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Abstract

Nearest neighbor classifiers are a popular method for mul-
ticlass recognition in a wide range of computer vision and
pattern recognition domains. At the same time, the accu-
racy of nearest neighbor classifiers is sensitive to the choice
of distance measure. This paper introduces an algorithm
that uses boosting to learn a distance measure for multi-
class k-nearest neighbor classification. Given a family of
distance measures as input, AdaBoost is used to learn a
weighted distance measure, that is a linear combination
of the input measures. The proposed method can be seen
both as a novel way to learn a distance measure from data,
and as a novel way to apply boosting to multiclass recog-
nition problems that does not require output codes. In our
approach, multiclass recognition of objects is reduced to
a single binary recognition task, defined on triples of ob-
jects. Preliminary experiments with eight UCI datasets
yield no clear winner among our method, boosting using
output codes, and k-nn classification using an unoptimized
distance measure. Our algorithm did achieve lower error
rates in some of the datasets, which indicates that it is a
method worth considering for nearest neighbor recognition
in various pattern recognition domains.

1 Introduction

Nearest neighbor classification is a popular method for mul-
ticlass recognition in general pattern recognition domains.
In computer vision, nearest neighbor classification has been
applied to a wide range of problems, including face recog-
nition [21, 24], articulated pose estimation [18] and opti-
cal character recognition [3]. K-nearest neighbor (k-nn)
classifiers are appealing because of their simplicity, abil-
ity to model a wide range of parametric and non-parametric
distributions, and theoretical optimality as the training size
goes to infinity. At the same time, k-nn recognition rates in
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real datasets are sensitive to the choice of distance measure.
Choosing a good distance measure is particularly challeng-
ing when the dimensionality of the data is large.

Boosting is another very popular learning method, that
has been successfully applied to many vision problems, in-
cluding face detection [23] and image retrieval [20]. Boost-
ing can be very effective with high-dimensional data, by
combining many weak classifiers in a way that they com-
plement each other. On the other hand, the natural setting
for boosting is binary classification, and applying boost-
ing methods to a multiclass recognition task typically re-
quires partitioning the multiclass problem into multiple bi-
nary problems using output codes [1]. Recognition rates
are sensitive to the choice of output code, and choosing the
right code can be a challenging task.

This paper introduces a method that combines boost-
ing with k-nn classification. From a k-nn perspective, the
main contribution is a method for using boosting to learn,
from training data, a distance measure for k-nn classifica-
tion. Compared to other methods for optimizing a distance
measure, boosting offers the capability of feature selection,
an efficient training process, and the ability to handle data
of very high dimensionality. From a boosting perspective,
the key contribution is a strategy for associating a multi-
class recognition problem with a single binary recognition
problem, which is defined on triples of objects. We believe
that this idea can facilitate applying boosting to multiclass
problems, without having to use output codes.

We report results on three computer vision datasets from
the UCI repository [4], and five non-vision datasets from
the same repository. In the experiments we compare our
method to two widely used methods: AdaBoost with output
codes (using the results reported in [1]), and k-nn classi-
fication using an unoptimized distance measure. For each
of these three methods there were two datasets where that
method gave better results than the two other methods. The
results suggest that our method is worth evaluating in sys-
tems that currently use AdaBoost with output codes or near-
est neighbor classification with an unoptimized distance



measure.

2 Related Work

The basic AdaBoost algorithms [10, 17] construct a classi-
fier as a linear combination of weak classifiers. Each weak
classifier is assumed to achieve an error rate lower than 0.5,
as measured on a training set that has been weighted based
on the results of previously chosen classifiers. An error rate
lower than 0.5 is easy to achieve for binary classifiers, but
becomes increasingly harder as the number of classes in-
creases. As a consequence, the standard AdaBoost algo-
rithms are not easily applied to multiclass problems.

To address this problem, AdaBoost.MO is proposed in
[17]. In AdaBoost.MO, the multiclass problem is parti-
tioned into a set of binary problems, using the idea of er-
ror correcting output codes (ECOC) proposed in [8]. An
extensive experimental evaluation of AdaBoost.MO using
different output codes is provided in [1], with the conclu-
sion that no output code is clearly better, and the choice of
the best code depends on the domain.

