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1 Learning Embeddings for Fast Approximate
Nearest Neighbor Retrieval

1.1 Introduction

Many important applications require efficient nearest-neighbor retrieval
in non-FEuclidean, and often nonmetric spaces. Finding nearest neigh-
bors efficiently in such spaces can be challenging, because the under-
lying distance measures can take time superlinear to the length of the
data, and also because most indexing methods are not applicable in
such spaces. For example, most tree-based and hash-based indexing
methods typically assume that objects live in a Euclidean space, or at
least a so-called “coordinate-space”, where each object is represented
as a feature vector of fixed dimensions. There is a wide range of non-
Euclidean spaces that violate those assumptions. Some examples of
such spaces are proteins and DNA in biology, time series data in vari-
ous fields, and edge images in computer vision.

Euclidean embeddings (like Bourgain embeddings [17] and FastMap
[8]) provide an alternative for indexing non-Euclidean spaces. Using
embeddings, we associate each object with a Euclidean vector, so that
distances between objects are related to distances between the vectors
associated with those objects. Database objects are embedded offline.
Given a query object ¢, its embedding F'(q) is computed efficiently
online, by measuring distances between ¢ and a small number of
database objects. To retrieve the nearest neighbors of ¢, we first find a
small set of candidate matches using distances in the Euclidean space,
and then we refine those results by measuring distances in the original
space. Euclidean embeddings can significantly improve retrieval time
in domains where evaluating the distance measure in the original space
is computationally expensive.

This chapter presents BoostMap, a machine learning method for con-
structing Euclidean embeddings. The algorithm is domain-independent
and can be applied to arbitrary distance measures, metric or nonmetric.
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With respect to existing embedding methods for efficient approximate
nearest-neighbor methods, BoostMap has the following advantages:

— Embedding construction explicitly optimizes a quantitative measure
of how well the embedding preserves similarity rankings. Existing
methods (like Bourgain embeddings [11] and FastMap [8]) typically
use random choices and heuristics, and do not attempt to optimize
some measure of embedding quality.

— Our optimization method does not make any assumptions about
the original distance measure. For example, no Euclidean or metric
properties are required.

Embeddings are seen as classifiers, which estimate for any three
objects a, b, c if a is closer to b or to c. Starting with a large family
of simple, one-dimensional (1D) embeddings, we use AdaBoost [20] to
combine those embeddings into a single, high-dimensional embedding
that can give highly accurate similarity rankings.

1.2 Related Work

Various methods have been employed for similarity indexing in multi-
dimensional data sets, including hashing and tree structures [29]. How-
ever, the performance of such methods degrades in high dimensions.
This phenomenon is one of the many aspects of the “curse of dimen-
sionality.” Another problem with tree-based methods is that they typ-
ically rely on Euclidean or metric properties, and cannot be applied to
arbitrary spaces.

Approximate nearest-neighbor methods have been proposed in [12]
and scale better with the number of dimensions. However, those meth-
ods are available only for specific sets of metrics, and they are not
applicable to arbitrary distance measures. In [9], a randomized pro-
cedure is used to create a locality-sensitive hashing (LSH) structure
that can report a (1 + €)-approximate nearest neighbor with a con-
stant probability. In [32] M-trees are used for approximate similarity
retrieval, while [16] proposes clustering the data set and retrieving only
a small number of clusters (which are stored sequentially on disk) to
answer each query. In [4, 7, 13] dimensionality reduction techniques are
used where lower-bounding rules are ignored when dismissing dimen-
sions and the focus is on preserving close approximations of distances
only. In [27] the authors used VA-files [28] to find nearest neighbors
by omitting the refinement step of the original exact search algorithm
and estimating approximate distances using only the lower and up-
per bounds computed by the filtering step. Finally, in [23] the authors
partition the data space into clusters and then the representatives of
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each cluster are compressed using quantization techniques. Other sim-
ilar approaches include [15, 19]. However, all these techniques can be
employed mostly for distance functions defined using L, norms.

