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Abstract
Ongoing work towards appearance-based3D hand

poseestimationfrom a single image is presented.Using
a 3D handmodelandcomputergraphicsa large database
of syntheticviews is generated. Theviews displaydiffer-
ent handshapesas seenfrom arbitrary viewpoints. Each
syntheticview is automaticallylabeledwithparametersde-
scribingits handshapeandviewingparameters. Givenan
input image, thesystemretrievesthemostsimilar database
views,andusestheshapeandviewingparametersof those
viewsascandidateestimatesfor theparameters of the in-
put image. Preliminary resultsare presented,in which
appearance-basedsimilarity is definedin terms of the
chamferdistancebetweenedge images.

1 Introduction
Techniquesthat allow computersto understandthe

shapeof a humanhand in imagesand video sequences
can be usedin a wide rangeof applications. Someex-
amplesarehuman-machineinterfaces,automaticrecogni-
tion of signedlanguagesandgesturalcommunication,non-
intrusive motion capturesystems,video compressionof
gesturecontent,andvideoindexing.

Differentlevelsof accuracy areneededby differentap-
plications.In certaindomainsit sufficesto recognizeafew
differentshapes,observedalwaysfrom thesameviewpoint
[15, 7, 3]. Ontheotherhand,3D handposeestimationcan
be useful or necessaryin variousapplicationsrelatedto
sign languagerecognition,virtual reality, biometrics,and
motioncapture.Currently, systemsrequiringaccurate3D
handparameterstendto usemagnetictrackingdevicesand
othernon vision-basedmethods[8, 9, 13]. Computervi-
sionsystemsthatestimate3D handposedo it only in the
context of tracking[11, 4,17, 14] . In thatcontext, thepose
canbeestimatedat thecurrentframeaslongasthesystem
knows theposein thepreviousframe.Sincesuchtrackers
rely on knowledgeaboutthepreviousframe,they needto

bemanuallyinitialized,andthey cannotrecoverwhenthey
losethetrack.

A systemaiming to recover handposefrom a single
image,usinga machinelearningapproach,is describedin
[12]. Tensof differentfunctionsarelearned,thatmapfea-
ture vectorsto handposes.For eachinput image,the re-
sultsof all functionsarerenderedusingcomputergraphics.
Theresultthat is chosenis theonewhoserenderingis the
mostsimilar to theinput image.Thatsystemhasbeenpri-
marily testedwith syntheticdata. In addition, it usesHu
momentsasfeaturevectors,andasa consequenceit can-
not differentiatebetweendifferent classesof shapesthat
have similar boundarycontours. Our systemtacklesthat
problemby usingedgesasfeatures,sinceedgescangive
usinformationaboutboththeboundaryandtheinteriorof
ahand.

The systempresentedin [14] uses, like our system,
a databaseof syntheticviews and an appearance-based
methodto find the closestmatch to the observed input.
However, thatmethodis appliedin thecontext of tracking,
so that at eachframe it only needsto considerdatabase
views whoseparametersare closeto the estimatedhand
parametersof thepreviousframe.In addition,thatsystem
alsoreliesexclusively onfeaturesof theboundingcontour,
andthereforehasthesameproblemas[12].

In thispaperwearetakeacloserlook at theproblemof
estimating3D handposefrom a singleframe. We discuss
issuesrelatedto obtaininga large databaseof imagesfor
which groundtruth is known. We examinesomeprosand
consof usingsyntheticviewsfor thedatabase.We present
somepreliminaryexperimentalresults,considertheimpli-
cationsof thoseresults,andput forwardsomesuggestions
onhow to build futuresystemsthatcomecloserto achiev-
ing reliableandefficientperformance.

In our discussionwe assumethat we can accurately
segmentthe handin all images. Segmentationis trivial
in our syntheticimages,wherewe control how the hand



Figure1: Thehandasanarticulatedobject.Thepalmand
eachfingerareshown in adifferentcolor. Thethreediffer-
entlinksof eachfingerareshownusingdifferentintensities
of thesamecolor.

is displayed. Although handsegmentationis a very hard
problemin real images,good resultscan be achieved in
specificdomainsby imposingcertainconstraints,like re-
quiring thatthebackgroundis known and/orstatic,thatno
skin-coloredobjectsarevisibleexceptfor thehands,or that
noobjectsmovefasterthanthehands[10, 7, 2]. In thereal
imagesthatwe usein our experiments,thesystemlocates
andsegmentsthehandusingskincolordetection[6].

