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Abstract. A common problem in multimedia databases is retrieving the
most similar matches to a query object. Finding those matches can be
too slow to be practical, especially in domains where comparing multi-
media objects involves computationally expensive similarity (or distance)
measures. Filter-and-refine retrieval is a framework for addressing this
problem: the filter step quickly filters out most database objects, and the
refine step identifies the best matches among the remaining candidates.
This paper describes two filtering methods, that work by constructing ef-
ficient approximations of computationally expensive similarity measures.
The first method can be applied to arbitrary domains, and the second
method explicitly targets domains where measuring similarity includes
an alignment process. The benefits of these two filtering methods are
illustrated in experiments with databases from different domains, i.e.,
hand images, gesture videos, and online digit recognition for hand-held
devices.

1 Introduction

A common problem in multimedia databases is retrieving the most similar
matches to a query object. For example, in a database of video sequences, we may
want to use a video sequence as a query, and have the system retrieve sequences
that are similar to the query. Other domains where this type of similarity query
is useful include databases of photographs, songs, or medical images. In order to
answer such queries, we first need to define a domain-specific quantitative mea-
sure of similarity between two objects. Given such a measure, the most naive
way of retrieving the most similar database matches is to do brute-force search,
i.e. to compare the query object to every single database object.

The problem with brute-force search is that it can be too slow for prac-
tical applications. This problem is exacerbated by the fact that many useful
similarity measures are computationally expensive. Examples of such expensive
measures are Dynamic Time Warping for time series (for example for video or
audio data) [12], and the chamfer distance [3] or the shape context distance
[4] for edge images. Filter-and-refine retrieval is a framework for speeding up
similarity-based retrieval under computationally expensive similarity measures.
In this framework, retrieval is performed in two steps. First we do a filtering
step, in which we employ computationally efficient pruning methods to select,



among all database objects, a small set of likely matches to the query. Then we
refine the results of the filtering step, by applying the computationally expensive
measure only between the database and the likely matches identified at the filter
step. Naturally, in order to apply this framework in a particular domain, we need
to define appropriate filtering methods for that domain, i.e., computationally ef-
ficient methods that can quickly and reliably identify a small set of candidate
matches, while rejecting the rest of the database.

This paper describes two general filtering methods for filter-and-refine re-
trieval. The first method is called BoostMap, and its formulation is applicable
in arbitrary domains. The BoostMap algorithms defines an embedding, which
maps multimedia objects into a real vector space. Instead of measuring distances
in the original space, which is too slow, using the embedding we can measure
distances in the vector space, which is significantly more efficient.

The second filtering method that we describe is applicable in domains where
an expensive alignment between the query object and database objects is re-
quired in order to measure their similarity. Our method produces an approxi-
mate alignment between two objects, based on their exact alignment to a small
number of prototypes. Using this approximate alignment we can quickly identify,
for each query object, a small set of potential database matches.

The benefits of these two filtering methods are illustrated in experiments
with databases from different domains, i.e., hand images, gesture videos, and
online digit recognition for hand-held devices.

2 Related Work and Background

Various methods have been employed for similarity indexing in image and video
databases, including hashing and tree structures [17]. However, these methods
typically rely on Euclidean or metric properties, and are not appropriate for ar-
bitrary non-metric spaces. Approximate nearest neighbor methods [11] proposed
in the literature are also only applicable to some specific metrics.

In domains where the distance measure is computationally expensive, signifi-
cant computational savings can be obtained by constructing a distance- approx-
imating embedding, which maps objects into another space with a more efficient
distance measure. A number of methods have been proposed for embedding ar-
bitrary metric spaces into a Euclidean or pseudo-Euclidean space [5, 7, 10, 13,
15, 16, 18]. Among the above methods, Lipschitz embeddings [9], FastMap [7],
MetricMap [16] and SparseMap [10], can be used to speed up similarity-based re-
trieval. Those four methods are the most related to the methods that we propose
in this paper. Our goal in designing the new methods has been to achieve better
retrieval performance, i.e., faster and more accurate, than those four methods
can achieve.