A poor choice of output code can lead to unnatural bi-
nary problems that are hard to learn. A possible remedy is
to include the selection of the output code in the learning
process, so that the code is learned from the data [6, 15]. In
[7], binary output codes are replaced with continuous codes,
which are optimized using an iterative method.

A general problem with output codes is that they essen-
tially convert a single multiclass problem into multiple bi-
nary problems. The number of binary problems is typically
at least linear to the number of classes, and it can even be
quadratic in the case of the all-pairs output coding scheme.
In problems with very large numbers of classes, the time
and memory needed to construct and store all the result-
ing binary classifiers can be prohibitive. The problems of
choosing output codes and scaling to a large number of
classes are also shared by support vector machines [22],
which are also primarily formulated for binary classifica-
tion problems.

K-nearest neighbor classification can easily be applied
to multiclass problems, regardless of the number of classes.
However, to obtain good accuracy, we need to find an ap-
propriate distance measure. Several methods have been
proposed for learning a distance measure from data. In
[5, 19], distance metrics are constructed based on estimates
of class probability densities around objects. However, such
estimates can be hard to obtain, especially in high dimen-
sions. Furthermore, if those estimates were available, then
we could simply use Bayesian classification, which is opti-
mal.

In [9] and [11], a local measure is learned for the area
around a given test point. These methods assume that an
initial distance measure is available. Given a test point,

these methods iteratively modify the initial distance mea-
sure, based on the nearest neighbors of the test point given
the current distance measure. The method we propose is
complementary to these methods, because it can be used to
obtain an initial distance measure, on top of which those
methods can be applied.

In [13], a variable interpolation kernel is used for classifi-
cation. The kernel size and the similarity metric are learned
from training data using conjugate gradient optimization. In
[14] Fractional Programming is used to construct an asym-
metric distance measure between test objects and training
objects. This distance measure depends on the class label
of the training object. Our method is similar to these meth-
ods, in that it constructs, using training data, a new simi-
larity measure for k-nn classification. The main difference
of our method is that it uses AdaBoost to optimize the sim-
ilarity measure. This way, our method inherits the advan-
tages of AdaBoost, including good generalization proper-
ties [16], efficient training algorithm, and ability to handle
data of very high dimensionality.

The standard AdaBoost algorithm has been formulated
for binary classification problems. Naturally, nearest neigh-
bor classification can involve an arbitrary number of classes.
To convert our problem into a binary problem, we use an
idea introduced in the BoostMap method [2]. Given a space
of objects with a computationally expensive distance mea-
sure, BoostMap constructs an embedding F that maps ob-
jects into high-dimensional real vectors. The embedding
F is optimized based on the following criterion: given any
three objects (q, a, b), such that q is closer to a than to b in
the original space, we want as often as possible F to pre-
serve the relative order, so that F (q) is closer to F (a) than
to F (b).

Our proposed method solves a different problem than
BoostMap: BoostMap takes as input a computationally ex-
pensive distance measure, and outputs an efficient approx-
imation of that distance measure. In our method, we take
as input a (possibly large) number of distance measures,
and the output is a weighted linear combination of those
distance measures. The output distance measure is opti-
mized for nearest neighbor classification accuracy. What
our method shares with BoostMap is the “trick” of defining
an optimization cost based on triples of objects. This trick
will allow us to reduce the problem of learning a good sim-
ilarity measure into a single binary classification problem,
on which standard AdaBoost can be applied.

3 Problem Definition and Overview

Let X be a space of objects, Y be a finite set of classes,
and D be a set of distance measures defined on X . For
example, each distance measure can be based on a sin-
gle coordinate of each object (if X is a vector space), or
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on a single feature when thousands of features are avail-
able (in the style of [23]). Each object x ∈ X belongs
to a class y(x) ∈ Y . We are given a training set S of
m objects from X and their associated class labels: S =
{(x1, y(x1)), . . . , (xm, y(xm))}. We want to combine the
distance measures in D into a single weighted distance mea-
sure that leads to good k-nn classification accuracy. We also
want to estimate a good value for the number k of neighbors
used by the k-nn classifier.