2 Proposed Framework
We modelthehandasanarticulatedobject,consisting

of 16 links: thepalmand15 links correspondingto finger
parts. Eachfinger hasthreelinks (Figure 1). Thereare
15 joints, eachconnectinga pair of links. The five joints
connectingfingersto thepalmallow rotationwith two de-
greesof freedom(DOFs),whereasthe 10 joints between
finger links allow rotationwith oneDOF. Therefore,a to-
tal of 20 DOFsdescribescompletelythe setof all angles
betweenneighboringlinks. For the20-dimensionalvector
containingthose20DOFsweusesynonymouslytheterms
“internal handparameters,” “handshape”and“handcon-
figuration.”

The appearanceof a handshapealso dependson the
cameraparameters.To keepourmodelsimple,weassume
orthographicprojection. We also requirethat the sizeof
the handis fixed, and that the imageplaneis perpendic-
ular to the line connectingthe centerof projectionto the
centerof thehand.Giventhoseassumptions,handappear-
ancedependsontheviewing direction(two DOFs),andon
the cameraorientation(up vector) that definesthe direc-

tion from the centerof the imageto the top of the image
(oneDOF).Weusetheterms“cameraparameters,” “exter-
nal parameters,” and“viewing parameters”synonymously
to denotethethree-dimensionalvectordescribingviewing
directionandcameraorientation.

Givenahandconfigurationvector
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Using thesedefinitions,thegenericframework thatwe

proposefor handposeestimationis thefollowing:

! Preprocessingstep: createa databasecontaininga
uniform and sufficiently densesamplingof all pos-
sibleviewsof all possiblehandconfigurations.Label
eachview with thehandposeparametersthatgener-
atedit.

! For eachnovel image,find thedatabaseviewsthatare
the mostsimilar. Usethe parametersof thoseviews
ascandidateestimatesfor theimage.

Whendo we considera set " of views to be a dense
sampling? Let's fix a similarity measureamongimages,
a distancein poseparameterspace,andnumbers# , $ , %
(basedon anapplication's specificneeds).Givenaninput
image& , wefind the $ viewsin " thatarethemostsimilar
to & . If at leastoneof those $ views hasa groundtruth
vectorthat is within distance# of & 's vector, we consider
that & wassuccessfullymatched.We definethata set "
of views is a densesamplingif, for any image & given
asinput to the application,the probability that & will be
successfullymatchedis greaterthan % .

As a simpleexample,considera systemthatwould be
usedto automaticallyinitialize a 3D handtracker by esti-
matingthehandparametersof thefirst input frame. Sup-
posethatthetrackermanagedto starttrackingsuccessfully
aslongasit wasgiven10 initial estimates,which included
at leastonewithin somedistance' of the truehandcon-
figuration(given somedefinition of distancein the hand
posespace).If we consideredit acceptablefor thetracker
to initialize correctly95%of thetimes,thenwe would set
# � ' , $ ��(�)

, and % �*)+� ,�-
.

3 Complexity Issues
The spacecomplexity of estimatinghandposein our

framework dependsonthenumberof databaseimagesthat
we needfor a densesampling. We needto answertwo
questions:first, how many differentviews do we needfor
eachconfiguration? Second,how many handconfigura-
tionsshouldwe include?At thispointwedonothavepre-
ciseanswersto eitherquestion,but it is illustrative to look
atdifferentpossibleanswers.



As far as the numberof views is concerned,[12] ren-
deredeachhandshapefrom 86 viewpoints,and[14] used
128viewpoints.However, [12] and[14] usedfeaturesthat
they consideredto beinvariantunderimagerotation.If we
userotation-variantfeatures,then for eachviewpoint we
mustgeneratemany views correspondingto differentori-
entationsof thecamera'supvector. In ourexperimentswe
haveused86viewpointsandgenerated48 imagesfor each
viewpoint, giving usa total of 4128imagesfor eachhand
shape.However, it is conceivablethatasignificantlylower
or highernumberwouldoffer amoredesirablebalancebe-
tweenefficiency andaccuracy.

