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Abstract
Whenwe search for imagesin multimediadocuments,

we often have in mind specificimage typesthat we are
interestedin; examplesare photographs,graphics,maps,
cartoons,portraits of people, and so on. This paperde-
scribesan automatedsystemthat classifiesWebimagesas
photographsor graphics,basedon their content.Thesys-
temfirst submitstheimagesinto sometests,which look at
theimage content,andthenfeedstheresultsof thosetests
into a classifier. Theclassifieris built usinglearningtech-
niques,which takeadvantageof thevastamountof training
datathat is availableon theWeb. Text associatedwith an
image canbeusedto further improve theaccuracyof the
classification.Thesystemis usedasa part of WebSeer, an
imagesearch enginefor theWeb.

1 Intr oduction
Collectionsof multimediadocumentscancontainavast

amountof textual and visual information. However, the
biggerthesizeof suchcollectionsgrows,theharderit gets
to locatespecificinformationin them. We canuseindex-
ing programs,which go througha collectionandclassify
documentsand multimediacomponents,suchas images
or videos,basedon the informationthey canextract from
them.Theproblemis thatcurrentcomputerprogramscan
extractmuchlessinformationfrom thosecomponentsthan
humanscan.For imagesin particular, it is trivial for a hu-
manto look atapictureof adog,locatethedog,andindex
theimageundertheword “dog”. It is beyondcurrentcom-
putervision technologyto make a programthat doesthe
samething.

Imagesembeddedin multimediadocumentshave text
associatedwith them. That text oftencontainswordsthat
describethecontentof the images.Indexersmake useof
that factandindex imagesbasedon the text aroundthem.
However, whenwe look for images,weusuallyhavemore
in mind thanjust somekeywords;we wanta specifictype
of imagesthat areassociatedwith thosewords. For ex-
ample, we may want to find photographsof dogs, por-
traits of the president,mapsof Europe,help buttons,or

inflationcharts.Programsthatcanclassifyimagesaspho-
tographs,portraits,maps,buttons,charts,or severalother
types,makeit considerablyeasierfor peopleto specifyand
getbackthekind of imagesthey areinterestedin.

Thephotodetectorweusein WebSeerclassifiesimages
as photographsor computer-generatedgraphics. It is an
exampleof a programthatcanextracta smallbut valuable
pieceof information from an image. The detectorrelies
primarilyontheimagecontenttodotheclassification.Pre-
liminary resultsshow that the documentthat containsthe
imageis alsoa usefulsourceof information.

2 RelatedWork
Up to now therehavebeenvery few efforts to automate

the classificationof imagesasphotographsandgraphics.
TheWebSeeksearchengine[2] performsthatclassification
basedon informationobtainedfrom the color histograms
of theimages.Thesystemdescribedin [3] usessomeinfor-
mationfromtheimagecontent,aswell asinformationfrom
the imagecontext, that is the HTML documentin which
the imageis embedded.The imagecontentcluesthat are
usedarethe squarenessof the image,the numberof col-
ors, thefractionof impurecolors(colorsthatarenot pure
white, black,grey, red, greenor blue), the neighborvari-
ation (fractionof horizontally-adjacentpixelsof thesame
color) andthe color dispersion(fractionaldistanceof the
meancolor in thesortedcolor histogram).In addition,the
filenameportionof theimageURL is testedfor theoccur-
renceof wordsthatareusuallyassociatedwith only oneof
thetwo imagetypes.Theexistenceor notof suchwordsis
anadditionalfeaturethatis consideredin theclassification.

Oneproblemwith [2] and[3] is that it is hardto eval-
uatetheir accuracy. In [2] the authorsclaim a recall rate
of 0.914for Web photographsand0.923for Web graph-
ics. However, they don't specifyexactly what they con-
siderphotographsandgraphics.We seelater in thepaper
thatwecandefinethoseimagetypesin differentways,and
our definitionshave a direct impacton theerror rate. The
authorsof [3] alsodon't specifyexactlywhatthey consider
photographsandgraphics.Consequently, we refrain from
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comparingourerrorratesto theerrorratesattainedin those
systems,sincewe mayhave useddifferentdefinitionsfor
thetwo imagetypes.