A note on terminology: in this paper, we use the terms
“similarity measure” and “distance measure” almost inter-
changeably. Sometimes (but not always) the term “similar-
ity measure” is used in the literature to indicate a measure
where zero indicates maximum dissimilarity between ob-
jects, and increasing values indicate increasing similarity.
In that sense, our algorithm produces a distance measure,
i.e. a measure where zero indicates absolute similarity and
increasing values indicate increasing dissimilarity.

3.1 Overview of the Algorithm

AdaBoost is good at combining binary weak classifiers, but
is hard to apply directly to multiclass problems. In or-
der to use AdaBoost to combine different distance mea-
sures, we will establish a one-to-one correspondence be-
tween distance measures and a family of binary classifiers
that classify triples of objects. In particular, suppose we
have a triple (q, a, b), where q, a, b ∈ X , y(a) �= y(b), and
y(q) ∈ {y(a), y(b)}. In words, q is either of the same class
as a or of the same class as b. The binary classification task
is to decide whether y(q) = y(a) or y(q) = y(b).

A distance measure D defines a binary classifier, which
compares the distancesD(q, a) andD(q, b) and assigns to q
the label of its nearest neighbor in the set {a, b}. This one-
to-one correspondence that we establish between distance
measures and binary classifiers allows us to convert the dis-
tance measures in D to weak classifiers, apply AdaBoost
to combine those weak classifiers into a strong classifier,
and then convert the strong classifier into a distance mea-
sure. At first, the training set used by AdaBoost is a random
set of triples (q, a, b) of training objects. Each triple has to
obey the constraint that y(q) = y(a) and y(q) �= y(b). In-
tuitively, if the output of AdaBoost is a good classifier of
triples, the corresponding distance measure should be good
for k-nn classification, because it tends to give smaller dis-
tances to objects of the same class than to objects of differ-
ent classes.

Given the distance measure that was constructed using
AdaBoost, we define a new training set of triples, by impos-
ing the additional constraint that a and b should be among
the nearest neighbors of q in their respective classes. The
error of a binary classifier on these triples is more closely
related to the k-nn error of the distance measure that corre-

sponds to that binary classifier. Then, we iterate between
learning a new distance measure, by applying AdaBoost
on the current training triples, and choosing new training
triples using the current distance measure. In practice, this
iterative refinement improves k-nn classification accuracy
over the initial distance measure returned by the first appli-
cation of AdaBoost.

4 Defining Binary Classifiers from
Distances

In this section we formally define how to associate distances
with binary classifiers. We use notation from the problem
definition. First, we assign to each triple (q, a, b) ∈ X 3 a
class label p(q, a, b) ∈ {−1, 0, 1} as follows:

p(q, a, b) =




1 if (y(q) = y(a)) ∧ (y(q) �= y(b)) .
0 if (y(q) = y(a)) ∧ (y(q) = y(b)) .
0 if (y(q) �= y(a)) ∧ (y(q) �= y(b)) .

−1 if (y(q) �= y(a)) ∧ (y(q) = y(b)) .
(1)

Note that p(q, a, b) can take only three possible values, and
assigns a class label to a triple of objects, based on the class
labels of the individual objects. In contrast y(x) denotes
the class label of a single object and the possible values for
y(x) are as many as the number of classes defined on the
spaceX .

Every distance measure D on X defines a discrete-
output classifier D̄(q, a, b) and a continuous-output classi-
fier D̃(q, a, b), as follows:

D̃(q, a, b) = D(q, b) −D(q, a) . (2)

D̄(q, a, b) =




1 if D(q, a) < D(q, b) .
0 if D(q, a) = D(q, b) .

−1 if D(q, a) > D(q, b) .
(3)

D̄ is essentially a discretization of D̃, and D̃ can be consid-
ered to give a confidence-rated prediction [17]. The error
rate of D̃ is defined to be the error rate of the corresponding
D̄.

