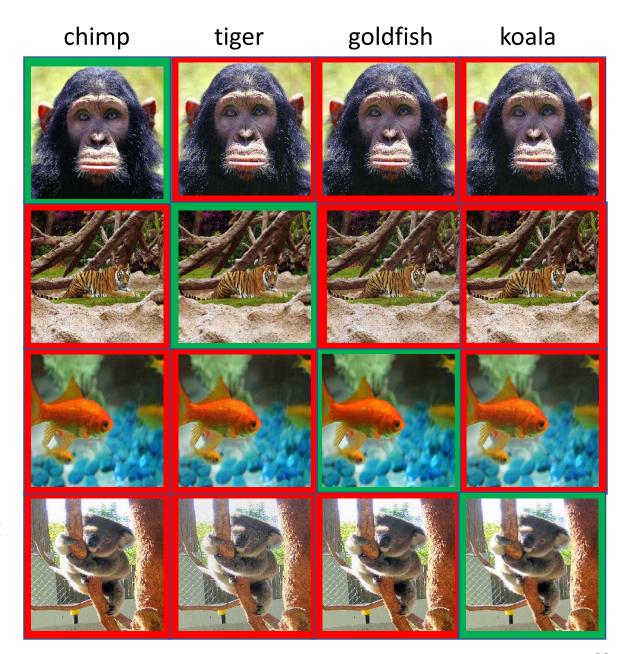
Observations

- The generated images may look noticeably different with respect to the original images.
- At the same time, often the differences are small and hard to notice.
- Still, these are all images where a human would easily recognize the object.



Observations

- These results offer some intuition about how a model "understands" the concepts it has been trained to recognize.
 - ResNetV250 had an overall accuracy of 76%, on 1000 classes.
 - Still, as these results show, it has limited understanding of what a clock or a goldfish really looks like.

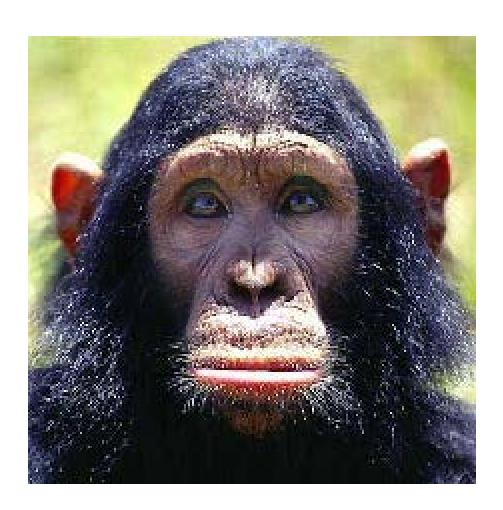


- These two slides contain two images of a goldfish.
- One is real, and classified as a goldfish by ResNet50V2.
- One was generated by our model, and is classified as a chimpanzee by ResNet50V2.
- Can you tell which one is real?

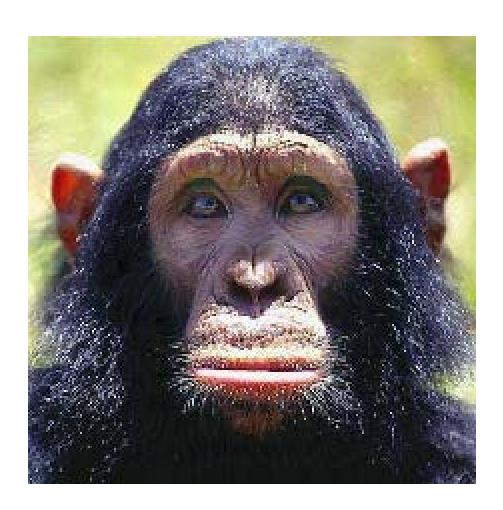
- These two slides contain two images of a goldfish.
- One is real, and classified as a goldfish by ResNet50V2.
- One was generated by our model, and is classified as a chimpanzee by ResNet50V2.
- Can you tell which one is real?

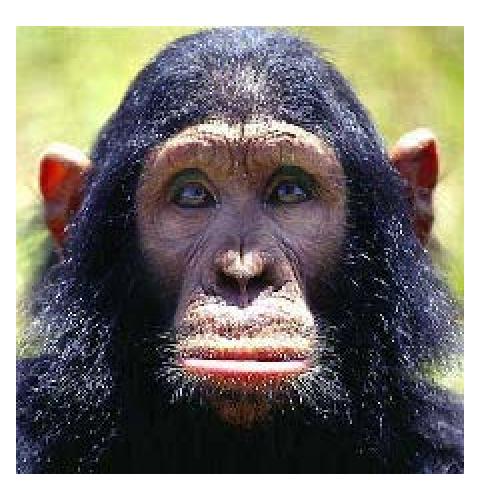
- Answer: the first image (shown on the left here) is the real one.
- On the right, you can see a faint "ghost" of a chimp's upper face.