Various techniques appeared in the literature for robust evaluation
of similarity queries on time-series databases when using nonmetric
distance functions [14, 25, 30]. These techniques use the filter-and-refine
approach where an approximation of the original distance that can be
computed efficiently is utilized in the filtering step. Query speedup is
achieved by pruning a large part of the search space before the original,
accurate, but more expensive distance measure needs to be applied
on few remaining candidates during the refinement step. Usually, the
distance approximation function is designed to be metric (even if the
original distance is not) so that traditional indexing techniques can be
applied to index the database in order to speed up the filtering stage
as well.

In domains where the distance measure is computationally expensive,
significant computational savings can be obtained by constructing a
distance-approximating embedding, which maps objects into another
space with a more efficient distance measure. A number of methods
have been proposed for embedding arbitrary metric spaces into a
Euclidean or pseudo-Euclidean space [3, 8, 11, 18, 22, 26, 31]. Some
of these methods, in particular multidimensional scaling (MDS) [31],
Bourgain embeddings [3, 10], locally linear embeddings (LLE) [18], and
Isomap [22] are not targeted at speeding up online similarity retrieval,
because they still need to evaluate exact distances between the query
and most or all database objects. Online queries can be handled by
Lipschitz embeddings [10], FastMap [8], MetricMap [26] and SparseMap
[11], which can readily compute the embedding of the query, measuring
only a small number of exact distances in the process. These four
methods are the most related to our approach. The goal of BoostMap
is to achieve better indexing performance in domains where those four
methods are applicable.

1.3 Background on Embeddings

Let X be a set of objects, and Dy (x1,z5) be a distance measure
between objects x1,79 € X. Dy can be metric or nonmetric. A
Euclidean embedding F' : X — R? is a function that maps objects
from X into the d-dimensional Euclidean space RY, where distance is
measured using a measure Dyga. Dya is typically an L, or weighted L,
norm. Given X and Dy, our goal is to construct an embedding F' that
can be used for efficient and accurate approximate k-nearest neighbor
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(k-NN) retrieval, for previously unseen query objects, and for different
values of k.

In this section we describe some existing methods for constructing
Euclidean embeddings. We briefly go over Lipschitz embeddings [10],
Bourgain embeddings [3, 10], FastMap [8], and MetricMap [26]. All
these methods, with the exception of Bourgain embeddings, can be used
for efficient approximate nearest-neighbor retrieval. Although Bourgain
embeddings require too many distance computations in the original
space X in order to embed the query, there is a heuristic approximation
of Bourgain embeddings called SparseMap [11] that can also be used
for efficient retrieval.

1.3.1 Lipschitz Embeddings

We can extend Dy to define the distance between elements of X and
subsets of X. Let x € X and R C X. Then,

Dx(z,R) = mi}r%l Dx(z,7) . (1.1)
re
Given a subset R C X, a simple 1D Euclidean embedding F'¥ : X —
R can be defined as follows:

Ff(z) = Dx (2, R) . (1.2)

The set R that is used to define F'f is called a reference set. In many
cases R can consist of a single object r, which is typically called a
reference object or a vantage object [10]. In that case, we denote the
embedding as F":

F'(z) = Dx(x,r) . (1.3)

If Dx obeys the triangle inequality, F'® intuitively maps nearby
points in X to nearby points on the real line R. In many cases Dx may
violate the triangle inequality for some triples of objects (an example
is the chamfer distance [2]), but F'® may still map nearby points in X
to nearby points in R, at least most of the time [1]. On the other hand,
distant objects may also map to nearby points (fig. 1.1).

In order to make it less likely for distant objects to map to nearby
points, we can define a multidimensional embedding F : X — R*, by
choosing k different reference sets Ry, ..., Ry:

F(z) = (F™(2),..., Ff(z)) . (1.4)

These embeddings are called Lipschitz embeddings [3, 10, 11]. Bourgain
embeddings [3, 10] are a special type of Lipschitz embeddings. For a
finite space X containing | X| objects, we choose |log|X|]? reference
sets. In particular, for each ¢ = 1,...;[log|X|] we choose |log|X]]
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Figure 1.1 A set of five 2D points (shown on the left), and an embedding
F" of those five points into the real line (shown on the right), using r as
the reference object. The target of each 2D point on the line is labeled with
the same letter as the 2D point. The classifier F” (1.7) classifies correctly
46 out of the 60 triples we can form from these five objects (assuming
no object occurs twice in a triple). Examples of misclassified triples are:
(b,a,c),(c,b,d),(d,b,r). For example, b is closer to a than it is to ¢, but
F"(b) is closer to F"(c) than it is to F"(a).

reference sets, each with 2¢ elements. The elements of each set are picked
randomly. Bourgain embeddings are optimal in some sense: using a
measure of embedding quality called distortion, if Dy is a metric,
Bourgain embeddings achieve O(log(|X|)) distortion, and there exist
metric spaces X for which no embedding can achieve lower distortion
[10, 17]. However, we should emphasize that if Dy is nonmetric, then
Bourgain embeddings can have distortion higher than O(log(|X1)).