Triples of class label 1 or -1 are relevant to how good
the distance measureD is for k-nearest neighbor classifica-
tion. For example, if D̃ correctly classifies all such triples,
thenD defines a perfectly accurate nearest-neighbor classi-
fier. Without loss of generality, we will limit our attention
to classifying triples (q, a, b) for which p(q, a, b) = 1, i.e.
where y(q) = y(a) and y(q) �= y(b). Any triple (q, a, b)
with class label -1 corresponds to a triple (q, b, a) with class
label 1.
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5 Learning a Weighted Distance
Measure with AdaBoost

The inputs to our algorithm are the following:

• A training set S = {(x1, y(x1)), . . . , (xm, y(xm))} of
m objects of X , and their class labels y(xi). Given
S we also define the set So of training objects to be
So = {x1, ..., xm}, i.e. the set of all objects appearing
in S.

• A set D of distance measures defined on X . Each dis-
tance measureD ∈ D will be used to define a classifier
D̃, that will be evaluated by AdaBoost.

Since we want AdaBoost to combine classifiers of triples
of objects, we construct a training set S ′ of m′ triples of
objects, where m′ is a manually set parameter. The i-th
triple (qi, ai, bi) is chosen as follows:

• Pick an object qi ∈ So at random.

• Pick an object ai ∈ So such that that y(qi) = y(ai)
and qi �= ai.

• Pick an object bi ∈ So such that y(qi) �= y(bi).

We run the generalized AdaBoost algorithm [17] with S ′

as the training set. AdaBoost evaluates all weak classifiers
D̃ that correspond to distances D ∈ D, and outputs a linear
combinationH1 of some of those weak classifiers:

H1 =
d∑

j=1

αjD̃j . (4)

Our end goal is to construct a distance measure that is
good for nearest neighbor classification. We can easily
construct this distance measure using the distances Dj and
weights αj that occur in the definition ofH1 (that was out-
put by AdaBoost). In particular, we define a distance D 1

out

as follows:

D1
out(x1, x2) =

d∑
j=1

αjDj(x1, x2) , (5)

where x1, x2 are objects ofX .
A natural question to ask is why we propose thatD1

out is
a good distance measure for nearest neighbor classification.
In order to answer that question, we first need to establish
an important equivalence between D1

out and the classifier
H1 constructed by AdaBoost: for any q, a, b ∈ X such that
p(q, a, b) = 1, H1 classifies triple (q, a, b) correctly if and
only if D1

out(q, a) < D
1
out(q, b). In other words, if we use

Eq. 3 to define a classifier D̃1
out using distance measure

D1
out, then D̃1

out = H1. The proof is straightforward, but
we include it for completeness:

Proposition 1 D̃1
out = H1.

Proof:

D̃1
out(q, a, b) = D1

out(q, b) −D1
out(q, a)

=
d∑

j=1

αjDj(q, b) −
d∑

j=1

αjDj(q, a)

=
d∑

j=1

αj(Dj(q, b) −Dj(q, a))

=
d∑

j=1

αjD̃j(q, a, b) = H1(q, a, b) . �

Now we can provide some intuition as to why we expect
D1

out to be a good distance measure for nearest neighbor
classification: by optimizing H1, we have also optimized
D1

out so that objects of the same class tend to be closer to
each other than to objects of other classes. Overall, this
property is desirable for nearest neighbor classification. If
the optimization has been perfect (i.e., if AdaBoost has con-
structed an H1 that classifies correctly all triples (q, a, b)
with class label p(q, a, b) �= 0) then the nearest neighbor
classifier defined usingD1

out will also give perfect accuracy.
While a zero error rate for H1 guarantees a zero error

rate for nearest neighbor classification using distance mea-
sure D1

out, when the error rate of H1 is non-zero there is
very little we can say about the error of the nearest neigh-
bor classifier. The remainder of this section discusses how
to define a set of training triples such that the classification
error on those triples is more directly related to the error rate
of the nearest neighbor classifier, and how to use that set of
triples to iteratively refine the distance measure.

5.1 Iterative Refinement

Distance measure D̃1
out has been optimized by AdaBoost

with respect to binary classification of a random training
set of triples. However, for accurate k-nn classification of
object q ∈ X using some distance measure D, it does not
have to hold that all training objects of the same class as
q are closer to q than all training objects of other classes
(which would correspond to D̃ perfectly classifying all
triples (q, a, b) with a, b ∈ So, y(a) = y(q), y(b) �= y(q)).
It suffices that, among the k nearest neighbors of q in train-
ing set So, objects of class y(q) achieve a simple majority.
Therefore, it is sufficient (and not even necessary) that D̃
classifies correctly all triples (q, a, b) such that a and b are
among the (�k/2	+ 1) nearest neighbors of q among train-
ing objects of their respective classes y(a) (which equals
y(q)) and y(b).

