Approximate Embedding-Base

d Subsequence Matching of

Time Series

Vassilis Athitsos !, Panagiotis Papapetrou 2, Michalis Potamias 2,

George Kollios 2, and Di

! Computer Science and Engineering Depa

mitrios Gunopulos 3

rtment, University of Texas at Arlington

2 Computer Science Department, Boston University
¢ Department of Informatics and Telecommunications, University of Athens

ABSTRACT

A method for approximate subsequence matching is intratjuce
that significantly improves the efficiency of subsequencéca

ing in large time series data sets under the dynamic timeingurp
(DTW) distance measure. Our method is called EBSM, shodthan
for Embedding-Based Subsequence Matching. The key iden is t
convert subsequence matching to vector matching using aeém
ding. This embedding maps each database time series into a se
quence of vectors, so that every step of every time seriebén t
database is mapped to a vector. The embedding is computed
applying full dynamic time warping between reference otgemnd
each database time series. At runtime, given a query ohject,
embedding of that object is computed in the same manner,rby ru
ning dynamic time warping between the reference objectstia@d
query. Comparing the embedding of the query with the databas
vectors is used to efficiently identify relatively few aredsnterest

in the database sequences. Those areas of interest areutlyen f
explored using the exact DTW-based subsequence matclgog al
rithm. Experiments on a large, public time series data sedyre
speedups of over one order of magnitude compared to brute-fo
search, with very small losses (1%) in retrieval accuracy.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing: Indexing methods; H.2.8
[Database Applicationg: Data Mining; H.2.4 Bystem$: Multi-
media Databases

General Terms
Algorithms

1. INTRODUCTION

Time series data naturally appear in a wide variety of dosjain
including scientific measurements, financial data, senstovarks,
audio, video, and human activity. Subsequence matchingeis t
problem of identifying, given a query time series and a dasatof

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGMOD’08,June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

time series, the databasabsequencé.e., some part of some time
series in the database) that is the most similar to the qeepyesce.
Achieving efficient subsequence matching is an importaoiblem

in domains where the database sequences are much longéné¢han
queries, and where the best subsequence match for a query can
start and end at any position of any database sequence. Vetpro
algorithms for subsequence matching can make a big differen
in real-world applications such as query by humming [44]rdvo
spotting in handwritten documents, and content-baseevatrin

b))arge video databases and motion capture databases.

Naturally, identifying optimal subsequence matches assume
existence of a similarity measure between sequences, dhabe
used to evaluate each match. A key requirement for such aureeas
is that it should be robust to misalignments between se@I30
as to allow for time warps (such as stretching or shrinkingog p
tion of a sequence along the time axis) and changes in seguenc
length. This requirement effectively rules out Euclidead anore
generalL,, measures. Typically, similarity between time series is
measured using dynamic time warping (DTW) [20], which is in-
deed robust to misalignments and time warps, and has givgn ve
good experimental results for applications such as timeserin-
ing and classification [16].

The classical DTW algorithm can be applied for full sequence
matching, so as to compute the distance between two timesseri
With small modifications, the DTW algorithm can also be used
for subsequence matching, so as to find, for one time sehes, t
best matching subsequence in another time series [1, 212625,
31]. The complexity of the DTW algorithm scales linearly hvit
the length of the query and also scales linearly with the size
the database (i.e., the sum of the lengths of all time semi¢ke
database). While this complexity is definitely attracticenpared
to exhaustively matching the query with every possible ke
subsequence, in practice subsequence matching is stithputa-
tionally expensive operation in many real-world applioas, espe-
cially in the presence of large database sizes.

1.1 Our Contributions

In this paper we present EBSM (shorthand for Embedding-Base
Subsequence Matching) a general method for speeding up-subs
guence matching in time series databases. Our method igshe fi
to explore the usage of embeddings for subsequence matfdring
unconstrained DTW. The key differentiating features of method
are the following:

e EBSM converts, at least partially, subsequence matching un
der DTW into a much easier vector matching problem. Vec-
tor matching is used to identify very fast a relatively small

(a) offline preprocessing (b) onine retrieval system

embedding reference previously
optimization sequences unseen query Q
' database atabase refine step

reference embeddings sequence (DTW)

sequences
database

Candidate Subsequene

endpoints match

number of candidate matches. The computationally expen-
sive DTW algorithm is only applied to evaluate those candi-
date matches.

e EBSM is the first indexing method, in the context of subse-
guence matching, that focuses on unconstrained DTW, where
optimal matches do not have to have the same length as the
query. The only alternative method for this setting, PDTW,
which uses piecewise aggregate approximation (PAA) [17],
is a generic method for speeding up DTW.

