
 2007 Srividhya Rajendran

Planning

Chapter 11

AI - A Modern Approach.

Lecturer:

Srividhya Rajendran

Website for slides download:

http://cseweb.uta.edu/~srajendr

Review

� What is Planning?

� STRIPS Language and Representing

planning problems using STRIPS.

� Progression and regression algorithm.

� Heuristics for progression and

regression algorithm

� Total ordered planners and partial

order planners

� Keywords in partial order planners.

 2007 Srividhya Rajendran

POP Algorithm

� Starts with the definition of

initial state, actions, goal test.

� Initial plan contains Start and

Finish actions, the ordering

constraint and no causal

links and has all the preconditions

in Finish as open preconditions.

 2007 Srividhya Rajendran

FinishStart p

POP Algorithm Contd.

� Successor Function: Arbitrarily picks an

open precondition p on an action B and

generates successor plan.

� Consistency enforcement:

� The causal link and the ordering

constraint are added to the plan.

� Resolve conflicts between the new causal link

and all existing actions. E.g. if action C

conflicts with then it is resolved by

making C to occur at sometime before action A(

) or after action B()by adding

ordering constraints . Add all successor states

for either or both if they result in consistent

plans.

B
p

A →

 2007 Srividhya Rajendran

BA p

B
p

A →

CB pAC p

POP Algorithm Contd.

� Backtrack if an open condition is

unachievable or if a conflict is

irresolvable.

� Goal test: Checks whether a plan

is a solution to the original

planning problem by checking if

there any open preconditions left.

If set of open preconditions set

is empty then POP has reached a

solution.

 2007 Srividhya Rajendran

POP Example

Agent is at hardware store (HWS). Agent

has to buy milk and eggs from supermarket

and return home.

Start State:

At(HWS) ∧ ¬ Have (Milk) ∧¬ Have (Eggs) ∧

Sells (SM,Milk) ∧ Sells (SM,Eggs)

Goal State:

At(Home) ∧ Have (Milk) ∧ Have (Eggs)

 2007 Srividhya Rajendran

(Example using POP)

Blocks World Example using POP

Action :Move(p,x,y)

Precond:On(p,x) Λ clear(y) Λ clear(p)

Effect :On(p,y) Λ clear (x) Λ ¬ clear(y) Λ¬
On(p,x))

Op(Action :Movetotable(p,x)

Precond:On(p,x) Λ clear(p)

Effect :On(p,Table) Λ clear (x) Λ¬ On(p,x))

(Blocks World Example using POP)

 2007 Srividhya Rajendran

Initial State Goal State

D

A

C

B

B

A

C

D

Heuristics for POP

� Count the number of distinct

open preconditions.

� Overestimates: When start state

has literal that matches open

precondition in finish state.

� Underestimates: when there is

negative interactions between

actions.

 2007 Srividhya Rajendran

Heuristics for POP

� Better approach to calculate

heuristics:

� Choose open preconditions that can

be satisfied in the fewest number

of ways.

 2007 Srividhya Rajendran

Planning Graphs

� Used to achieve better heuristic estimates.

� A solution can also directly extracted using
GRAPHPLAN.

� Consists of a sequence of levels that correspond
to time steps in the plan.

� Level 0 is the initial state.

� Each level consists of a set of literals and a
set of actions.

� Literals = all those that could be true at that
time step, depending upon the actions executed
at the preceding time step.

� Actions = all those actions that could have
their preconditions satisfied at that time step,
depending on which of the literals actually
hold.

 2007 Srividhya Rajendran

Cake Example

Init(Have(Cake))

Goal (Have(Cake) Λ Eaten(Cake))

Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT:

¬Have(Cake)ΛEaten(Cake))

Action(Bake(Cake)

PRECOND:Have(Cake)

EFFECT: Have(Cake)) 2007 Srividhya Rajendran

Cake Example

 2007 Srividhya Rajendran

� Start at level S0 and determine action

level A0 and next level S1.

� A0 contains all actions whose preconditions

are satisfied in the previous level.

Cake Example

 2007 Srividhya Rajendran

� Connect precondition and effect of actions.

� Inaction is represented by persistence actions.

� Level A0 contains the actions that could

occur

� Conflicts between actions are represented by

mutex links

Cake Example

 2007 Srividhya Rajendran

� Level S1 contains all literals that could

result from picking any subset of actions in A0

� Conflicts between literals that can not occur

together (as a consequence of the selection

action) are represented by mutex links.

Cake Example

 2007 Srividhya Rajendran

� S1 defines multiple states and the mutex

links are the constraints that define this set

of states.

� Continue until two consecutive levels are

identical

Cake Example

 2007 Srividhya Rajendran

�A mutex relation holds between two actions

when:
1.Inconsistent effects: one action negates

the effect of another.

2.Interference: one of the effects of one

action is the negation of a precondition of

the other.

Cake Example

 2007 Srividhya Rajendran

�A mutex relation holds between two actions

when:
3.Competing needs: one of the preconditions

of one action is mutually exclusive with

the precondition of the other.

Cake Example

 2007 Srividhya Rajendran

� A mutex relation holds between two

literals when (inconsistent support):

1.If one is the negation of the other

2.If each possible action pair that could

achieve the literals is mutex.

Planning Graphs for Heuristic

Estimation

� A literal that does not appear in the final

level of the graph cannot be achieved by

any plan.

� Useful for backward search (cost = inf).

� Level of appearance can be used as cost

estimate of achieving any goal literals =

level cost.

� Small problem: several actions can occur

� Restrict to one action using serial PG

(add mutex links between every pair of

actions, except persistence actions).

� Cost of a conjunction of goals? Max-level,

sum-level and set-level heuristics.

 2007 Srividhya Rajendran

GraphPlan Algorithm

� extracts a solution directly from the PG

� EXTRACT-SOLUTION:
� checks whether a plan can be found searching

backwards

� EXPAND-GRAPH:
� adds actions for the current and state

literals for the next level

 2007 Srividhya Rajendran

Extract Solution

� A state consists of
� a pointer to a level in the planning graph

� a set of unsatisfied goals

� Initial state
� last level of PG

� set of goals from the planning problem

� Actions
� select any set of non-conflicting subset of

the actions of Ai-1 that cover the goals in
the state

� Goal

� success if level S0 is reached with such
with all goals satisfied

 2007 Srividhya Rajendran

Cake example

 2007 Srividhya Rajendran

� Start with Goal state (literals):

Have(Cake) ∧ Eaten(Cake)in S2

� Only non conflicting Action choices are:Bake

(Cake) ,Persistent action (Eaten (Cake)).

as all the other have mutex relation with respect to

either their preconditions or effects.

Cake example

 2007 Srividhya Rajendran

� Literals at S1:

¬Have (Cake) ∧ Eaten(Cake).

� Only action:

Eat(Cake)

� Literals at S0:

Have(Cake) ∧ ¬ Eaten(Cake). (graphplan terminates)

Planning with Propositional

Logic
� Planning can be done by proving theorem in

situation calculus.

� Here: test the satisfiability of a logical
sentence:

� Sentence contains propositions for every action
occurrence.

� A model will assign true to the actions that
are part of the correct plan and false to the
others

� An assignment that corresponds to an incorrect
plan will not be a model because of
inconsistency with the assertion that the goal
is true.

� If the planning is unsolvable the sentence
will be unsatisfiable.

 2007 Srividhya Rajendran

goalnsdescriptioactionpossibleallstateinitial ∧∧