The problem with using a random training set of triples
is that even if AdaBoost has produced a classifier with a
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very low error rate on such triples, that error is not tightly
related to the error of the resulting nearest neighbor clas-
sifier. Therefore, we cannot really argue that our learn-
ing algorithm optimizes nearest neighbor classification in
a principled way. Based on these considerations, given dis-
tance measureD1

out, we want to define a new set of training
triples, which is more related to k-nn classification error,
and use that new training set to learn a new distance mea-
sureD2

out.
To define the new training set of triples, first we define

Nw(q, r,D), the w-class r-th nearest neighbor of an object
q ∈ X as follows: Nw(q, r,D) is the r-th nearest neighbor
of q based on distance measure D, among all objects x ∈
So−{q} that belong to classw. If q itself is a training object
with class label w, it is not considered to be a w-class r-th
nearest neighbor of itself for any r. Also, given a distance
D, the set Y of all classes, and an integer r, we define sets
of triples T (D, r) and T ′(D, r), as follows:

T (D, r) = {(q,Ny(q)(q, r,D), Nw(q, r,D)) :
q ∈ So, w ∈ (Y − {y(q)})} . (6)

T ′(D, r) =
r⋃

i=1

T (D, i) . (7)

T (D) is the set of all triples (q, a, b) we can define by
choosing a training object q, its same-class r-th nearest
neighbor a, and its w-class r-th nearest neighbor b for all
classes w �= y(q).

If we knew the right value of k for k-nn classification,
we could set rmax = �k/2	 + 1, and build a new set
of training triples by randomly sampling m ′ triples from
T ′(D1

out, rmax), since classifying such triples correctly is
related to the k-nn classification error. We can actually esti-
mate a value for k by trying different values of k and eval-
uating the k-nn error on the set So of training objects, or on
a validation set, based on distance measureD1

out. In the ex-
perimental results, we use an initial implementation where
we manually set rmax = 2, regardless of the value we found
for k.

We construct the new training set of m′ triples by sam-
pling from T ′(D1

out, rmax). Now, we can start the iterative
refinement process. In general, for n > 1, the n-th iteration
consists of choosing a set of training triples by sampling
m′ triples from T ′(Dn−1

out , rmax), and then learning a new
distance measureDn

out from those triples using AdaBoost.
At the end of the n-th iteration, based on Dn

out, we mea-
sure the error of k-nn classifiers on the set So of training
objects for all possible values of k. We set kn to be the k
that leads to the smallest training error, and we define en to
be that error. When, for some n, we get en ≥ en−1, then
we stop the learning algorithm altogether, and we give the
final output: Dout = Dn−1

out , and kout = kn−1. The number
kout is the k we will use for k-nn classification of the test

objects.

5.2 Theoretical Considerations

As mentioned in the previous subsection, given a distance
measure D and an integer k, if the classifier D̃ perfectly
classifies triples on the set T ′(D, �k/2	 + 1), then D and
k define a perfect k-nn classifier on the training set So.
Even when the error of D̃ is non-zero, we still intuitively
expectD to give good nearest neighbor classification accu-
racy, since it has been optimized to give smaller distances
between an object and its same-class nearest neighbors than
between the same object and its nearest neighbors from
other classes.

At the same time, intuition is not a substitute for theoret-
ically provable guarantees. At this point we still do not have
a theoretical framework that tightly associates the error of
D̃ with the k-nearest neighbor classification error using D.
In the next paragraphs we describe some bounds that we can
actually prove, and we outline directions that we are explor-
ing for obtaining the desired theoretical justification for our
method.

First, we establish a tighter connection between the er-
ror of D̃ on set T (D, 1) and the 1-nn classification error of
measureD on training objects:

Proposition 2 Given a distance measure D, if the cor-
responding classifier D̃ has error rate e′(D̃) on the set
T (D, 1), and the 1-nn classifier defined using D has er-
ror e(D) on the training set So, then e′(D̃) ≤ e(D) ≤
(|Y | − 1)e′(D̃).