A weakness of Bourgain embeddings is that, in order to compute
the embedding of an object, we have to compute its distances Dy to
almost all objects in X. This happens because some of the reference
sets contain at least half of the objects in X. In database applica-
tions, computing all those distances is exactly what we want to avoid.
SparseMap [11] is a heuristic simplification of Bourgain embeddings, in
which the embedding of an object can be computed by measuring only
O(log® | X|) distances. The penalty for this heuristic is that SparseMap
no longer guarantees O(log(|X|)) distortion for metric spaces.

Another way to speed up retrieval using a Bourgain embedding is to
define this embedding using a relatively small random subset X' C X.
That is, we choose |log|X’||? reference sets, which are subsets of
X’. Then, to embed any object of X we only need to compute its
distances to all objects of X’. We use this method to produce Bourgain
embeddings of different dimensions in the experiments we describe in
this chapter. We should note that, if we use this method, the optimality
of the embedding only holds for objects in X', and there is no guarantee
about the distortion attained for objects of the larger set X. We should
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Figure 1.2 Computing F*»*2(x), as defined in Equation 1.5: we con-
struct a triangle ABC so that the sides AB, AC, BC have lengths
Dx(xz,z1), Dx(x,22) and Dx(x1,x2) respectively. We draw from A a line
perpendicular to BC', and D is the intersection of that line with BC'. The
length of the line segment BD is equal to F#1%2(x).

also note that, in general, defining an embedding using a smaller set
X' can in principle also be applied to Isomap [22], LLE [18], and even
MDS [31], so that it takes less time to embed new objects.

The theoretical optimality of Bourgain embeddings with respect to
distortion does not mean that Bourgain embeddings actually outper-
form other methods in practice. Bourgain embeddings have a worst-
case bound on distortion, but that bound is very loose, and in actual
applications the quality of embeddings is often much better, both for
Bourgain embeddings and for embeddings produced using other meth-
ods.

A simple and attractive alternative to Bourgain embeddings is to
simply use Lipschitz embeddings in which all reference sets are single-
ton, as in (1.3). In that case, if we have a d-dimensional embedding, in
order to compute the embedding of a previously unseen object we only
need to compute its distance to d reference objects.

1.3.2 FastMap and MetricMap

A family of simple, 1D embeddings is proposed in [8] and used as
building blocks for FastMap. The idea is to choose two objects z1, x5 €
X, called pivot objects, and then, given an arbitrary x € X, define the
embedding F**2 of x to be the projection of x onto the “line” xjxs.
As illustrated in fig. 1.2, the projection can be defined by treating the
distances between x, x1, and x5 as specifying the sides of a triangle in
R2:

Dx(x,21)? + Dx (21, 22)* — Dx(x, 22)?
2Dx(.7}1,.7}2)

Fooe () = (1.5)

If X is Euclidean, then F**? will map nearby points in X to nearby
points in R. In practice, even if X is non-Euclidean, F(x;,z;) often
still preserves some of the proximity structure of X.
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FastMap [8] uses multiple pairs of pivot objects to project a finite set
X into R* using only O(kn) evaluations of Dx. The first pair of pivot
objects (x1,x9) is chosen using a heuristic that tends to pick points
that are far from each other. Then the rest of the distances between
objects in X are “updated,” so that they correspond to projections into
the “hyperplane” perpendicular to the “line” x;2z5. Those projections
are computed again by treating distances between objects in X as
Euclidean distances in some R™. After distances are updated, FastMap
is recursively applied again to choose a next pair of pivot objects and
apply another round of distance updates. Although FastMap treats X
as a Euclidean space, the resulting embeddings can be useful even when
X is non-Euclidean, or even nonmetric. We have seen that in our own
experiments (Section 1.6).