How many handconfigurationsshouldwegenerate?In
our model, a handconfigurationhas20 degreesof free-
dom. Grid samplingin such a high dimensionalspace
would be infeasible.Fortunately(at leastfor our research
goals)thereis ahighdegreeof correlationin thewaythose
degreesof freedomvary, dueto anatomicalandbehavioral
constraints.[12] and[17] appliedPCAto handshapescap-
tured using datagloves, to reducethe dimensionalityto
eight andseven dimensionsrespectively. However, even
with seven dimensions,discretizingeachdimensionto,
say, five values,would yield about80000configurations,
whereasdiscretizingto 10 valueswould yield 100million
configurations.We can usethe latter figure as an upper
boundfor ourestimate.

In [17] thesystemuses28basichandconfigurationsand
expectseachobservedshapeto belongto the linear man-
ifolds spannedby any two of the basisconfigurations.If
thatassumptionis valid,wehave378pairsof basicshapes,
andif we samplebetweenoneand20 pointsin eachline
segmentconnectingtwo basicshapeswe get roughly be-
tween400 and8000configurations.We canconsiderthe
number400 to be a lower boundon the numberof hand
shapesthatweshouldincludein ourdatabase.

To sum up, it seemsthat we needbetween400 and
100,000,000shapes.Obviouslymoreresearchandexperi-
mentsareneededto narrow this range.Systems,including
ourown,haveusedfromabout100toabout4000viewsper
shape,butsmalleror largervaluesfor thatnumbermayturn
out to bepreferable.So,thenumberof imagesrequiredfor
a densesamplingof the handconfigurationspacecanbe
in thetensof thousandsat thelower endor in thetrillions
at thehigherend. Note that, for eachview, we only need
to save thefeaturevectorthatwe will usefor matching.If
the total numberof views is lessthana million, we may
beableto save theviews themselves. However, if it is in
the rangeof trillions, thenevensaving a low-dimensional
featurevectormayrequireaprohibitiveamountof storage,
at leastgiventhecurrentstateof theart in storagedevices.

The time complexity of the problemmustalsobe ad-
dressed,if we want to implementa real-life system.Our

currentsystemfocuseson spacecomplexity andmatching
issues,but we discussissuesrelatedto time complexity in
Section7.

4 Synthetic Versus Real Training Data
In any supervisedlearningmethod,onehasto provide

groundtruth for thetrainingdata.Manuallabelingcanbe
prohibitive when the size of the training set reachesthe
orderof hundredsof thousands.A big advantageof syn-
thetic training setsis that the labelingof the datacanbe
doneautomatically. Thisallowsresearchersto usetraining
setsthatareordersof magnitudeslarger thanwhatwould
befeasiblewith manuallabeling.

In our particulardomain,a real trainingsetcontaining
views of thousandsof handshapesusinghundredsof dif-
ferent viewing parametersfor eachshapewould also be
very hard to collect. For one thing, it would requirete-
dioushumaneffort to generatesamplesof theappropriate
shapes. It would also requiresophisticatedmulticamera
setupsthat,at present,aredefinitelynotcommodityitems,
even for researchinstitutions. Renderingsyntheticmod-
elscircumventstheseproblemsandmakesthe generation
of large trainingsetsrelatively effortless. The only limit-
ing factorsremainingarethe time to generatethe training
viewsandthespaceto storethem.

We shouldnotethatusingsynthetictrainingviews can
alsohave disadvantages.Themodelandtherenderingal-
gorithm may ignorecertainaspectsof the appearanceof
real-lifeobjects(seeFigures2,3). Thehandmodelthatwe
use,for example,doesnot modelhandtexture; therefore,
it cannotbeusedfor a tasklike learningtheappearanceof
palmwrinklesasthefingersbend.Althoughwehaveonly
usedsynthetictraining so far, we may well decideto use
realimagesfor someaspectsof thetrainingin thefuture.

5 Edge-Based View Matching
In Section2 we proposeda framework for estimating

handposefrom asingleview by findingmatchesin a large
databaseof views. Wehavebuilt anexperimentalsystemin
ordertoevaluatethefeasibilityof thisframework. Ourgoal
wasto seewhatkindsof performancewe couldgetusing
a fairly largesetof trainingviews anda simplesimilarity
measure.