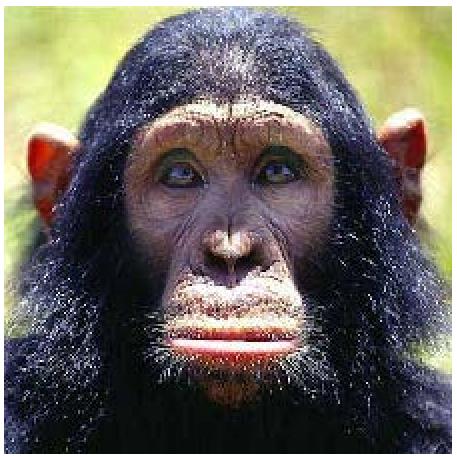
- These two slides contain two images of a chimpanzee.
- One is real, and classified as a chimpanzee by ResNet50V2.
- One was generated by our model, and is classified as a goldfish by ResNet50V2.
- Can you tell which one is real?



- These two slides contain two images of a chimpanzee.
- One is real, and classified as a chimpanzee by ResNet50V2.
- One was generated by our model, and is classified as a goldfish by ResNet50V2.
- Can you tell which one is real?



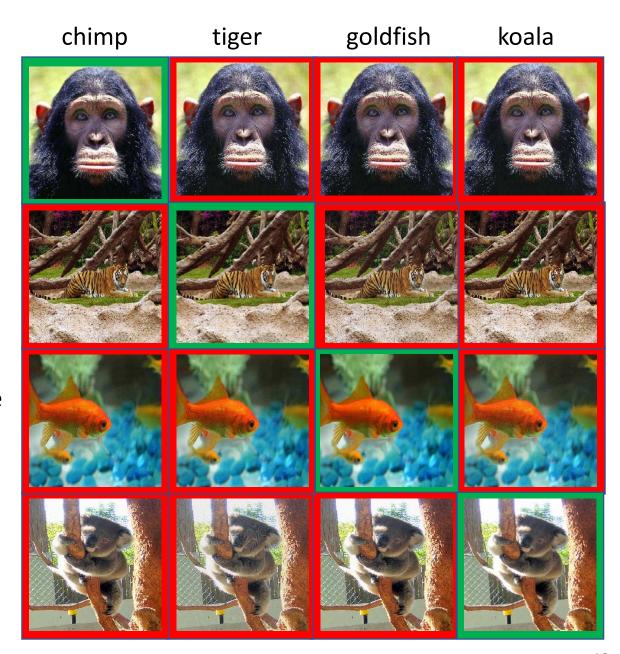




Answer: the first image (shown on the left here) is the real one.

Measuring Quality of Results

- We can define two measures of performance:
 - Percentage of source images that we change successfully so that they get misclassified.
 - Average squared (or absolute) difference between original images and changed images.



Further Reading

- Here are some good starting points if you want to learn more about generating adversarial inputs, and more sophisticated methods for doing it.
- "Intriguing properties of neural networks."

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus. ICLR 2014 https://arxiv.org/pdf/1312.6199.pdf

"Explaining and Harnessing Adversarial Examples."

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy. ICLR 2015.

https://arxiv.org/pdf/1412.6572.pdf

"A survey on adversarial attacks and defences."

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,

Debdeep Mukhopadhyay. CAAI Transactions on Intelligence Technology, 2021.

https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12028

Visualizing Behavior of Hidden Layers

- So far, we have seen how we can change images to maximize the response of a specific output unit.
- The same idea can be applied to hidden units as well.
- Why would it be useful to find images that maximize the response of a specific hidden unit?
 - Such images can provide intuition about the type of patterns that that specific input unit has learned to identify.

Visualizing a Convolutional Layer

- In Keras, a Conv2D layer applies a certain number of 2D filters to an image.
- We can write code that:
 - Chooses one of the Conv2D layers in a model.
 - Chooses one of the filters in the chosen Conv2D layer.
 - Generates an image that maximizes the output of that filter.
- We will apply this to a simple convolutional neural network trained on the MNIST dataset.
- The code for this is posted on the website, as file gradient_ascent_mnist.py.