Proof: For each q ∈ So, T (D, 1) has a subset Tq(D, 1) of
|Y |−1 triples of the form (q,Ny(q)(q, 1, D), Nw(q, 1, D)).
Tq(D, r) contains one triple for each class w �= y(q). Ob-
ject q is classified incorrectly by the 1-nn classifier if and
only if some number of triples (between one and |Y | − 1)
in Tq(D, 1) are classified incorrectly by D̃. Therefore, if
f is the number of misclassified training objects, and f ′ is
the number of misclassified triples in T (D, 1), f ≤ f ′ ≤
(|Y | − 1)f . Since f ≤ f ′, it follows that (|Y | − 1)f ≤
(|Y | − 1)f ′. Therefore, f ′ ≤ (|Y | − 1)f ≤ (|Y | − 1)f ′.
Dividing f ′, (|Y | − 1)f , and (|Y | − 1)f ′ by |T (D, 1)|, and
taking into account that |T (D, 1)| = (|Y |−1)|So|, e′(D̃) =

f ′
|T (D,1)| , and e(D) = f

|So| , we get that e′(D̃) ≤ e(D) ≤
(|Y | − 1)e′(D̃).

�

Proposition 2 establishes a connection between the er-
ror of a classifier D̃ on a special set of triples T (D, 1) and
the corresponding 1-nn error of the distance measure D on
training objects. However, at this point, we do not have an
equally compact formula that associates the error on some
set of triples with k-nn error when k > 1.
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Even in analyzing 1-nn error, an important issue is that
AdaBoost, at the n-th iteration, constructs a distance mea-
sure Dn

out by optimizing a classifier on the current train-
ing set of triples. That training set is chosen using dis-
tance measure Dn−1

out , and is not necessarily related to the
set T (Dn

out, 1), which is the set linked to the 1-nn classi-
fication error by Proposition 2. Therefore, from a theoret-
ical standpoint, we cannot claim that AdaBoost optimizes
a quantity directly related to 1-nn or k-nn classification er-
ror. We have a chicken-and-egg problem, where in order to
choose the right set of training triples we need to know the
distance measure, but at the same time we need the train-
ing triples in order to construct the distance measure using
AdaBoost.

Our iterative refinement method is a heuristic way to ad-
dress that problem: hopefully after a few iterations the dis-
tance measure will stop changing that much. Ideally, we
would like to get to a point where round n − 1 produces
distance measure Dn−1

out , we choose training triples based
on that measure, and applying AdaBoost to those triples in
the n-th round produces again Dn−1

out (i.e. Dn
out = Dn−1

out ).
In that case we can argue that the output distance measure
Dn

out has been optimized with respect to the right set of
training triples. At this point we have no theoretical guar-
antees that our algorithm will indeed converge. We are cur-
rently investigating potential modifications to our algorithm
that can lead to provable convergence. At the same time, it-
erative refinement does improve the classification accuracy
of the resulting distance measure in practice.

6 Complexity

The storage requirements of our method for training and
testing are dominated by the need to store all training ob-
jects, as is typical in k-nn classifiers. For high-dimensional
data, our algorithm sometimes effectively performs feature
selection, by outputting a distance measure that only de-
pends on some of the features. That allows for a more com-
pact representation of the training objects in the actual k-nn
classifier.

The training time depends on the number |D| of distance
measures in D, the total number of iterations n, the average
number of steps d it takes each invocation of AdaBoost to
complete its training, the number of training triplesm ′ used
at each iteration, and a number g, which we define to be the
maximum number of objects that belong to a single class in
the training set So. If m is the number of training objects
in So and t is the number of classes, if there is an equal
number of objects for each class, then g = m/t.

At each iteration, we need to choosem ′ training triples.
Choosing each triple involves finding two w-class r-th near-
est neighbors of q, for two classes w ∈ Y , some integer
r, and some training object q. This takes time O(g) per

Table 1: Information about the UCI datasets used in the experi-
ments, largely copied from [1].