Wegeneratedsyntheticdatausingacommerciallyavail-
ablehandmodel[16]. A handshapein this modelhas20
degreesof freedom,that specifythe joint anglesbetween
neighboringlinks. Weused26differenthandshapes.Each
shapewasrenderedfrom 86 viewing directions,sampled
uniformly from the surfaceof the 3D view sphere.From
eachviewing directionweobtained48 images,eachcorre-
spondingto a differentimageplanerotation. We normal-
izedeachview for scale,enforcingthatthemaximumdis-
tancebetweenany two contourpointsbe192pixels.Over-



Figure2: Threeof the 26 basicshapesusedto generate
trainingviews in ourdatabase.

Figure3: Threedifferentviewsof thesamebasicshape.

all, we generated107328training views. Figure2 shows
someof thehandshapesandFigure3 showsa handshape
renderedusingdifferentviewing parameters.

We useedgesas imagefeatures,becauseedgesoffer
someinsensitivity to lighting conditionswhile still carry-
ing enoughinformationto estimatethepose.We make the
latterclaim afterhaving lookedat numerousedgeimages
ourselves,andhaving verifiedthatwe couldeasilytell the
underlyinghandposein mostof the cases.Figure4 in-
cludesexamplesof edgeimages.

For oursyntheticviews,edgeextractioncanbedonein
a noise-freeway. Eachpixel is labeledwith thelink thatit
belongsto. A borderbetweendifferentlinks is considered
to beanedge,unlessit is identifiedwith a joint connecting
neigbboringlinks. In our input imagessuchbordersthat
correspondto joints do not give rise to particularlystrong
edges.

Real imagesusedfor testingarepreprocessedby seg-
mentingthehandusingskin detection[6], andby normal-
izing thescaleof thesegmentedhand.Edgesareextracted
using a Canny detector, implementedin Intel's OpenCV
programminglibrary [5].

Weusethechamferdistance[1] to estimatethesimilar-
ity betweentwo edgeimages.

6 Experimental Results
We testedour systemwith 28 real images. We estab-

lishedgroundtruth for our testimagesasfollows: for each
input imageA, we manuallyidentified the training view
B thatwasthemostsimilar to it. We considereda training
view C to beacorrectmatchfor A if it camefrom thesame

Figure4: First column: Input images,for which correct
matcheswerefound in the top ten matches.Secondcol-
umn: The resultof the Canny edgedetectoron thoseim-
ages(dueto downsampling,thequality of thesereproduc-
tionsis notgreat).Third column:Thecorrectmatchesthat
werefoundfor theinput images.

handshapeasB andits viewpoint parameterswereclose
to theviewpointparametersof B (within 30degrees,in the.0/

distance). Using this definition, for eachof our test
imagesthereexistedabout40 correctmatcheson average,
outof a totalof 107328possiblematches.

Wealsowantedto evaluatetheextentto whichincorrect
matcheswerecausedby inaccuraciesin theCanny detector
output,andtheextentto which they werecausedby using
asimilarity measurebasedonthechamferdistance.There-
fore,wegenerateda secondsetof edgeimagesfor our test
set,in whichwemanuallyidentifiededges.

Theresultsareshown in Table1. Somecaseswherecor-
rectdatabaseviews werefoundin thetop tenmatchesare
shown in Figure4, whereassomecaseswheretherewere
nocorrectviews in thetop thousandmatchesareshown in
Figure5.

We wereactuallysurprisedto find that, for almosthalf
ourinputimages,correctmatcheswerefoundin thetopten
matches.We considerthat resultvery encouraging,given
the fact that we usedoff-the-shelffeatureextractionand
similarity measuremodules.At thesametime, theresults
with themanually-built edgeimagesdemonstratethateven
perfectedgedetectionwill not yield much betterresults
if we keepour currentsimilarity measure.If we want to
continueusingedge-basedfeatures,a moresophisticated



Rank Manualedges Canny edges
1-10 12 13
11-100 9 6
101-1000 6 6
1001- 1 3

Table 1: Experimentalresults. For eachrank rangeand
eachedgeextractionmechanism,we indicatethe number
of testimagesfor which thehighestrankingcorrectmatch
hadarankin thegivenrange.

