Planning

Chapter 11
AT - A Modern Approach.
Lecturer:
Srividhya Rajendran
Website for slides download:
http://cseweb.uta.edu/~srajendr

© 2007 Srividhya Rajendran

Review

What 1s Planning?

STRIPS Language and Representing
planning problems using STRIPS.

Progression and regression algorithm.

Heuristics for progression and
regression algorithm

Total ordered planners and partial
order planners

Keywords 1n partial order planners.

© 2007 Srividhya Rajendran

POP Algorithm

Starts with the definition of
initial state, actions, goal test.

Initial plan contains Start and
FFinish actions, the ordering
constraint Siart < Finish and no causal
links and has all the preconditions
1in Finish as open preconditions.

© 2007 Srividhya Rajendran

POP Algorithm Contd.

[0 Successor Function: Arbitrarily picks an
open precondition p on an action B and
generates successor plan.

B Consistency enforcement:

[l

Ol

The causal 1link A_zl;and the ordering
constraint A < B are added to the plan.

Resolve conflicts between the new causal link
and all existing actions. E.g. 1f action C
conflicts withA_ﬁ pthen it 1s resolved by
making C to occur at sometime before action A/

C <A) or after action B(B < (C)by adding
ordering constraints . Add all successor states
for either or both if they result 1n consistent

plans.

© 2007 Srividhya Rajendran

POP Algorithm Contd.

Backtrack 1f an open condition 1s
unachievable or 1f a conflict 1is
irresolvable.

Goal test: Checks whether a plan
1s a solution to the original
planning problem by checking if
there any open preconditions left.
If set of open preconditions set

1s empty then POP has reached a
solution.

© 2007 Srividhya Rajendran

POP Example

Agent is at hardware store (HWS). Agent
has to buy milk and eggs from supermarket
and return home.

Start State:

At (HWS) A = Have (Milk) A=~ Have (Eggs) A
Sells (SM,Milk) A Sells (SM,Eggs)

Goal State:

At (Home) A Have (Milk) A Have (Eggs)

(Example using POP)

© 2007 Srividhya Rajendran

Blocks World Example using POP

Initial State Goal State
A
‘ KN
D (@
- A D

Action :Move(p,x,YVY)
Precond:0On (p,x) A clear(y) A clear (p)

Effect :0On(p,y) N\ clear (x) N 7 clear(y) A7
On (p, x))

Op (Action :Movetotable (p, x)
Precond:0On (p,x) A clear (p)
Effect :0n(p,Table) A clear (x) AT On(p,x))
(Blocks World Example using POP)

© 2007 Srividhya Rajendran

Heuristics for POP

Count the number of distinct
open preconditions.

B Overestimates: When start state
has literal that matches open
precondition 1n finish state.

B Underestimates: when there is
negative i1nteractions between
actions.

© 2007 Srividhya Rajendran

Heuristics for POP

Better approach to calculate
heuristics:

B Choose open preconditions that can
be satisfied i1n the fewest number
of ways.

© 2007 Srividhya Rajendran

[l

[l

Planning Graphs

Used to achieve better heuristic estimates.

B A solution can also directly extracted using
GRAPHPLAN.

Consists of a sequence of levels that correspond
to time steps 1in the plan.

M JTevel 0 is the initial state.

M Fach level consists of a set of literals and a
set of actions.

[

L]

Literals = all those that could be true at that
time step, depending upon the actions executed
at the preceding time step.

Actions = all those actions that could have
their preconditions satisfied at that time step,
depending on which of the literals actually
hold.