MetricMap [26] is an extension of FastMap that maps X into a
a pseudo-Euclidean space. The experiments in [26] report that Met-
ricMap tends to do better than FastMap when X is non-Euclidean.
So far we have no conclusive experimental comparisons between Met-
ricMap and our method, partly because some details of the MetricMap
algorithm have not been fully specified (as pointed out in [10]), and
therefore we could not be sure how close our MetricMap implementa-
tion was to the implementation evaluated in [26].

1.3.3 Embedding Application: Filter-and-refine Retrieval

In applications where we are interested in retrieving the k-NN for a
query object ¢, a d-dimensional Euclidean embedding F' can be used
in a filter-and-refine framework [10], as follows:

— Offline preprocessing step: compute and store vector F'(x) for every
database object x.

— Embedding step: given a query object ¢, compute F'(q). Typically
this involves computing distances Dy between ¢ and a small number
of objects of X.

— Filter step: find the database objects whose vectors are the p most
similar vectors to F'(q). This step involves measuring distances in R<.

— Refine step: sort those p candidates by evaluating the exact distance
Dx between ¢ and each candidate.

The assumption is that distance measure Dy is computationally
expensive and evaluating distances in Euclidean space is much faster.
The filter step discards most database objects by comparing Euclidean
vectors. The refine step applies Dx only to the top p candidates. This
is much more efficient than brute-force retrieval, in which we compute
Dx between ¢ and the entire database.
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To optimize filter-and-refine retrieval, we have to choose p, and often
we also need to choose d, which is the dimensionality of the embedding.
As p increases, we are more likely to get the true k-NN in the top
p candidates found at the filter step, but we also need to evaluate
more distances Dy at the refine step. Overall, we trade accuracy for
efficiency. Similarly, as d increases, computing F'(q) becomes more
expensive (because we need to measure distances to more objects of
X)), and measuring distances between vectors in R? also becomes more
expensive. At the same time, we may get more accurate results in the
filter step, and we may be able to decrease p. The best choice of p and
d will depend on domain-specific parameters like k, the time it takes to
compute the distance Dy, the time it takes to compare d-dimensional
vectors, and the desired retrieval accuracy (i.e., how often we are willing
to miss some of the true k-NN).

1.4 Associating Embeddings with Classifiers

In this section we define a quantitative measure of embedding quality,
that is directly related to how well an embedding preserves the similar-
ity structure of the original space. The BoostMap learning algorithm
will then be shown to directly optimize this quantitative measure.

As previously, X is a set of objects, and Dx(z1,x2) is a distance
measure between objects z1, xo € X. Let (¢, x1, x2) be a triple of objects
in X. We define the prozimity order Px(q, x1,3) to be a function that
outputs whether ¢ is closer to x; or to xs:

1 if Dx(q,21) < Dx(q,x2)
Px(q,z1,29) = 0 if Dx(q,71) = Dx(q,x2) . (1.6)
—1 if Dx(q,21) > Dx(q,x2)

If I maps space X into R? (with associated distance measure Dga),
then F can be used to define a prozimity classifier F that estimates,
for any triple (g, x1,x2), whether ¢ is closer to x; or to x, simply by
checking whether F(q) is closer to F'(z1) or to F(xs):

F(q,x1,22) = Dra(F(q), F(x2)) — Dga(F(q), F(x1)) . (1.7)

If we define sign(x) to be 1 for z > 0, 0 for = 0, and —1 for z < 0,
then sign(F(q, 21, %)) is an estimate of Px (¢, z1, 2).

We define the classification error G(F ,q, 1, Ta) of applying Fona
particular triple (g, zq,x2) as

- P — sign(F
G(F,q,l'l,l'g) _ | X(q,.]}'l,.]}'g) SQIgn( (Q7x17'r2))‘ ) (18)
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Finally, the overall classification error G(F) is defined to be the ex-
pected value of G(F', q, 1, x2), over X3, i.e., the set of triples of objects
of X. If X contains a finite number of objects, we get

R Z(q7x17xz)eX3 G(F,q,xl,xg)
G(F) = s |

Using the definitions in this section, our problem definition is very
simple: we want to construct an embedding F,y : X — R? in a way
that minimizes G(Fout). If an embedding F' has error rate G(F ) =0,
then F perfectly preserves nearest-neighbor structure, meaning that for
any ry,rs € X, and any integer k > 0, 7 is the kth NN of x5 in X if
and only if F'(z,) is the kth NN of F'(x3) in the set F'(X). Overall, the
lower the error rate G(F) is, the better the embedding F is in terms
of preserving the similarity structure of X.