Dataset Train Test Attributes Classes
glass 214 - 9 6
isolet 6238 1559 617 26
letter 16000 4000 16 26
pendigits 7494 3498 16 10
satimage 4435 2000 36 6
segmentation 2310 - 19 7
vowel 528 462 10 11
yeast 1484 - 8 10

Table 2: The error rate achieved by our method (denoted as
Boost-NN) in each dataset, compared to the best result attained
among the 15 AdaBoost.MO variations evaluated in [1] and the
best result attained among the 6 variations of “naive” k-nn classi-
fication. For our method we also provide the standard deviation
across multiple trials, except for the isolet dataset where we only
ran one trial of our algorithm.

Dataset Boost-NN Allwein Naive k-nn
glass 24.4 ± 1.7 25.2 26.8
isolet 6.5 5.3 7.6
letter 3.5 ± 0.2 7.1 4.5
pendigits 3.9 ± 0.6 2.9 2.2
satimage 9.6 ± 0.3 11.2 9.1
segmentation 1.8 ± 0.2 0.0 2.6
vowel 41.9 ± 1.6 49.8 44.3
yeast 41.7 ± 0.6 41.6 40.9

triple. Then we need to invoke AdaBoost, whose training
takes time O(m′d|D|). So, the overall training time of the
algorithm is O(nm′(g + d|D|)).

In our current implementation, we use k-nn training error
as a stopping criterion. To compute that at each iteration, we
need to compare each training object to all other training
objects, which takes time O(m2). For large training sets,
we can estimate the k-nn training error statistically using
sampling, or we can measure error on a smaller validation
set, so that we can eliminate this quadratic dependency on
m.

The recognition time, in the worst, case, involves com-
puting distances from the test object to all training objects.
However, several efficient methods proposed for finding
nearest neighbors or approximate nearest neighbors may be
applicable in some domains [12, 25].

7 Experiments

We applied our algorithm to eight pattern recognition
datasets from the UCI repository [4]. Some information
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Table 3: For each dataset, we count how many variations of Ad-
aBoost.MO gave lower (<), equal (=), and higher (>) error rates
than our algorithm, based on the results in [1]. For example, in the
segmentation dataset, all 15 variations of AdaBoost.MO did better
than our algorithm. We also give the same information for the six
variations of the naive k-nn algorithm. We consider an error rate
equal to the error rate of our algorithm if it is within one standard
deviation of the error rate of our algorithm. Note that in [1] some
of the 15 variations were not tried on all datasets, because of their
complexity.

Dataset Allwein Naive k-nn
< = > < = >

glass 0 1 14 0 0 6
isolet 2 0 7 0 0 6
letter 0 0 12 0 0 6
pendigits 3 0 12 3 3 0
satimage 0 0 15 2 2 2
segmentation 15 0 0 0 0 6
vowel 0 0 15 0 0 6
yeast 0 6 9 1 5 0

about these datasets is given in Table 1. The letter, satim-
age and segmentation datasets are computer vision datasets,
where we need to classify objects or regions based on some
pre-extracted image features. The remaining datasets are
from non-vision domains, and we used them to get a more
complete picture about the behavior of our algorithm.

In [1], 15 different variations of AdaBoost.MO are eval-
uated on 13 UCI datasets. The fifteen variations were ob-
tained by trying five different output codes, and three differ-
ent ways to assign a class to a test object based on the out-
puts of the binary classifiers. Our goal was to compare our
algorithm to the results given by [1] on the same datasets.
We ended up using only eight of those datasets. We did
not use four datasets (dermatology, soybean, thyroid, au-
diology) because they have missing attributes, which our
current formulation cannot handle. One dataset (ecoli) con-
tains a nominal attribute, which our current implementation
cannot handle in practice (although the theoretical formu-
lation is fully compatible with nominal attributes). For the
remaining datasets, we compare our results to those cited
by [1], using in each dataset the same training and test set
that were used in that publication. For datasets where no
independent test set was available, we used 10-fold cross-
validation, again as in [1].