3 An Overview of the System
Thephotodetectorsubmitsimagesto severaldifferent

tests. Thosetestsoriginatefrom a few statisticalobser-
vationsaboutthedifferencesbetweencomputer-generated
graphicsandphotographsthatappearon theWeb. In gen-
eral,photographsandgraphicsdiffer in shape,size,thecol-
orsthey use,andthepatternof color transitionsfrom pixel
to pixel.

Basedon thoseobservations,we have createdseveral
imagemetrics. The metricsarefunctionsfrom imagesto
realnumbers.For thosenumberswe usethe term“metric
scores”. A simple metric is the numberof colors in an
image. Our goal is to designmetrics in which graphics
tend to scorein different rangesthan photographs.This
way, we canusethemetricscoresto decideif animageis
a photographor a graphic.

Thescoresweobtainfrom individualmetricsarerarely
definitive. In orderto achievehighaccuracy rates,wehave
to combinescoresfrom severalmetricswhenwemake the
final decision. The systemuseslearningto createdeci-
sion trees,which specifyhow to classifyan imagebased
on its metric scores.The treesareconstructedin an au-
tomatedway, usingthe metric scoresof large setsof im-
ages,which we randomlychooseanddownloadfrom the
Web,andwhichwepre-classifyby handasphotographsor
graphics.

4 The BasicAssumptions
Thissectiontalksabouttheassumptionsunderlyingthe

designof oursystem:Whatarephotographsandgraphics,
andhow they differ from eachother.

4.1 What are Photographsand Graphics
Weusetheword“graphics”for computergeneratedim-

ages.For mostimagesa humanhasno troubledecidingif
they arephotographsor graphics.Our goal for thesystem
is obviously to classifythoseimagesthe sameway a hu-
manwould. However, sometimesit is not clearwhether
animageshouldbeconsidereda photographor a graphic,
andsometimesnoneof thetwo categoriesis applicable:

� Mixedimages.A significantfractionof Web images
have both a photographand a computer-generated
part. Examplesarephotographswith a framearound
them,photographswith text overlaidonthem,andim-
agesthatarehalf photographsandhalf graphics.

� Hand drawings. Hand drawings are clearly not
computer-generatedgraphics. However, even when
the imagesareactuallyphotographsof drawings,we

Figure1: An exampleof a photograph.

Figure2: An exampleof agraphic.

don't considerthem to belong to the “photograph”
type.

The systemis not designedto handlesuchcasesin a
consistentway, and imagesfalling into thosecategories
werenotusedfor trainingor testing.
4.2 Differences between Photographs and

Graphics
By looking at many photographsandgraphics,onecan

easilynoticecertainbasicdifferencesbetweenthem,that
areeasyto describein quantitative terms. Theseare the
differencesweusedasa startingpoint in thedesignof our
metrics:

� Color transitionsfrom pixel to pixel follow different
patternsin photographsand graphics. Photographs
depictobjectsof the real world, andregionsof con-
stantcolorarenotcommonin therealworld, because
objectstend to have texture. (Figure 1). In addi-
tion, photographsof objectsalwayscontaina certain
amountof noise, that causeseven nearbypixels to
havedifferentRGBvalues.Ontheotherhand,graph-
ics tend to have regionsof constantcolor. Figure2
is a typical example. The imagehasonly 8 different
colors,andmostof thepixelshave thesamecolor as
theirneighbors.
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On theotherhand,edgesin graphicstendto bemuch
sharper. Typically anedgeoccursbetweenaregionof
constantcolor and anotherregion of constantcolor,
and the transition takes place over one pixel. In
photographs,boundariesbetweenobjectsare often
blurredbecausethe camerais not focusedprecisely
on them. In addition,many color transitionsdo not
correspondto boundariesbetweenobjects,but to light
variationsand shading. Such transitionsare much
smoother.

� Certain colors are much more likely to appearin
graphicsthan in photographs.For example,graph-
icsoftenhave largeregionscoveredwith highly satu-
ratedcolors. Thosecolorsaremuchlessfrequentin
photographs.

