TEMPORAL PROBABILITY MODELS
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Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

Particle filtering
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Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E,; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X, X .1,..., X1, X,
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X, depends on bounded subset of X,

First-order Markov process: P (X, |X; 1) = P(Xy|X; 1)
Second-order Markov process: P (X, X, ) = P(X,|X; 5, X; )
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Sensor Markov assumption: P(E,;| X, Ey, 1) = P(E,|X})

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all ¢
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Example

Ri—1| P(Ry)

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp,;, Pressure,

Example: robot motion.
Augment position and velocity with Battery,
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Inference tasks

Filtering: P(X,|e|)
belief state—input to the decision process of a rational agent

Prediction: P(X;.,|e;,) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X,|e;;) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxy, , P(x;./|e1)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P(Xt+1’el:t+1> — f(et+17 P(Xt’elzt»

P(Xt+1’el:t+1> — P<Xt+1’el:ta et+1>
— OéP(etH‘XtHa el:t>P(Xt+1‘elzt>
— OzP(et+1‘Xt+1>P(Xt+1‘elit>

|.e., prediction + estimation. Prediction by summing out X;:

P(Xt+1’elzt+1> — @P(etJrl’XtJrl)ZXtP(XtJrl’Xt; el:t>P(Xt’elzt>
- &P(et+1‘Xt+l>ZXtP(Xt+1’Xt>P(Xt’elit>

fl:tJrl = FORWARD(fl;t, et+1> Where fl:t = P(Xt\eu)
Time and space constant (independent of #)
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Filtering example

0.500 0.627
0.500 0.373
True 0.500 O.€!18 0.8*83
False 0.500 0.182 0.117
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Smoothing

Oy

Divide evidence e, into e, €5 1.

P(Xiler) = P(Xylerr, 1)

aP (Xjlerr)P(er 14| Xy, err)
aP (Xglerr)Plek 1 Xy)

= afy by

Backward message computed by a backwards recursion:

Peni14|Xp) = 2x,, Pleni| X Xps1) P (X541 X
= 2, Pleriiaxe 1) P(xp1| Xk)

Xk+1
= 2ix, Plers1|xni1) Plepyo|xpi1) P(xp1| Xi)
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Smoothing example

0.500
0.500

True 0.500 0.!18
False  0.500 0.182
0.8*83
0.117

{

0.690
0.410

0.627
0.373

0.583

0.117
O.:SS
0.117

{

1.000
1.000

forward

smoothed

backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])
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Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
— most likely path to some x; plus one more step

}glagé P(X17 ceey X Xt+1‘e1:t+1>
= Plea|Xon) g (P(Xpa ) g P, %11, xien)

|dentical to filtering, except ., replaced by

mj;.; — Iﬂdi( ! ]_:)<X17 e, Xt 1, Xt\eu),

l.e., my(7) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

mi.q+1 = P(et+1’Xt+1> TI%(%X (P(XzﬁH‘Xzﬁ)ml:t)
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Viterbi example

state
space
paths

umbrella

most
likely
paths

<

<

Rain, Rain,
false false
.8182 5155
.1818 .0491
m 1:1 m 1:2

Rain, Rain,
false false
false

.0361

1237

m 1:3 m 1:4

Raing

false
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Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,5}

Transition matrix T;; = P(X, = j|X, | =1), eg,, (0.7 0.3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(¢;| X, =1)

e.g., with U =true, O = (069 002)

Forward and backward messages as column vectors:

.
fl:tH — OéOtHT fl:t
b1+ = TOg1bgioy

Forward-backward algorithm needs time O(5%¢) and space O(S1)
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Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
fi.1 = a0 T iy
O, \fii1 = aT'fyy
O/(TT>1O1{_+11f1:t+1 = fiy

Algorithm: forward pass computes f;, backward pass does f;, b,
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Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =XV 7, X,V Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model
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Updating Gaussian distributions

Prediction step: if P(X;|e;;) is Gaussian, then prediction
P(Xiler) = Jx, P(Xplxe) P(xi]er) dx

is Gaussian. If P(X, ||e;;) is Gaussian, then the updated distribution
P(Xii1lersr1) = aP(ep1| X 1) P(Xir1ler)

is Gaussian

Hence P(X,|e ;) is multivariate Gaussian N (s, >3;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo

Chapter 15, Sections 1-5 25



Simple 1-D example

Gaussian random walk on X'—axis, s.d. o, sensor s.d. o.