2.1 Background

Let X be a set of objects, and DX(x1, x2) be a distance measure between objects
x1, x2 ∈ X . DX can be metric or non-metric. A Euclidean embedding F : X →



R
d is a function that maps objects from X into the d-dimensional Euclidean

space R
d, where distances are typically measured using an Lp or weighted Lp

measure, denoted as DRd .
Given an object r ∈ X , a simple 1D Euclidean embedding F r can be defined

as follows:

F r(x) = DX(x, r) . (1)

The object r that is used to define F r is typically called a reference object or a
vantage object [9].

Alternative formulas for defining 1D embeddings can be found in the litera-
ture [7, 9]. Lipschitz embeddings [9] and FastMap [7] are methods for construct-
ing multidimensional embeddings, using 1D embeddings as building blocks. For
example, if r1, . . . , rd are d reference objects, we can define a d-dimensional Lip-
schitz embedding embedding F : X → R

d as: F (x) = (F r1(x), . . . , F rd(x)).
Given such an embedding F , we can use it for the filter step of filter-and-

refine retrieval [9]. Given a query object q, we compute F (q), which involves
measuring the distance DX between q and d reference objects. Then, at the
filter step, we identify, for some integer p > 0, the p database objects that F

maps the closest to F (q). At the refine step we identify the best matches for the
query, by measuring the exact distance DX between the query and the p objects
selected at the filter step.

If the database has n objects, brute-force retrieval identifies the nearest neigh-
bors of q by measuring the distance DX between q and each database object,
i.e., by performing n evaluations of DX . Filter-and-refine retrieval, in the above
example, performs only d+p evaluations of DX , and performs (at the filter step)
n comparisons of vectors in Euclidean space. In domains where DX is compu-
tationally expensive, filter-and-refine retrieval can be orders of magnitude faster
than brute-force search, if d + p � n.

3 Learning Embeddings with the BoostMap Algorithm

Suppose we have an embedding F with the following property: for any q, a, b ∈ X ,
if q is closer to a than to b, then F (q) is closer to F (a) than to F (b). We can
easily derive that F would also have the following property: for every query q,
and every integer k > 0, if a is the k-nearest neighbor of q in the database, then
F (a) is the k-nearest neighbor of F (q) among the embeddings of all database
objects. Such an embedding would lead to perfectly accurate retrieval, without
even needing an extra refinement step.

Finding such a perfect embedding is usually impossible. However, we can
try to construct an embedding that, as much as possible, tries to behave like a
perfect embedding. In other words, we want to construct an embedding in a way
that maximizes the fraction of triples (q, a, b) for which the embedding indeed
preserves the relative ranking of a and b with respect to q.

More formally, using an embedding F we can define a classifier F̃ , that esti-
mates (sometimes wrongly) for any three objects q, a, b if q is closer to a or to b.



F̃ is defined as follows:

F̃ (q, a, b) = ‖F (q) − F (b)‖ − ‖(F (q) − F (a)‖ . (2)

A positive value of F̃ (q, a, b) means that F maps q closer to a than to b, and can
be interpreted as a “prediction” that q is closer to a than to b in the original space
X . If this prediction is always correct, then F perfectly preserves the similarity
structure of X .

Simple 1D embeddings, like the one defined in Eq. 1, are expected to behave
as weak classifiers, i.e. classifiers that may have a high error rate, but at least give
answers that are not as bad as random guesses. Given many weak classifiers, a
well-studied problem in machine learning is how to combine such classifiers into a
single, strong classifier, i.e., a classifier with a low error rate. A popular choice is
AdaBoost [14], which has been successfully applied to several domains in recent
years.