� Graphicshave fewer colors than photographs.This
is relatedto thefact that they tendto have largeone-
color regions.On theWeb in particular, peopleoften
preferto usegraphicswith a smallnumberof colors,
becausethey compressbetter.

� Graphics tend to have different shapesthan pho-
tographs.They areoftennarrow, muchlongerin one
dimensionthanin the other. Photographstendto be
moresquare.In addition,graphicsfrequentlycomein
smallsizes,whicharevery rarefor photographs.

5 ImageMetrics
To implementa photodetector, we needprecisetests,

which we canapply to an imageandgetbackresultsthat
give usinformationaboutthetypeof theimage.Basedon
thegeneralobservationswehavedescribedin theprevious
section,we have implementedseveralmetrics,which map
imagesto realnumbers.Photographsandgraphicstendto
scorein differentrangesin thosemetrics.Becauseof that,
themetricscoresareevidencethatwe canuseto differen-
tiatebetweenthosetwo types.

In the following discussion,we assumethat an image
is representedby threetwo-dimensionalarrays,eacharray
correspondingto thered(R), green(G) andblue(B) color
bandof theimagerespectively. Theentriesof thosearrays
areintegersfrom 0 to 255. Thecolor vectorof a pixel � is
definedto be �����
	��
��� , where� , 	 and � arerespectively the
red,greenandbluecomponentof thecolorof thepixel.

Themetricsweusearethefollowing:

� Thenumberof colors.Thescoreof theimagein this
metric is thenumberof distinctcolorsthatappearin
it.

� The prevalent color metric. We find the most fre-
quentlyoccuringcolor in theimage.Thescoreof the
imageis thefractionof pixelsthathave thatcolor.

� Thefarthestneighbormetric:For two pixels � and��� ,
with colorvectors�����
	��
��� and �������
	���������� respectively,
wedefinetheircolordistance� as ����� ��� ���!�
"#� 	$�	��!��"%� �&�'���!� . Sincecolorvaluesrangefrom 0 to 255,� rangesfrom 0 to 765. Eachpixel ��( (exceptfor the
outerpixels) hasneighborsup, down, left andright.
A neighbor��) of ��( is consideredto be the farthest
neighborof � ( if the color distancebetween� ( and� ) is not smallerthanthe color distancebetween� (
andany otherof its neighbors.We definethe transi-
tion valueof � ( to bethedistancebetween� ( andits
farthestneighbor.

In tne farthestneighbormetric,we have to specifya
parameter* between0 and 765. The scoreof the
imageis the fraction of pixels that have a transition
valuegreaterthanor equalto * .

We usea secondversionof thesamemetricto accen-
tuatethe differencein scoresbetweengraphicsand
photographsfor high valuesof * . In thesecondver-
sion,thescoreof animageis thefraction + ( of pixels
with transitionvaluegreaterthanor equalto * , di-
videdby thefraction + ) of pixelswith transitionvalue
greaterthan0. Graphicshaveevenhigherscoreswith
respectto photographsthan they do in the first ver-
sion,because+�) tendsto belargerfor photographs.

� Thesaturationmetric.For apixel � , with colorvector�����
	��
��� , let , be the maximumand - be the mini-
mumamong� , 	 and � . Wedefinethesaturationlevel
of � to be � ,.�'-/� .
We specifya parameter* . The scoreof the image
is the fractionof pixelswith saturationlevelsgreater
thanor equalto * . For high valuesof * we expect
graphicsto scorehigherthanphotographs,sincesatu-
ratedcolorsoccurmorefrequentlyin graphics.

� The color histogrammetric. We createan aver-
agecolor histogramfor graphics,and one for pho-
tographs.Thescoreof the imagedependson its cor-
relationwith thetwo histograms.

A colorhistogramis a threedimensionaltableof size021435061�35061
. Eachcolor �����7	8����� correspondsto the

bin indexedby �69;:(
<>= �?9A@(7<B= �C9ED(
<>= � in thetable(where9�F = is thefloor of F ). Thecolorhistogramof animage
initially containsat eachbin the fractionof pixels in
thatimagewhosecolorscorrespondto thatbin. Then
it getsnormalized,so that its length(asa vector) is
equalto 1.