2 2 2 2 2 2

(O-t + 0-17>Zt+1 - 0, Ut 0_2 - (O_t + O-.,’L‘>O-Z
t+1 —

02 + 02 + o2 o2+ 024 o2

Ht+1 =

0.45 -—
0.4 | -
035 .
03}
0.25
0.2
0.15
0.1
0.05

P(X)

X position
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General Kalman update

Transition and sensor models:

P(xp1]x) = N(Fxy, 3,)(X441)
P(z|x;) = N(Hx;,X.)(z)

F' is the matrix for the transition; >, the transition noise covariance
H is the matrix for the sensors; >.. the sensor noise covariance

Filter computes the following update:

M1 = F,ut + Kt+1(zt+1 — HFUt)
Y1 = (I- Kt+1><FEtFT ™ Ex)

where K,. = (FX,F' + 3, H (HFZ,F' +X,)H +%.)"!
is the Kalman gain matrix

>2; and K, are independent of observation sequence, so compute offline
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2-D tracking example: filtering

12

11

10

2D filtering
—a— true
* observed
B X filtered
| | | | | | | | |
10 12 14 16 18 20 22 24 26
X
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2-D tracking example:

smoothing

12

11

10

2D smoothing

— e true
* observed
X smoothed

8 10 12 14 16 18
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth
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Dynamic Bayesian networks

Xy, B contain arbitrarily many variables in a replicated Bayes net

P(Ro)

P(R1)
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DBNs vs. HM Ms

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/ N\
R
NP

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each

DBN has 20 x 2% =160 parameters, HMM has 2% x 22 ~ 10"
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DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

: | | " E(Battery]..5555005555...)
TRy Moo N
4r E(Battery|...5555000000..J
8 ° 1
&
Q 2 i
LLl
L P(BM Broken|..5555000000..)
0% & & B & B B B8 'Egl Kk
P(BM Broken|...5555005555..)
-1 1 1 1 1
15 20 25 30
Time step
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

TR Ro | PRD [~ [ PRo Ro | PR Ry | PRD
% 0.7 1 0.7 T 0.7 1 0.7

o f ] o3 03 f ] o3 f ] o3 i | o3

R, | P(Uy) Ry | P(U;) R, | P(Uy) Ry | P(U;)
3 0.9 09 0.9
f 0.2 f 0.2 f 0.2 f

mbrella; Umbrella, Umbrellag Umbrella,

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice £ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d" "), update cost O(d" ")
(cf. HMM update cost O(d*"))
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Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
— fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢

T ‘+}F-¥¥¥ﬁﬁ“ﬂ\+/¥‘!‘
o LW(:LO:) e
7 LWQIg0)
08 t /+,*”P LW(:L@OO) BRI
' /7 LW(16000)
* m"’m‘j’
@.6 [ ;;‘% E
=
0.4 f p
e ®
Y o A
Sl w2 %
02 r 4 '*}/H y Ay xXX x
;¥ o}
# pest,
ottt
0O 5 10 15 20 25 30 35 40 45 50

Time step
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Particle filtering

Basic idea: ensure that the population of samples ( “particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e,

Rain; Raing,; Rain;,q Raing,q

tue 030 e oo - :

@ o0 o0 o000

fal% @ (O] o0 o000
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space
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Particle filtering contd.

Assume consistent at time : N(x;|e;;)/N = P(x;|e1,)
Propagate forward: populations of x; | are
N<Xt+1‘e1:t> - ZXtP<Xt+1‘Xt>N<Xt’e1:t>
Weight samples by their likelihood for e; ;:
Wi(xi1lersy1) = Pler|Xep1) N (Xir1]ei:)

Resample to obtain populations proportional to I1:

N(x¢r1lere41)/N = aW(xpp1leri1) = aP(ep|xei1) NV (Xer1]er:)
aP(ep|Xes1) ax, P (X [xe) N (Xl e1:)

= a'P(e1[Xe11) 2, P(Xi1[%0) P(xileq)

= P(x/11le1441)
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Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;| X, 1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 1 state variables, linear Gaussian, O(n”) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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