© 2007 Srividhya Rajendran

Cake Example

Init (Have (Cake))
Goal (Have (Cake) N Eaten (Cake))

Action (Eat (Cake)
PRECOND: Have (Cake)

EFFECT :
“Have (Cake) AEaten (Cake))

Action (Bake (Cake)
PRECOND : Have (Cake)

EFFEShrswvibadgdkcake))

Cake Example

Sp A 51

A

Bake(Cake)

/

1

Have|Cake) X

Have{Cake)
— Have{Cake)
\ Ea:[CEHE] < \

~
<

Eaten| Cake)

— Eaten|Cake)] —1 Eaten|Cake)

52

Have{Cake)

— Have|Cake)

Eafen{Cake)

— Eafen(Cake)

[l Start at level SO0 and determine action

level A0 and next level S1.

" A0 contailins all actions whose preconditions
are satisfied 1n the previous level.

© 2007 Srividhya Rajendran

Cake Example

50 Ao 51 A1 52
Bake(Cake)
Hawve{Cake) (] HavelCake) ’/ (1 k\\\ Hawve|Cake)
\ — Have(Cake) >< 1 — Have|{Cake)
Eat|Cake) < N Eat(Cake) <
Eaten(Cake) (1 Eafen{Cake)
— Eafen|Cake) L1 — Eaten(Cake)] — Eafen(Cake)

®" Connect precondition and effect of actions.

= Tnaction 1s represented by persistence actions.
[J Level A0 contains the actions that could
occur

" Conflicts between actions are represented by
mutex links

© 2007 Srividhya Rajendran

Cake Example

o o
5 A 54 A1 52
Bakei{Cake)
Hawve{Cake) (] Have(Cake) ><’/ [} k‘\“\ Have{Cake)
\ — Have{Cake) \ L] — Have|Cake)
Eat{Cake) < Eat(Cake) <
Eaten{Cake) {} Eafen|Cake)

L
— Eaten{Cake) M, — EateniCake)

[1

— Eafen|{Cake)

[Level S1 contains all literals that could
result from picking any subset of actions 1n A0
= Conflicts between literals that can not occur
together (as a consequence of the selection

action) are represented by mutex links.

© 2007 Srividhya Rajendran

Cake Example

52

Have{Cake)

= A 54 A1
Bakei{Cake)
Hawve{Cake) (] Have(Cake) ’/ [}
\ — Have{Cake) >< L
Eat{Cake) < \ Eat{Cake)
Eaten(Cake) 1
— Eaten|Cake)] — Eaten{Cake) M,

< — Have{Cake)
Eafen|Cake)

— Eafen(Cake)

= S]1 defines multiple states and

the mutex

1links are the constraints that define this set

of states.

[Continue until two consecutive levels are

identical

© 2007 Srividhya Rajendran

Cake Example

=Ty Ap oy Aq 52

/{ Bake(Cake) }\
Have{Caks) {1 Hawve{Cake)

—
| - | M-
— Have(Caks) >< 1 — Havs| Cake)
Eat{Cake) |< \l Eati{Cake) <
1
{1

Hawve{Cake)

Eaten{Caks) Caten{Cake)

— EateniCake)

HE

— Eafen|Cake) — EafeniCake)

A mutex relation holds between two actions

when:

1l.Inconsistent effects: one action negates
the effect of another.

2.Interference: one of the effects of one
action 1s the negation of a precondition of
the other.

© 2007 Srividhya Rajendran

Cake Example

=Ty Ap oy Aq 52

/{ Bake(Cake) }\
Have{Caks) {1 Hawve{Cake)

—
| - | M-
— Have(Caks) >< 1 — Havs| Cake)
Eat{Cake) |< \l Eati{Cake) <
1
{1

Hawve{Cake)

Eaten{Caks) Caten{Cake)

— EateniCake)

HE

— Eafen|Cake) — EafeniCake)

A mutex relation holds between two actions

when:

3.Competing needs: one of the preconditions
of one action 1s mutually exclusive with
the precondition of the other.