In [1] we introduced the BoostMap algorithm, which uses AdaBoost to con-
struct an embedding. The input to AdaBoost is a large set of randomly picked
1D embeddings, and a large set of training triples (q, a, b) of objects, for which
we know if q is closer to a or to b. The output of AdaBoost is a classifier
H =

∑d

j=1
αj F̃j , where each F̃j is the weak classifier associated with a 1D

embedding Fj . If AdaBoost has been successful, then H has a low error rate.
Using H , we can easily define a high-dimensional embedding Fout and a

distance measure DRd with the following property: for any triple (q, a, b), if q

is closer to a than to b, H misclassifies that triple if and only if, according to
distance measure DRd , Fout(q) is closer to Fout(b) than to Fout(a). We define
Fout and DRd as follows:

Fout(x) = (F1(x), ..., Fd(x)) . (3)

DRd(Fout(x), Fout(y)) =

d∑

j=1

(αj |Fj(x) − Fj(y)|) . (4)

It is easy to prove that H and Fout fail on the same triples. Therefore, if
AdaBoost has successfully produced a classifier H with low error rate, then Fout

inherits the low error rate of H , and is expected to give highly accurate results
at the filtering step.

The exact training algorithm is described in [1].

4 Defining Embeddings for Unaligned Objects

In some multimedia databases, objects are represented by sets of observations of
different size, or by sequences of observations of varying length. This is typical
in computer graphics databases, where the length corresponds to the model size,
e.g., the number of 2D or 3D points, and in speech and video databases, or more
generally in multidimensional time-series databases, where the sequence length
corresponds to the period of time in which the object persists. In such databases,



it is often necessary to find the correspondence between the observations of the
query object and the database objects prior to computing a (dis)similarity score.

The number of possible alignments is usually exponential to the number of
features in each object. Efficient algorithms, like Dynamic Time Warping [12] or
bipartite matching, can find an optimal alignment in polynomial time, but these
algorithms can still be computationally expensive in practice. General embedding
methods like BoostMap, Lipschitz embeddings [9] or FastMap [7] can be applied
in such domains, in order to define an efficient approximation of the similarity
measure. However, by taking advantage of the structure of such domains we will
define a more specific embedding method, that tends to use a relatively small
number of reference objects.

4.1 Approximate Alignment Using Correspondences to Reference

Objects

Let X be a space of such objects, and Q, R ∈ X be two objects of size n and m

respectively:

Q = q1, q2, . . . , qi, . . . , qn , (5)

R = r1, r2, . . . , rj , . . . , rm . (6)

Each qi and rj is an observation belonging to a feature space G, with distance
measure DG.

We assume that we have an alignment algorithm (like Dynamic Time Warp-
ing [12], or bipartite matching) that establishes correspondences between ele-
ments of Q and elements of R. Given Q and R, this algorithm produces an
alignment W (Q, R), where the kth element of W (Q, R), denoted as wk = (qi, rj),
indicates that observation qi of Q corresponds to observation rj of R. We as-
sume that each rj occurs in at least one wk in W (Q, R). In many domains, the
distance DX(Q, R) is defined as follows:

DX(Q, R) =

K∑

k=1

DG(wk) . (7)

That is, the distance between Q and R is the sum of distances between each pair
qi and rj of corresponding observations that appears in alignment W (Q, R).

Let R be an arbitrary object in X . We can use R as a reference object [9],
to define an embedding F R : X → Gm, where m is the size of object R. In
simple terms, F maps any object Q into an ordered set of m features, so that
F R(Q) = (q′

1
, q′

2
, . . . , q′m). Each q′j is simply the “average” (i.e., arithmetic mean

where applicable, although in some domains we need to define some alternative
definition of average) of all features qi that map to rj under alignment W (Q, R).

Naturally, if we choose d reference objects Ri, we can define an embedding F

by simply concatenating embeddings F Ri , i.e. F (Q) = (F R1(Q), . . . , F Rd(Q)).
F maps objects into Gm′

, where m′ is the sum of the sizes of the Ri’s. Now, if



Fig. 1. Top: 14 of the 26 hand shapes used to generate the hand database. Middle:
four of the 4128 3D orientations of a hand shape. Bottom: for two test images we see,
from left to right: the original hand image, the extracted edge image that was used
as a query, and a correct match (noise-free computer-generated edge image) retrieved
from the database.