The correlation GH�JIK�
L�� betweentwo normalized
histograms I and L is defined as GH�JIK�
L��M�N (
OPRQAS N (7OTUQAS N (
OV QWS ��I P�X TUX V L P�X TUX V � , where I P�X TUX V and
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L P�X TUX V are respectively the bins in I and L indexed
by ��Y
�!Z[�
\]� .
We createa graphicscolor histogram̂ @ by picking
hundredsor thousandsof graphics,takingtheaverage
of their colorhistogramsandnormalizingit. We sim-
ilarly createa photographscolor histogram̂4_ using
a largesetof photographs.

Supposethat an image ` hasa color histogram̂ P .
Let ab�cGH��^ P �U^ @ � and ���cGH��^ P �U^4_[� . Thescoreof
the imagein thecolor histogrammetric is definedasd � De�f D . Clearly, as GH��^ P �U^4_B� increases,d goesup,
andas GH�J^ P �
^ @ � increases,d goesdown. Therefore,
weexpectphotographsto scorehigherin thismetric.

� Thefarthestneighborhistogrammetric. Thefarthest
neighborhistogramof animageis a one-dimensional
histogramwith 766bins(asmany asthepossibletran-
sition valuesfor a pixel, as definedin the farthest
neighbormetric). The i-th bin (startingwith 0) con-
tainsthefractionof pixelswith transitionvalueequal
to Y . We createaveragehistogramsg @ and g _ for
graphicsand photographsrespectively, in the same
way asin the color histogrammetric. We definethe
correlationhi��I4�ULb� betweenhistogramsI and L as
hj��IK�
L��/� Nlk <
OPmQWS I P L P , whereI P and L P arerespec-
tively thei-th binsof I and L .

Let g P be the farthestneighborhistogramof the im-
age, an�ohi�Jg P �Ug @ � and �p�qhi��g P �UgA_B� . Then,
the score d of the imagein this metric is definedasd � De�f D . As in thecolorhistogrammetric,weexpect
photographsto scorehigherthangraphics.

� Thedimensionratiometric:Let r bethewidth of the
imagein pixels, s betheheight, , bethegreatestofr and s and t bethesmallestof r and s . Thescore
of animageis u v . Graphicsveryoftenscoreabove2,
whereasphotographsrarelydoso.

� Thesmallestdimensionmetric:Thescoreof animage
is the lengthof its smallestdimensionin pixels. It is
muchmorecommonfor graphicsto scorebelow 30in
thismetricthanit is for photographs.

Metric w x @ xy_ x
Colorhistogram 0.46 11.9 9.4 10.6
Farthestneighbor 0.35 12.5 9.0 10.7
histogram
Farthest 0.17 13.0 16.6 13.7
neighbor
version2 (264)
Prevalent 0.26 13.8 13.9 13.9
color
Farthest 0.16 14.9 15.2 15.1
neighbor
version1 (1)
Saturation(63) 0.67 32.0 6.7 19.3
Numberof 200 13.0 34.6 23.8
colors
Smallest 72 33.4 14.8 24.1
dimension
Dimensionratio 1.63 47.1 12.1 30.0

Table1: Individualmetrics

Table 1 givessomeindicative resultsfor eachmetric.
The training and the testingset we usedto obtain these
resultsconsistedeachof about600graphicsand600pho-
tographs.Thetwo setsweredisjoint. Thecolumnsof the
tablehavethefollowing meanings.

� Metric is thenameof themetric. If themetricusesa
parameter, wegive thatin parentheses.

� w is the thresholdwe used. If more graphicsthan
photographsscorebelow w in thetrainingset,images
from the testingsetthatscorebelow w areclassified
asgraphics,andtherestasphotographs.Thereverse
happensif morephotographsthangraphicsscorebe-
low w in thetrainingset.

� x @ is theerrorratefor graphicsin thetestingset(per-
centageof graphicsclassifiedasphotographs).

� xy_ is theerrorratefor photographsin thetestingset.

� x is theerrorrateoverall(averageof x @ and x _ ). The
thresholdw waspickedin eachcasesothat it would
minimizetheerrorratein thetrainingset.