© 2007 Srividhya Rajendran

Cake Example

Sp Ap =1 Aq S2
/{ Bake(Cake) }\
Hawve{Cake) {1 Have{Caks) {1 Hawve{Cake)
— Have(Caks) >< 1 — Havs| Cake)
\{ Eat{Cake) |< \| Eati{Cake) <
Eaten{Caks) {1 Caten{Cake)
— Eaten|Cake) {1 — Eaten{Cake) {1 — Eaten|{Cake)

[JA mutex relation holds between two
literals when (inconsistent support):
1.If one 1s the negation of the other
2.1f each possible action pair that could

achieve the literals 1s mutex.

© 2007 Srividhya Rajendran

Planning Graphs for Heuristic
Estimation

[J] A literal that does not appear in the final
level of the graph cannot be achieved by
any plan.

B Useful for backward search (cost = inf).

[l Level of appearance can be used as cost
estimate of achieving any goal literals =
level cost.

[J Small problem: several actions can occur

B Restrict to one action using serial PG
(add mutex links between every pair of
actions, except persistence actions).

[l Cost of a conjunction of goals? Max-level,
sum—level and set-level heuristics.

© 2007 Srividhya Rajendran

GraphPlan Algorithm

[l extracts a solution directly from the PG

function GRAPHPLAN(problem) returns solution or failure
graph «<— INITIAL-PLANNING-GRAPH(problem)
goals «— GOALS[problem]
loop do
if goals all non-mutex in last level of graph then do
solution «—— EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution # failure then return solution

else if NO-SOLUTION-POSSIBLE(grap/i) then return failure
graph «—— EXPAND-GRAPH(graph, problem)

[J EXTRACT-SOLUTION:

B checks whether a plan can be found searching
backwards

[] EXPAND-GRAPH:

B 5dds actions for the current and state
literals for the next level

© 2007 Srividhya Rajendran

Extract Solution

[l A state consists of
B 3 pointer to a level in the planning graph
B a3 set of unsatisfied goals

[J Initial state

B last level of PG

B set of goals from the planning problem
[J Actions

B select any set of non-conflicting subset of
the actions of A, ; that cover the goals 1in
the state

[l Goal

B success 1f level S, is reached with such
with all goals satisfied

© 2007 Srividhya Rajendran

Cake example

rh.
5.:] Jﬂ.[:. 51 ﬁq)y
/{ Bake{Cake) }\\\
Hawe{Cake)] Have(Caks)] Hawve{Cake)

— Have{laks) 1 — Have{Cake)
Eat{Cake) < \| Eat(Cake)
{1 Eafen{Cake)

Eaten{Caks)

1

— EafeniCake)

— Eafen|{Cake) -, — Eaten{Cake)

[l Start with Goal state (literals):
Have (Cake) A Eaten(Cake)in S,

[l Only non conflicting Action choices are:Bake
(Cake) ,Persistent action (Eaten (Cake)).

as all the other have mutex relation with respect to
either their preconditions or effects.

© 2007 Srividhya Rajendran

Cake example

Aq Sa

Bake({Caks) }\
{1 Hawve{Cake)

X {1 — Have| Cake)
\l Eat(Cake) <
{1 EaferCake)

Sp Ag 51
Haws{Cake) {1 Have(lTaks)
— Havel{Caks)
<
Eaten{Caks]
— Eaten|Cake) {1 — Eaten{Cake)

l

— EateniCake)

[l Literals at S;:

“Have (Cake) A Eaten (Cake).

[l Only action:
Eat (Cake)

[l Literals at SO:

Have (Cake)

A T Faten (Cake) .

(graphplan terminates)

© 2007 Srividhya Rajendran

Planning with Propositional
Logic

E Planning can be done by proving theorem 1in

situation calculus.

[l Here: test the satisfiability of a logical
sentence:

initial staten all possibleactiondescriptionsAgoal

[J Sentence contains propositions for every action
occurrence.

B A model will assign true to the actions that

are part of the correct plan and false to the
others

B An assignment that corresponds to an incorrect
plan will not be a model because of
inconsistency with the assertion that the goal
1s true.

B Tf the planning is unsolvable the sentence
will be unsatisfiable.

© 2007 Srividhya Rajendran