We also compared our algorithm to a “naive” k-nn algo-
rithm, that does not learn a distance measure, but instead
computes a standard L1 or Euclidean (L2) distance. We
applied both those distances to data that was normalized us-
ing three normalization schemes: the null scheme (no nor-
malization at all), normalizing the range of each attribute
to be between 0 and 1, and normalizing the standard de-

viation of each attribute to be equal to 0.5. This gives us
a total of 6 variations. For each variation, the best k was
chosen to be the one that minimized the classification error
on the training set. In datasets where cross-validation was
needed, we ran three full cross-validation trials and aver-
aged the results. It is interesting that, in some datasets, the
“naive” k-nn algorithm had actually lower error rates com-
pared both to our method and the methods evaluated in [1].
This is not entirely unexpected, since neither AdaBoost nor
our formulation guarantee learning globally optimal values
for the classifier parameters.

The family D of distance measures used as input to our
algorithm was constructed by using each attribute to define
a distance measure based only on that attribute. In all exper-
iments, the number of training triplesm ′ was set to 10, 000,
except for isolet where m′ = 100, 000. We noticed that
larger values of m′ did not make much difference on the
resulting error rate.

In some UCI datasets, training and test objects were col-
lected from a set of human subjects, and more than one ob-
ject was collected from each human subject. In forming
training triples, given a training object q, we exclude ob-
jects a and b coming from the same subject. For the UCI
pendigits dataset, we could not find any subject ID infor-
mation, so we could not apply this criterion.

Since our algorithm relies on random sampling in con-
structing training triples, we ran at least 22 trials on each
dataset, in order to estimate the standard deviation of the er-
ror rate. The only exception was the isolet dataset, where we
ran a single trial because training was significantly slower
than in the other datasets. In datasets where cross-validation
was used, each trial consisted of a full cross-validation,
where the dataset was split into 10 subsets and each subset
was used once as a test set. The running time for each trial,
which included learning the distance measure and evaluat-
ing nearest neighbor accuracy on the test data, ranged from
about 30 seconds for the vowel dataset, to about one hour
for the letter dataset and two days for the isolet dataset (the
only dataset where we used 100,000 training triples). The
remaining datasets took a few minutes per trial. The running
time was measured on an Athlon 1.2GHz PC. In general, the
number of iterations per trial (each iteration consisting of
forming training triples followed by an application of Ad-
aBoost to construct a distance measure) was between three
and eight for all datasets.

Tables 2 and 3 compare the results of our method to the
results of the variations of AdaBoost.MO cited in [1] and
those of “naive” k-nn. In those tables we refer to our method
as Boost-NN (for Boosted Nearest Neighbors). Overall, for
each method there are two datasets where that method does
better than the other methods. There are also two datasets
(glass and yeast) where the results of our algorithm and the
best results from ECOC-based boosting and naive k-nn clas-
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sification are quite similar.
Overall, the results yield no clear winner among our

method, AdaBoost.MO, and naive k-nn classifiers. At the
same time, we believe that the results offer evidence that, at
least in some domains, our method may provide better clas-
sifiers than other standard methods. Clearly, more results
are needed in order to evaluate the strengths and weaknesses
of our method versus AdaBoost.MO and existing methods
for learning distance measures for k-nn classification.

8 Discussion and Future Work

Our algorithm combines the ability of AdaBoost to select
and combine different weak classifiers in a way that they
complement each other with the ability of k-nn classifiers
to model complex, non-parametric distributions. The ex-
periments show that, in some domains, our method can lead
to lower error rates than the alternative AdaBoost.MO and
k-nn classification methods that we compared our method
to. At the same time, it is important to experimentally com-
pare our algorithm to alternative methods for learning dis-
tance measures from data [13, 14] in terms of classification
accuracy and efficiency of the training algorithm.

One direction for future work is to try to establish a
tighter theoretical connection between the training error of
the classifier optimized by AdaBoost (which operates on
triples of objects) and the training error of the nearest neigh-
bor classifier (which operates on actual objects). Another
direction is to apply our algorithm in problems with a very
large number of classes, like sign language recognition,
or articulated body pose estimation. Boosting with output
codes is hard to apply in such problems, because typically
the number of binary classifiers that need to be learned is
at least as large as the number of classes. Our formulation
converts the multiclass problem into a single binary prob-
lem, defined on triples of objects, and therefore can easily
be applied to problems with a large number of classes.
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