6 Combining the Metric Scores
Theindividual metricscoresthatwe getarenot defini-

tive. To make thefinal decision,we needa decisionmak-
ing modulethatwill make thefinal classificationbasedon
thosescores.We currentlyusemultiple decisiontreesfor
thattask.Our decisiontreedesignis basedon Yali Amit' s
work with decisiontrees[1], with minor modifications,in
orderto adjustit to ourdomain.
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6.1 Classificationwith Multiple DecisionTrees
Eachdecisiontreeis a binarytree. Eachnon-leafnode- hasatestfield, whichcontainsametric z|{ , aparameter*;{ to beusedwith z}{ (if applicable),anda thresholdwW{ .

Eachleaf nodecontainsa real number, between0 and1,
which is a probabilityestimatethat the imageis a photo-
graph. To classifyan imageusinga tree,we performthe
following recursiveprocedure:

1. If the root � is not a leaf node,let ~ : be the score
of the imageunderthemetric z : andparameter* : .
If ~ :}� w : , we classify the imagewith the subtree
headedby the left child of the root. Otherwise,we
usethesubtreeheadedby theright child of theroot.

2. If theroot is a leaf node,we returnasresultthenum-
berthatis storedin thatnode.

To classifyan imageusinga set of trees,we find the
meanI of theresultsthatwegetfromall treesin theset.IfI is lessthanagiventhreshold� , theimageis considered
a graphic,andotherwiseit is consideredaphotograph.

6.2 Constructing the DecisionTrees
To constructa decisiontree,wehave to specifya train-

ing setof images~ , anda setof tests h . A test is either
a metric or a metric togetherwith a parameter, for those
metricsthatrequireusto specifya parameter. Imagesin ~
havebeenhand-classifiedasphotographsor graphics.The
following is a recursive descriptionof how a decisiontree
getsconstructed.

We start at the root. If the imagesin ~ are all pho-
tographsor all graphics,we stop. Otherwise,we pick the
optimal test for the root, with respectto our training set.
We usethesamecriteriaas[1] to determinewhattheopti-
maltestin agivennodeis. [4] explainstheintuition behind
thenotionof “informationgain” thatweand[1] usetoeval-
uatetheinformationalvalueof agiventestatagivennode.
If theinformationgainfrom all testsis zero,westop.Oth-
ewise, we recursively constructthe left andright subtree
underthe root. For the left subtreewe useastrainingset
all imagesin ~ whosescoreundermetric , andparameter� is lessthan � . We usetherestof theimagesasa training
setfor theright subtree.
6.3 Preparation of training and testingsets

TheWeb is a vastsourceof trainingdata.Thecrawler
we use for WebSeercan currently locateand download
about1 million imagesa day, togetherwith the HTML
pagesthat refer to them. We canhand-classifyimagesas
photographsor graphicsat a rateof 2,500imagesanhour.
It only takesa coupleof daysto classifytensof thousands
of imagesfor our trainingandtestingsets.

Web imagesappearin the GIF andJPEGformat. We
getmuchbetterresultsby usingdifferentdecisiontreesto

classifyimagesin eachformat. Imagesin thetwo formats
have importantdifferences,that make them scorediffer-
entlyin ourmetrics.For example,JPEGimageshavethou-
sandsof colorsregardlessof whetherthey arephotographs
or graphics,becauseof theway JPEGcompressionworks.
So,we maintaindifferenttraining andtestingsetsfor the
two formats.

To createthe decision trees, we used as a training
set1025GIF graphics,362 GIF photographs,270 JPEG
graphicsand643JPEGphotographs.To constructtheav-
eragecolor histogramsandthe averagefarthestneighbor
histogramsweusedaboutasmany images,whichwerenot
includedin the training setsfor the decisiontrees. Now
thatwehavetensof thousandsof hand-classifiedimagesat
ourdisposal,weplanto createnew trees,with muchlarger
trainingsets,to testhow theaccuracy of thesystemrelates
to theamountof trainingdata.