We address the problem of minimizing G (ﬁ’out) as a problem of com-
bining classifiers. As building blocks we use a family of simple, 1D em-
beddings. Then, we apply AdaBoost to combine many 1D embeddings
into a high-dimensional embedding F,,; with a low error rate.

(1.9)

1.5 Constructing Embeddings via AdaBoost

The 1D embeddings that we use as building blocks in our algorithm are
of two types: embeddings of type F" as defined in (1.3), and embeddings
of type F*172 as defined in (1.5). Each 1D embedding F' corresponds
to a binary classifier . These classifiers estimate, for triples (q, 21, x2)
of objects in X, if ¢ is closer to xy or xo. If ' is a 1D embedding, we
expect [ to behave as a weak classifier [20], meaning that it will have
a high error rate, but it should still do better than a random classifier.
We want to combine many 1D embeddings into a multidimensional
embedding that behaves as a strong classifier, i.e., that has relatively
high accuracy. To choose which 1D embeddings to use, and how to
combine them, we use the AdaBoost framework [20].

1.5.1 Overview of the Training Algorithm

The training algorithm for BoostMap is an adaptation of AdaBoost
to the problem of embedding construction. The inputs to the training
algorithm are the following:

— A training set T = ((q1,a1,b1), ..., (@i, a, b)) of t triples of objects
from X.

— A set of labels Y = (yi, ..., y:), where y; € {—1,1} is the class label
of (qi,ai,bi). If DX(qi,CLZ') < DX(Qiabi)a then Y; = 1, else Yi = —1. The
training set includes no triples where ¢; is equally far from a; and b;.
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— A set C C X of candidate objects. Elements of C' can be used to
define 1D embeddings.

— A matrix of distances from each ¢ € C to each ¢;, a;, and b; included
in one of the training triples in 7.

The training algorithm combines many classifiers F ; associated with
1D embeddings Fj, into a classifier H = ijl o; F;. The classifiers £}
and weights «; are chosen so as to minimize the classification error of
H. Once we get the classifier H, its components Fj are used to define
a high-dimensional embedding F' = ([}, ..., ), and the weights «; are
used to define a weighted L; distance, that we will denote as Dga, on
R?. We are then ready to use F' and Dga to embed objects into R? and
compute approximate similarity rankings.

Training is done in a sequence of rounds. At each round, the algorithm
either modifies the weight of an already chosen classifier, or selects a
new classifier. Before we describe the algorithm in detail, here is an
intuitive, high-level description of what takes place at each round:

1. Go through the classifiers F ; that have already been chosen, and try
to identify a weight o that, if modified, decreases the training error.
If such an «; is found, modify it accordingly.

2. If no weights were modified, consider a set of classifiers that have
not been chosen vet. Identify, among those classifiers, the classifier F'
which is the best at correcting the mistakes of the classifiers that have
already been chosen.

3. Add that classifier F to the set of chosen classifiers, and compute
its weight. The weight that is chosen is the one that maximizes the
corrective effect of F' on the output of the previously chosen classifiers.

Intuitively, weak classifiers are chosen and weighted so that they
complement each other. Even when individual classifiers are highly
inaccurate, the combined classifier can have very high accuracy, as
evidenced in several applications of AdaBoost (e.g., in [24]).

Trying to modify the weight of an already chosen classifier before
adding in a new classifier is a heuristic that reduces the number
of classifiers that we need to achieve a given classification accuracy.
Since each classifier corresponds to a dimension in the embedding,
this heuristic leads to lower-dimensional embeddings, which reduce
database storage requirements and retrieval time.

1.5.2 The Training Algorithm in Detail

This subsection, together with the original AdaBoost reference [20],
provides enough information to allow implementation of BoostMap,
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and it can be skipped if the reader is more interested in a high-level
description of our method.