F (Q) = (q′
1
, . . . , q′m′) and F (S) = (s′

1
, . . . , s′m′), we can define the distance D′

between them as:

D′(F (Q), F (S)) =

m′∑

j=1

DG(q′j , s
′

j) . (8)

Intuitively, the computationally expensive way to compare Q and S is to
first find their alignment W (Q, S) (which is assumed to be time consuming)
and then evaluate DX(Q, S) based on this alignment. The embedding F maps
objects into ordered sets of features, which are naturally aligned to each other:
each q′j of F (Q) maps to s′j of F (S). This alignment is only an approximation
of the alignment W (Q, S), and it is based on the fact that both q′j and s′j
were aligned to the same feature of some reference object Ri. Since F (Q) and
F (S) are automatically aligned to each other, comparing them using distance
measure D′ is straightforward, and takes time linear in m′. Therefore, D′ is a
computationally efficient distance measure that we can use for the filter step in
filter-and-refine retrieval [9].

Reference objects can be chosen using sequential forward search, which is
essentially a greedy strategy: we pick the first reference object to be the one
that gives the best results when used by itself, and we pick the i-th reference
object to be the one that gives the best results when combined with R1, . . . , Ri−1.

5 Experiments

We have experimentally evaluated the two techniques described in this paper,
i.e., BoostMap and the method for approximate alignment.

We used two datasets to evaluate BoostMap: a database of hand images,
and an ASL (American Sign Language) database, containing video sequences of



ASL signs. The hand database contains 107,328 hand images, generated using
computer graphics. 26 hand shapes were used to generate those images. Each
shape was rendered under 4128 different 3D orientations (Figure 1). As queries
we used 703 real images of hands. Similarity between hand images is evaluated
using the symmetric chamfer distance [3], applied to edge images. Evaluating
the exact chamfer distance between a query and the entire database takes about
260 seconds.

The ASL database contains 880 gray-scale video sequences. Each video se-
quence depicts a sign, as signed by one of three native ASL signers. As queries
we used 180 video sequences of ASL signs, signed by a single signer who was
not included in the database. Similarity between video sequences is measured
as follows: first, we use the similarity measure proposed in [6], which is based
on optical flow, as a measure of similarity between single frames. Then, we use
Dynamic Time Warping [12] to compute the optimal time alignment and the
overall matching cost between the two sequences. Evaluating the exact distance
between the query and the entire database takes about six minutes.

In the experiments, we compare BoostMap to FastMap [7]. For both Boost-
Map and FastMap we evaluated embeddings of many different dimensions, and
for each accuracy level (95% or 100%) we experimentally found the optimal
settings (with respect to retrieval time) of two parameters: embedding dimen-
sionality and number of objects to be kept at the filter step. All the results we
report were obtained using those optimal settings. Note that, given an embed-
ding and a number of dimensions, we can achieve any accuracy level we desire by
simply selecting a large enough number of objects at the filter step. For example,
if the filter step does not filter out any objects, we always get 100% accuracy.
The reason that we want embeddings of higher quality is that those embeddings
will allow us to achieve the desired accuracy while selecting a smaller number of
objects at the filter step, thus reducing the processing time for the refine step.

Table 1 shows the results of BoostMap vs. FastMap. For the hand database,
BoostMap leads to significantly faster retrieval. In the ASL database BoostMap
gives slightly better results than FastMap.

In order to evaluate the approximate alignment method described in Sec-
tion 4, we used the isolated digits benchmark (category 1a) of the UNIPEN
Train-R01/V07 online handwriting database [8], which consists of 15, 953 digit
samples. Each digit is represented as a a series of so-called pen-down and pen-up
components. Each component contains a sequence of pen tip information which
is sampled from the writer’s pen movement.