Figure5: Testimages,for which thehighestrankingcor-
rect matchhad a rank greaterthan 1000. First column:
Original images:Restof the columns:Falsematchesfor
thoseimages,rankingin thetop10.

similarity measureis necessaryto improve performance.
We discussthis issuein Section7.

Our experimentsfocusedon the issuesof spacecom-
plexity andfeatureextraction.Wedid notaddressissuesof
time complexity. No particularoptimizationsweremade
andeachtestimagewascomparedwith all trainingimages.
Thatprocesstook about25 minutesper testimage,using
a C++ implementationon a PC with a 1GHz PentiumIII
processorand1GB RAM. Ongoingwork focuseson time
complexity aswell, asdescribedin thenext section.

7 Ongoing and Future Work
The chamferdistancegivesequalimportanceto every

edgepixel, and treatsit asan isolatedentity. Thereis a
rangeof featuresthatareformedby groupsof edgepixels
(e.g.,straightlines,“finger-like” protrusions,“finger-like”
edgegroups),someof eachareeasyto detect.This is illus-
tratedby Figure6,whichshowssomeresultsof averysim-
ple finger detectorthat we developed.That detectorcon-
sidersacontourprotrusionto beafingerif its length/width
ratio exceedsa giventhreshold.We arecurrentlyworking
oncontourandedge-basedwaysto detectfingers.Explicit
informationaboutfingerscanbe usedto build moredis-
criminatingsimilarity measuresandreducethenumberof
falsematches.Onecaneasilysee,for example,thatseveral

Figure6: A simple finger detector: Contourprotrusions
whoselength/widthratio exceedsa thresholdareconsid-
eredto befingers.Theblueline shows thedetectedextent
of thefingerandtheorangecrossshows thedetectedfin-
gertip.

falsematchesshown in Figure5 displayeasilydetectedfin-
gerprotrusions.A similarity measurethatwould take into
accountthe length,positionandorientationof protrusions
shouldbeableto eliminatesuchfalsematches.

Furthermore,featureslike finger parametersmay be
usefulin building index tablesfor our trainingviews, that
wouldguidethesearchtowardsthemostlikely candidates.
Fastrejectionof many candidatesmayalsobefeasibleus-
ing featureslike Hu moments,centralmoments,edgeori-
entationhistograms,or theshapefeaturedescribedin [14].
Matchingbasedon suchfeaturesis ordersof magnitude
fasterthancalculatingchamferdistances.Whatweplanto
determineexperimentallyin theshorttermis theextentto
whichsuchfeaturescanbeusedto eliminatefalsematches
while preservingthecorrectones.

It is alsoimportantto take a closerlook at the issueof
the necessarynumberof training views. As discussedin
Section3, the right answerfor a generalpurposesystem
is somewherebetweensometensof thousandsandsome
trillions of views,usingbetween400and100million hand
shapes.We needto find waysto estimatethoserangesin a
moreeducatedway andfind morespecificanswers.In the
shorttermweplantoextendourtrainingsetto includehun-
dredsof differenthandshapes.We do believe that,evenif



it turnsoutthatafew hundredshapesaretoofew for agen-
eralpurposesystem,systemstrainedon thatmany shapes
canstill find applicationsin severalhandposeestimation
andgesturerecognitiondomains.

8 Conclusions
We have suggesteda generalframework for 3D hand

poseestimationfrom a single image,using appearance-
basedmatchingwith a databaseof syntheticviews. The
useof syntheticimageslets us obtainvery large training
sets,with groundtruth information. Our initial feasibility
studyshows that this is a promisingapproach.In our ex-
perimentalresults,for almosthalf of the test imagesthe
systemretrievedcorrectviews in the top tenmatches,de-
spite the large size of our databaseand the useof fairly
simplefeatureextractionandmatchingmechanisms.We
describeour ongoingandfuture work to improve perfor-
mance,by usingevenmoretrainingdata,performingmore
elaboratebottom-upprocessingof handimagesandbuild-
ing index tablesto speedup thesearch.
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