The training algorithm performs a sequence of training rounds. At the
jth round, it maintains a weight w; ; for each of the ¢ triples (¢;, a;, b;)
of the training set, so that Z';:l w; ; = 1. For the first round, each w;,
is set to %

At the jth round, we try to modify the weight of an already chosen
classifier or add a new classifier, in a way that improves the overall
training error. A key measure that is used to evaluate the effect of
choosing classifier F' with weight « is the function Zj:

t

Zi(F,a) = S (wiy exp(—ageF (g ab) . (1.10)

1=1

The full details of the significance of Z; can be found in [20]. Here it
suffices to say that Zj(ﬁ ,«v) is a measure of the benefit we obtain by
adding F with weight « to the list of chosen classifiers. The benefit
increases as Z;(F,a) decreases. If Z;(F,a) > 1, then adding F with
weight « is actually expected to increase the classification error.

A frequent operation during training is identifying the pair (F,«)
that minimizes Zj(ﬁ , ). For that operation we use the shorthand Z,,,,
defined as follows:

Zmin(B,j) = argmin(p’a)eBxRZj(F, a) . (1.11)

In (1.11), B is a set of classifiers.
At training round j, the training algorithm goes through the following
steps:

1. Let B; be the set of classifiers chosen so far. Set (F, ) = Zyin(B;, 7).
If Zj(F, a) < .9999 then modify the current weight of F, by adding
a to it, and proceed to the next round. We use .9999 as a threshold,
instead of 1, to avoid minor modifications with insignificant numerical
impact.

2. Construct a set of 1D embeddings F;; = {F" | r € C} where F" is
defined in (1.3), and C'is the set of candidate objects that is one of the

inputs to the training algorithm (see subsection 1.5.1).

3. For a fixed number m, choose randomly a set C; of m pairs of ele-
ments of C, and construct a set of embeddings Fjo = {F*17 | (21, 22) €

C;}, where F"0%2 is as defined in (1.5).
4. Define F; = F;; UFjo. Weset F; = {F | F € F;}.

5. Set (F,a) = Zuin(F;, ).
6. Add F to the set of chosen classifiers, with weight o.
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7. Set training weights w; ;11 as follows:

w; ; exp(—ay; F(gi, a;, b;))
Zi(F.,a) ’

(1.12)

Wij+1 =

Intuitively, the more aF (gi, a;, b;) disagrees with class label y;, the
more w; ;41 increases with respect to w; ;. This way triples that get
misclassified by many of the already chosen classifiers will carry a lot
of weight and will influence the choice of classifiers in the next rounds.

The algorithm can terminate when we have chosen a desired number
of classifiers, or when, at a given round j, no combination of F and o
makes Z;(F,a) < 1.

1.5.3 Training Output: Embedding and Distance

The output of the training stage is a classifier H = Z;l:l ozjﬁ’j, where
each Fj is associated with a 1D embedding Fj. The final output of
BoostMap is an embedding Fyy : X — R? and a weighted Manhattan
(L1) distance Dga : R? x R4 — R:

Fow(z) = (Fi(2), ..., Fy(x)) . (1.13)
Dga((u, ..., uq), (1, ..., v0)) = Z<aj|uj —j]) . (1.14)

It is important to note (and easy to check) that the way we define
Foue and Dya, if we apply (1.7) to obtain a classifier Fiu from F, ., then
F,. = H, ie., Fiu is equal to the output of AdaBoost. This means
that the output of AdaBoost, which is a classifier, is mathematically
equivalent to the embedding Fi.: given a triple (g, a,b), both the
embedding and the classifier give the exact same answer as to whether
q is closer to a or to b. If AdaBoost has been successful in learning
a good classifier, the embedding F,,; inherits the properties of that
classifier, with respect to preserving the proximity order of triples.

Also, we should note that this equivalence between classifier and
embedding relies on the way we define Dga. For example, if Dyra were
defined without using weights o, or if Dga were defined as an Ly metric,
the equivalence would not hold.