Data preprocessing and feature extraction is carried out exactly as described
in [2]. Data preprocessing consists of removing pen-up components and con-
catenating the remaining pen-down components into a single sequence of (x,y)
locations, and removing repetitions of consecutive observations. Feature extrac-
tion consists of normalizing the (x,y) coordinates by subtracting the mean and
dividing by standard deviation, and then adding a third directional feature,
which is the tangent angle of the vector connecting two consecutive locations.



Table 1. Comparison of BoostMap, FastMap and using brute-force search, for the
purpose of retrieving the exact nearest neighbors successfully for 95% or 100% of the
queries, using filter-and-refine retrieval DX # per query is the total number of DX

computations needed per query, in order to embed the query and rank the top p

candidates selected at the filter step. The exact DX column shows the results for
brute-force search, in which we simply evaluate DX distances between the query and
all database images.

Retrieval accuracy and efficiency for hand database

Method BoostMap FastMap Exact DX

accuracy 95% 100% 95% 100% 100%

DX # per query 823 4267 3864 17518 107328

seconds per query 2.3 10.6 9.4 42.4 260

Retrieval accuracy and efficiency for ASL database

Method BoostMap FastMap Exact DX

accuracy 95% 100% 95% 100% 100%

DX # per query 249 375 269 398 880

seconds per query 103 155 111 164 363

In summary, a feature vector sequence is defined as Q = (q1, q2, . . . , qi, . . . , qn),
where each qi = (x̃i, ỹi, θi).

For the experiment the digits were randomly and disjointly divided into train-
ing and test sets of ratio about 2:1 (or 10,630 : 5,323 samples). The distance
measure DX used for classification is Dynamic Time Warping [12]. In the fil-
ter step, we precomputed the alignment between all database (training) digits
and 10 reference digits. Thus, each database digit was embedded into a 1, 101
dimensional space (the total sequence length of the 10 reference digits is 367,
and each sample consists of 3 features (x̃, ỹ, θ)). During the online phase, a test
digit was embedded into the 1, 101 dimensional space in a similar way. The L1

distance in this vector space was used for approximating the true DTW distance
at the filter step. The filter step selected 100 candidate matches, and the refine
step computed the exact DTW measure between the test object and the 100
candidates. In Table 2 we show the error rate and classification time for brute-
force search, the filtering step with no refinement, and filter-and-refine retrieval.
Filter-and-refine retrieval leads to minimal loss in accuracy, while achieving a
speed-up factor of about 28 over brute-force search.

6 Discussion

The two methods described in this paper can be applied in a wide range of do-
mains where similarity or distance between objects is computationally expensive
to evaluate. We demonstrate the usefulness of these methods with experiments
on three databases from different domains. In all experiments we achieve signifi-
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Fig. 2. Left: Example of a “seven”. Circles denote “pen-down” locations, x’s denote
“pen-up” locations. Right: The same example, after preprocessing.

Table 2. Comparison of Filter, Filter&Refine and Exact DTW, for the purpose of
nearest neighbor classification. DTW # per query is the total number of DTW compu-
tations needed per query, in order to embed the query using R = 10 reference digits and
rank the top p = 100 candidates selected at the filter step. The Exact DTW column
shows the results for brute-force search, in which we simply evaluate DTW distances
between the query and all database digits .

NN classification error and efficiency for UNIPEN digits database

Method Filter Filter&Refine Exact

NN-error 2.33% 2.09% 2.05%

DTW # per query 10 110 10,630

seconds per query 0.32 0.42 11.95

cant speed-ups over brute force search, and improved performance compared to
alternative methods.

At the same time, it is important to identify a larger number of datasets, so
that we can thoroughly evaluate our algorithms and other existing approaches
and identify their relative strengths and weaknesses. Examples of computation-
ally expensive measures on which our methods can be applied include the Haus-
dorff distance, the Earth Mover’s distance, the edit distance for matching strings
and sequences (like proteins and DNA), or the Kullback-Leibler distance for
matching probability distributions. Efficient filtering methods, like the ones pro-
posed in this paper, can help real systems benefit from the precision of such
expensive distance measures, while keeping retrieval complexity manageable.
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