Our CNN Model

```
model = keras.Sequential( [
    keras.Input(shape=input shape),
    keras.layers.Conv2D(32, kernel size=(3, 3),
                         activation="relu"),
    keras.layers.MaxPooling2D(pool size=(2, 2)),
    keras.layers.Conv2D(64, kernel size=(3, 3),
                         activation="relu"),
    keras.layers.MaxPooling2D(pool size=(2, 2)),
    keras.layers.Flatten(),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(number of classes,
                       activation="softmax"),
  ])
```

 We used this model early in the semester.

Our CNN Model

```
filename = "mnist_cnn_1.keras"
model = keras.models.load_model(filename)
model.summary()
```

 Here we load a model that has already been trained on MNIST, and achieves 99.27% accuracy on the test set.

```
Output:
Model: "sequential"
Laver (type)
                                Output Shape
                          (None, 26, 26, 32)
 conv2d (Conv2D)
                                                           320
max pooling2d 6 (MaxPooling2D) (None, 13, 13, 32)
 conv2d 1 (Conv2D)
                              (None, 11, 11, 64)
                                                           18496
 max pooling2d 7 (MaxPooling2D) (None, 5, 5, 64)
 flatten (Flatten)
                                (None, 1600)
 dropout (Dropout)
                                (None, 1600)
                                (None, 10)
 dense (Dense)
                                                           16010
```

Selecting the Layer to Visualize

```
layer_name = "conv2d"
layer = model.get_layer(name=layer_name)
truncated_model = keras.Model(inputs=model.inputs, outputs=layer.output)
```

- From the output of model.summary() in the previous slide, we see that the first convolutional layer is named "conv2d".
- We want to visualize the behavior of that layer.
- The line in red gets that layer from the model.
- The line in green uses the Functional API to create a truncated model, that:
 - Takes the same input as the original model.
 - Produces the output of the selected layer as final output.

The visualize_filter Function

```
def visualize filter(filter index):
  iterations = 30
  learning rate = 10.0
  img = initialize image()
  for iteration in range(iterations):
    gain, img = gradient ascent step(img,
                 filter index, learning rate)
  # Decode the resulting input image
  img = deprocess_image(img[0].numpy())
  return gain, img
def initialize image():
  img = tf.random.uniform((1, 28, 28, 1))
  return img * 0.25
```

- The **visualize_filter** function is the top-level function.
 - It follows the same ideas as the make_adversarial function we saw earlier.
- Key difference from make_adversarial:
 - In make_adversarial, the initial image is given as an input argument.
 - Here, the initial image is created within the function (see lines in red), as a random image.

The gradient_ascent_step Function

```
def gradient ascent step(img, filter index,
                          learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    activation = truncated model(img)
    filter activation = activation[:, 2:-2, 2:-2,
                                 filter index]
    gain = tf.reduce mean(filter activation)
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning_rate * grads
  return gain, img
```

- Again, there is only a minor difference (shown in red) from the gradient_ascent_step function we used earlier, for generating adversarial inputs.
 - The difference is how we compute the gain, i.e., the quantity that we want to maximize.
 - In generating adversarial inputs,
 the gain was based on the output
 of the output unit corresponding
 to the target class.
 - Here, the filter produces a 2D array as output. We use the mean value of that output as the gain.

The gradient_ascent_step Function

```
def gradient ascent step(img, filter index,
                          learning rate):
  with tf.GradientTape() as tape:
    tape.watch(img)
    activation = truncated model(img)
    filter activation = activation[:, 2:-2, 2:-2,
                                 filter index]
    gain = tf.reduce mean(filter activation)
  # Compute gradients.
  grads = tape.gradient(gain, img)
  # Normalize gradients.
  grads = tf.math.l2 normalize(grads)
  img += learning_rate * grads
  return gain, img
```

- Again, the gain is computing within a GradientTape scope, to keep track of the gradient of the gain with respect to img.
- activation is the output of the Conv2D layer. It is a 3D array.
- filter_activation is the 2D slice of activation corresponding to the output of the filter specified by filter_index.
 - We discard the top and bottom two rows, and the left and right two columns.

The gradient_ascent_step Function

- **gain** is the average of all the values in **filter_activation**.
- The rest of the code is the same as in the version used for generating adversarial inputs.

```
# Compute gradients.
grads = tape.gradient(gain, img)
# Normalize gradients.
grads = tf.math.l2_normalize(grads)
img += learning_rate * grads
return gain, img
```

Running the Code

```
filter_index = 0
gain, img = visualize_filter(filter_index)
filename = "0_%d.png" & (filter_index)
keras.preprocessing.image.save_img(filename, img)
display(Image(filename))
```

• It looks like filter 0 has been trained to identify horizontal patterns.