1.5.4 Complexity

If C' is the set of candidate objects, and n is the number of database
objects, we need to compute |C|n distances Dy to learn the embedding
and compute the embeddings of all database objects. At each training
round, we evaluate classifiers defined using |C| reference objects and
m pivot pairs. Therefore, the computational time per training round
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Figure 1.3 Top: 14 of the 26 hand shapes used to generate the hand
database. Middle: four of the 4128 3D orientations of a hand shape. Bottom:
for two test images we see, from left to right: the original hand image, the
extracted edge image that was used as a query, and a correct match (noise-
free computer-generated edge image) retrieved from the database.

is O((|C] + m)t), where t is the number of training triples. In our
experiments we always set m = |C/.

Computing the d-dimensional embedding of a query object takes
O(d) time and requires O(d) evaluations of Dx. Overall, query pro-
cessing time is not worse than that of FastMap [8], SparseMap [11],
and MetricMap [26].

1.6 Experiments

We used two data sets to compare BoostMap to FastMap [8] and
Bourgain embeddings [3, 11]: a database of hand images, and an ASL
(American Sign Language) database, containing video sequences of
ASL signs. In both data sets the test queries were not part of the
database, and not used in the training.

The hand database contains 107,328 hand images, generated using
computer graphics. Twenty-six hand shapes were used to generate those
images. Each shape was rendered under 4128 different 3D orientations
(fig. 1.3). As queries we used 703 real images of hands. Given a query, we
consider a database image to be correct if it shows the same hand shape
as the query, in a 3D orientation within 30 degrees of the 3D orientation
of the query [1]. The queries were manually annotated with their shape
and 3D orientation. For each query there are about 25 to 35 correct
matches among the 107,328 database images. Similarity between hand
images is evaluated using the symmetric chamfer distance [2], applied
to edge images. Evaluating the exact chamfer distance between a query
and the entire database takes about 260 seconds.

The ASL database contains 880 gray-scale video sequences. Each
video sequence depicts a sign, as signed by one of three native ASL
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Figure 1.4 Four sample frames from the video sequences in the ASL
database.

signers (fig. 1.4). As queries we used 180 video sequences of ASL signs,
signed by a single signer who was not included in the database. Given
a query, we consider a database sequence to be a correct match if
it is labeled with the same sign as the query. For each query, there
are exactly 20 correct matches in the database. Similarity between
video sequences is measured as follows: first, we use the similarity
measure proposed in [6], which is based on optical flow, as a measure of
similarity between single frames. Then, we use dynamic time warping
[5] to compute the optimal time alignment and the overall matching
cost between the two sequences. Evaluating the exact distance between
the query and the entire database takes about 6 minutes.

In all experiments, the training set for BoostMap was 200,000 triples.
For the hand database, the size of C' (subsection 1.5.2) was 1000
elements, and the elements of C' were chosen randomly at each step
from among 3282 objects, i.e., C' was different at each training round
(a slight deviation from the description in section 1.5), to speed up
training time. For the ASL database, the size of C' was 587 elements.
The objects used to define FastMap and Bourgain embeddings were
also chosen from the same 3282 and 587 objects respectively. Also, in
all experiments, we set m = |C/|, where m is the number of embeddings
based on pivot pairs that we consider at each training round. Learning
a 256D BoostMap embedding of the hand database took about 2 days,
using a 1.2 GHz Athlon processor.

To evaluate the accuracy of the approximate similarity ranking for
a query, we used two measures: exact nearest-neighbor rank (ENN
rank) and highest ranking correct match rank (HRCM rank). The ENN
rank is computed as follows: let b be the database object that is the
nearest neighbor to the query ¢ under the exact distance Dy. Then,
the ENN rank for that query in a given embedding is the rank of b in
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similarity rankings obtained using three different methods, for 703 queries
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Figure 1.6 Median rank of HRCM, vs. number of dimensions, in approx-
imate similarity rankings obtained using three different methods, for 703
queries to the hand database. For comparison, the median HRCM rank for
the exact distance was 21.

the similarity ranking that we get using the embedding. The HRCM
rank for a query in an embedding is the best rank among all correct
matches for that query, based on the similarity ranking we get with that
embedding. In a perfect recognition system, the HRCM rank would be
1 for all queries. Figs. 1.5, 1.6, 1.7, and 1.8 show the median ENN ranks
and median HRCM ranks for each data set, for different dimensions of
BoostMap, FastMap and Bourgain embeddings. For the hand database,
BoostMap gives significantly better results than the other two methods,
for 16 or more dimensions. In the ASL database, BoostMap does either
as well as FastMap or better than FastMap, in all dimensions. In both
data sets, Bourgain embeddings overall do worse than BoostMap and
FastMap.