After wecreatetensof differenttrees,wemanuallyput
themtogetherinto several sets,which we test in orderto
pick the set amongthem that gives the highestaccuracy
rate.We arelookinginto waysto automatethatprocedure,
by specifyingsomeheuristicsto prunethespaceof all pos-
sible combinationsof trees,andmake surethat a reason-
ablygoodsetis chosen.

6.4 Reasonsfor usingmultiple decisiontrees
For every image,we get thousandsof scoresby using

different tests(combinationsof metricsand parameters).
Decisiontreescanusethe teststhat yield the most infor-
mation,andignoreotherteststhatarehighly correlatedto
theonesalreadyused.In addition,decisiontreesallow us
to examinethemandunderstandexactly what imagefea-
turesthey use,andwhy they fail whenthey fail. This is an
advantageoverneuralnetworks,whereit is muchharderto
examinethestate.

Multiple decisiontreesoffer several advantagesover
singledecisiontrees:

� We havesomany possibleteststhat,giventhesizeof
ourtrainingsets,wecannotuseall theinformationwe
getin a singledecisiontree.

� We canaddadditionalmetricswithout having to in-
creasethesizeof thetrainingset,or alterthetraining
andclassificationalgorithms.

� Multiple decisiontreesoffer increasedaccuracy over
singledecisiontrees,even if all treesarebuilt based
onthesamemetrics(aslongasthemetricsareusedin
differentorderin thedifferenttrees,andwith different
parameters).Singletreesarelessaccuratein border-
line casesthangroupsof trees,wheremisclassifica-
tions in individual treesarecancelledout by correct
decisionsin othertrees.
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7 Results
As wementionedearlier, afterwegettheaverageof the

resultsof all decisiontreesfor an image,we compareit
with a threshold� andconsidertheimageto bea graphic
if theaverageis lessthan � . Thechoiceof � affectsdi-
rectly theaccuracy of thesystemfor imagesof eachtype.
As we increase� , we geta highererror ratefor graphics
anda lower error ratefor photographs.Theerror ratefor
imagesof agiventype(photographsor graphics)is defined
as the percentageof imagesof that type that the system
classifiesincorrectly.

� GIF graphics GIF photographs
0.37 8.2 3.5
0.38 6.0 3.9
0.40 5.0 6.9
0.42 4.2 7.4
0.44 3.6 12.1
0.50 2.4 17.8

Table2. Error ratesfor GIF images.

� JPEGgraphics JPEGphotographs
0.40 20.0 3.4
0.44 16.4 4.4
0.47 11.8 6.4
0.50 9.3 8.7
0.55 6.1 15.3
0.59 5.0 17.6

Table3. Error ratesfor JPEGimages.

Wetestedthesystemonrandomimageswedownloaded
from theWebandclassifiedby hand.Thetestimagescon-
sistedof 7245GIF graphics,454 GIF photographs,2638
JPEGgraphicsand1279JPEGphotographs.Noneof those
imageswasusedin constructingtheaveragecolorandfar-
thestneighborhistograms,in constructingthe trees,or in
experimentingwith setsof treesto decidewhich set we
shoulduse.

Tables2 and3 giveserror rates,aspercentvaluesfor
differentchoicesof � , for thetwo formats.

In WebSeer, we set � to 0.5 both for GIF andJPEG
images.GIF graphicsareby far themostcommonimage
type on the Web. They occurabout15-20timesasoften
asGIF photographs,andabout6 timesasoften asJPEG
imagesof any kind. Our choiceof � allowsGIF graphics
to beclassifiedcorrectlyat a rateof 97.6%. If we hadal-
loweda 5% error ratefor GIF graphics,about40%of all

imagesclassifiedasphotographsby our systemwould be
GIF graphics.

We measuredthe rateat which the photodetectorcan
classify images. The measurementswere madeon an
UltraSPARC-1, running at 167MHz, using the sameim-
agesthat wereusedfor the resultsin tables2 and3. The
imageswerereadfrom disk. Thespeedof thesystemwas
2.6imagespersecond.

8 Curr ent and Future Work
Currentwork focuseson two areas:improving the ac-

curacy of thesystem,andextendingit to mixedimages.