Visualization of filter 0

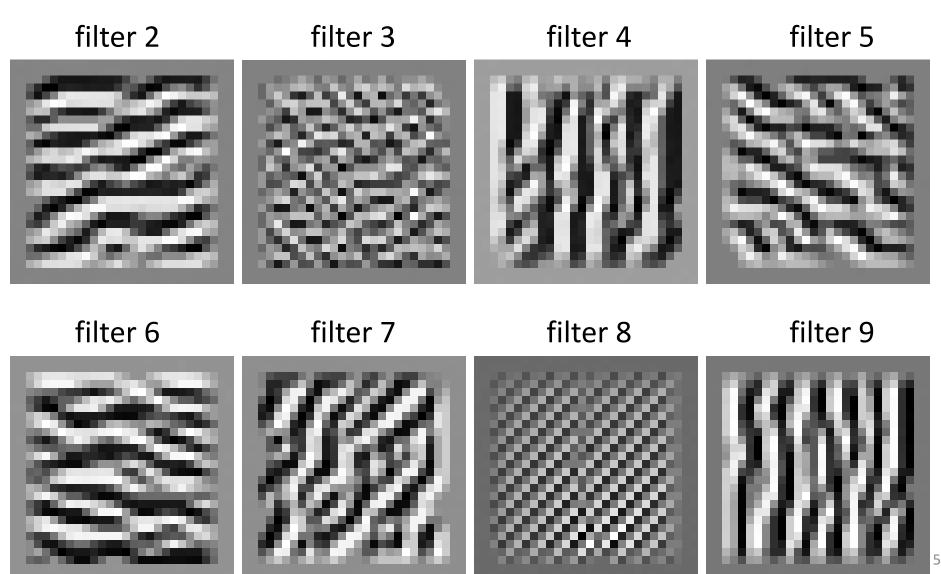
Running the Code

```
filter_index = 1
gain, img = visualize_filter(filter_index)
filename = "0_%d.png" & (filter_index)
keras.preprocessing.image.save_img(filename, img)
display(Image(filename))
```

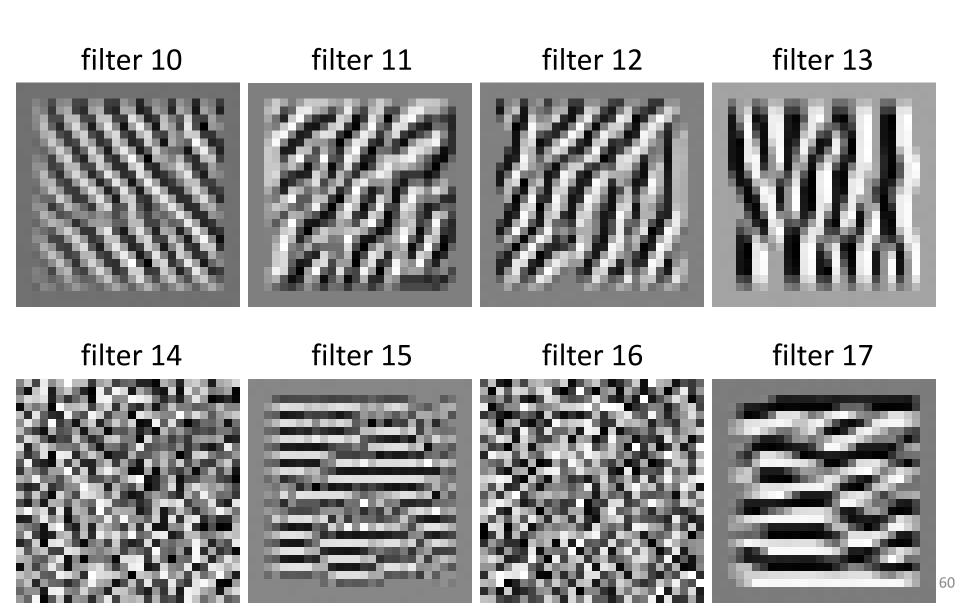
- Filter 1 has also been trained to identify horizontal patterns, but:
 - These patterns slant upwards as we move to the right.
 - For filter 0, the patterns slant downwards as we move to the right.

Visualization of filter 1

More Visualizations



More Visualizations



Recap

- We saw how to use gradient ascent to construct inputs that maximize outputs of specific units and layers of a model.
- We applied this in two different ways:
 - To generate adversarial inputs, i.e., to tweak existing images so that the tweaked versions get misclassified by the model.
 - To visualize the types of patterns that hidden units in the network are trained to provide maximal responses to.
- Both these applications can help us gain some intuition about the behavior of our models.