With respect to Bourgain embeddings, we should mention that they
are not quite appropriate for online queries, because they require
evaluating too many distances in order to produce the embedding of a
query. SparseMap [11] was formulated as a heuristic approximation of
Bourgain embeddings that is appropriate for online queries. We have
not implemented SparseMap but, based on its formulation, it would
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be a surprising result if SparseMap achieved higher accuracy than
Bourgain embeddings.

1.6.1 Filter-and-refine Experiments

As described in subsection 1.3.3, we can use an embedding to perform
filter-and-refine retrieval of nearest neighbors. The usefulness of an
embedding in filter-and-refine retrieval depends on two questions: how
often we successfully identify the nearest neighbors of a query, and how
much the overall retrieval time is.

For both BoostMap and FastMap, we found the optimal combination
of d (dimensionality of the embedding) and p (the number of candidate
matches retained after the filter step) that would allow 1-NN retrieval
to be correct 95% or 100% of the time, while minimizing retrieval time.
Table 1.1 shows the optimal values of p and d, and the associated com-
putational savings over standard nearest-neighbor retrieval, in which
we evaluate the exact distance between the query and each database
object. In both data sets, the bulk of retrieval time is spent computing
exact distances in the original space. The time spent in computing dis-
tances in the Euclidean space is negligible, even for a 256D embedding.
For the hand database, BoostMap leads to significantly faster retrieval,
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Table 1.1 Comparison of BoostMap, FastMap, and using brute-force search,
for the purpose of retrieving the exact nearest neighbors successfully for 95%
or 100% of the queries, using filter-and-refine retrieval. The letter d is the
dimensionality of the embedding. The letter p stands for the number of top
matches that we keep from the filter step (i.e., using the embeddings). Dx
# per query is the total number of Dx computations needed per query, in
order to embed the query and rank the top p candidates. The exact Dx
column shows the results for brute-force search, in which we do not use a
filter step, and we simply evaluate Dx distances between the query and all
database images.

ENN retrieval accuracy and efficiency for hand database
Method BoostMap FastMap Exact Dx
ENN-accuracy 95% | 100% | 95% | 100% | 100%
Best d 256 | 256 13 10 N/A
Best p 406 | 3850 | 3838 | 17498 | N/A
Dx # per query | 823 | 4267 | 3864 | 17518 | 107328
seconds per query | 2.3 106 | 94 42.4 260

ENN retrieval accuracy and efficiency for ASL database
Method BoostMap FastMap Exact Dx
ENN-accuracy 95% | 100% | 95% | 100% | 100%
Best d 64 64 64 32 N/A
Best p 129 | 255 141 | 334 N/A
Dx # per query | 249 | 375 269 | 398 880
seconds per query | 103 | 155 111 | 164 363

because we need to compute far fewer exact distances in the refine step,
while achieving the same error rate as FastMap.

1.7 Discussion

and Future Work

With respect to existing embedding methods, the main advantage of
BoostMap is that it is formulated as a classifier-combination problem
that can take advantage of powerful machine learning techniques to as-
semble a high-accuracy embedding from many simple, 1D embeddings.
The main disadvantage of our method, at least in the current imple-
mentation, is the running time of the training algorithm. However, in
many applications, trading training time for embedding accuracy would
be a desirable tradeoff. At the same time, we are interested in exploring
ways to improve training time.
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A possible extension of BoostMap is to use it to approximate not the
actual distance between objects, but a hidden state space distance. For
example, in our hand image data set, what we are really interested in
is not retrieving images that are similar with respect to the chamfer
distance, but images that actually have the same hand pose. We can
modify the training labels Y provided to the training algorithm, so that
instead of describing proximity with respect to the chamfer distance,
they describe proximity with respect to actual hand pose. The result-
ing similarity rankings may be worse approximations of the chamfer
distance rankings, but they may be better approximations of the ac-
tual pose-based rankings. A similar idea is described in Chapter 77,
although in the context of a different approximate nearest-neighbor
framework.
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