8.1 Decisionmaking
As mentionedin previous sections,we now have at

our disposaltensof thousandsof hand-classifiedimages,
which we canusefor trainingandtesting.We planto use
thoseimagesto constructnew decisiontrees,so that we
cancheckwhetherlargertrainingsetscanimprovetheac-
curacy of thesystem.

A factthatourcurrentdecision-makingmoduleignores
is that, for somemetrics,certainrangesof scoresindicate
with very high probability thatan imageis a graphic.For
instance,in thecolorhistogrammetric,310outof 618GIF
graphicsscorebelow 0.2, andonly 1 in 454 photographs
doesso.Currently, imagesthatscorebelow 0.2in thatmet-
ric getclassifiedcorrectlyby thetreesthatusethatmetric,
but may get classifiedincorrectlyby the restof the trees,
andby thesystemasa whole. It maybeadvantageousto
forcethesystemto classifyall suchimagesasgraphics.

8.2 ImageContext Metrics
Imagecontext is theinformationthatwe have aboutan

imagethatdoesnot comefrom theimagecontent.Images
in multi-mediadocumentshavearichcontext aroundthem,
whichcanbeusefulfor oursystem.

The context of an imageoccuringon the Web is the
HTML pagein which the imageis embedded.The con-
tent of that pagegivesus several cluesaboutthe type of
the image. If an HTML pagehasa link to an imagebut
doesnot actuallydisplayit, that imageis usuallya photo-
graph. Imageswith the USEMAP andISMAP attributes
areusuallygraphics.TheURL of an imagecangive sta-
tistically usefulinformation;wordslike “logo”, “banner”,
“bar”, appearmuchmorefrequentlyin URLs of graphics.
Imagesthataregroupedtogetherin a pageareusuallyof
the sametype. Finally, the text aroundan imagecanbe
useful,evenif wejustscanit for theappearanceof specific
words,like “photograph”.

Preliminaryresultsshow thatwecanusesuchinforma-
tion to increasethe accuracy of our photo detector. We
planto implementnew metrics,which will rely on theim-
agecontext. We can usesuchmetricstogetherwith the
alreadyexistingonesin decisiontrees.
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8.3 Mixed Images
Mixedimagesareimagesthatcontainaphotograph,but

arenot purephotographs.A mixed imagecan be a col-
lageof photographs,a photographwith text on top,a pho-
tographwith a computer-generatedframeor background
aroundit, or any othercombinationof photographicand
computer-generatedmaterial.

A mediumtermgoalis to extendthesystemto perform
somesegmentation,so that it can identify photographic
partsin mixed images. It seemsthat segmentingan im-
ageinto photographsandcomputer-generatedpartscanbe
easierthanthe genericimagesegmentationproblem. For
at leastsomecases,like photographswith one-colorback-
grounds,it is pretty easyto segmentout the computer-
generatedpart,andgibvetherestto thesystemto classify.

9 Conclusions
Our photodetectoris an efficient andhighly accurate

system,thatcanbeusedto classifyimagesasphotographs
or graphicsbasedon theimagecontent.It is currentlybe-
ing usedin WebSeer, animagesearchenginefor theWeb,
to help index millions of imagesin ways meaningfulto
peoplewho searchfor imageson the Web. Its designis
basedonsomesimplestatisticalobservationsabouttheim-
agecontentof graphicsandphotographs.Its implementa-
tion makesheavy useof the vastamountof training data
that is availableon the Web. The availability of training
dataallows us to usemany statisticalobservationsin lieu
of amoredefinitivemodelof thedifferencesbetweenpho-
tographsandgraphics.Initial resultssuggestthatusingthe
imagecontext aswell asthe imagecontentwould further
improvetheaccuracy of thesystem.

We believe that similar approaches,that rely on sta-
tistical observations,combineimagecontentwith image
context, andmake useof theavailability of hugeamounts
of training datafrom the Web, can be useful in extract-
ing additionalinformation from an image. Examplesof
additionalimagetypesthat we hopeto detectusingsuch
methodsaremaps,charts,cartoons,andastronomicalpic-
tures. Detectingsuchtypeswould be very useful in in-
dexing imagesin extensivecollectionsof multimediadoc-
uments,like theWeb,in a meaningfulway.
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