F(X,)
embeddings

filter step
F(X.j) (vector matching)

Figure 1: Flowchart of the offline and the online stages of the

e Ourimplementation of PDTW (for the purpose of comparing Proposed method. System modules are shown as rectangles,
it to EBSM) is also a contribution, as it differs from the way ~and input/output arguments are shown as ellipses. The goafo
PDTW has been described by its creators [17]: we add a the online stage is to identify, given a query time serie®), its
refine step that significantly boosts the accuracy vs effigien ~ Optimal subsequence match in the database.
trade-offs achieved by PDTW.

e In our experiments, EBSM provides the best performance in retrieval, even when only small losses in retrieval acoui@ecor-
terms of accuracy versus efficiency, compared to the current rect results for less thatf% of the queries) are allowed.
state-of-the-art methods for subsequence matching umder u In Section 2 we discuss related work and we emphasize the key
constrained DTW: the exact SPRING method [31] that uses differences between our method and existing methods. Itidhe®
the standard DTW algorithm, and the approximate PDTW we provide necessary background information by definingtwha
method [17]. optimal subsequence match is, and describing how to useThi¢ D

) , . algorithm to find that match. In Section 4 we define the progdose
. The key idea behind our method is that the subsequence matCh'noveI type of embeddings that can be used to speed up subseque
ing problem can be partially converted to the much more menag atching. Section 5 describes how the proposed embeddings ¢
able problem of nearest neighbor retrieval in a real vegpace. be integrated within a filter-and-refine retrieval framekvdn Sec-

This conversion is achievgd by defining an embedding thatgmap tion 6 we describe how to optimize embedding quality usiagntr
each database sequence into a sequence of vectors. Th@®8S a jny qata Section 7 discusses the issue of how to handle demai
to-one correspondence between each .such vector and apaaiti where there is a large difference in length between the smaiid
the database sequence. The embedding also maps each query Sgq |arger queries that the system may have to handle. il
ries into a vector, in such a way that if the query is very samib a Section 8 we quantitatively evaluate our method on a lardgipu
subsequence, the embedding of the query is likely to bea@inGl ponchmark dataset, and we illustrate that our method carifisig

the vector corresponding to the endpoint of that subseeuenc cantly speed up subsequence matching compared to exitiiteg s
Embeddings are defined by matching queries and database segys iha_art methods.

guences with so-callegference sequencese., a relatively small
number of preselected sequences. The expensive operatiaiah-
ing database and reference sequences is performed offlimanA 2. RELATED WORK

time, the embedding of the query is computed by matching the The topic of efficient sequence matching has received sigmifi
guery with the reference sequences, which is typically ierdé attention in the database community. However, several odsth
magnitude faster than matching the query with all database s assume that sequence similarity is measured using thedeadli
quences. Then, the nearest neighbors of the embedded ceery a distance [8, 23, 24] or variants [2, 10, 29, 42]. Naturallycls
identified among the database vectors. An additional re@mem methods cannot handle even the smallest misalignment adyse
step is performed, where subsequences corresponding toghe time warps. In the remaining discussion we restrict oumdiive to

vector-based matches are evaluated using the DTW algorrgn methods that are robust to such misalignments.

ure 1 illustrates the flowchart of the offline and the onliregsts of Dynamic time warping (DTW) [20] is a distance measure that

the proposed method. is robust to misalignments and time warps, and it is widelgdus
Converting subsequence matching to vector retrieval isppem for time series matching. Time series matching methods ean b

tationally advantageous for the following reasons: divided into two categories: 1). methods for full sequeneaahn-

.) o) . ing, where the best matches for a query are constrained totbie e
e Sampling and dimensionality reduction methods can easily gstapase sequences, and 2). methods for subsequencengatchi
be applied to reduce the amount of storage required for the \yhere the best matches for a query can be arbitrary subseegien
database vectors, and the amount of time per query required of database sequences. Several well-known methods ontgsadd
for vector matching. full sequence matching [16, 32, 34, 37, 43], and cannot be fmse

e Numerous internal-memory and external-memory indexing efficki]ent retrie;alk(])f sub.sequences.d bed i dd h
methods exist for speeding up nearest neighbor retrieval in The query-by-humming system described in [44] addresses t

vector and metric spaces [4, 13, 41]. Converting subseguenc problem of mgtching short melodies hummed by users to entire
matching to a vector retrieval problem allows us to use such songs stored in the database. That method cuts each song into

methods for additional computational savings. smaller, disjoint pie_ces, and performs _fuII sequence agche-
tween query melodies and the song pieces stored in the databa
EBSM is an approximate method, that does not guarantee re- A similar approach is taken in [30] for searching words in ¢han
trieving the correct subsequence match for every queryfoRer written documents: as preprocessing, the documents ameesegd
mance can be easily tuned to provide different trade-offevben automatically into words, and full sequence matching isquared
accuracy and efficiency. In the experiments, EBSM providgy v between query words and database words. Such approaches can
good trade-offs, by significantly speeding up subsequerathm only retrieve pieces that the original database sequeraaslieen

segmented to. In contrast, subsequence matching carvestig £
database subsequence matching the query.

In[27] an indexing structure is proposed for unconstraiDadV- 0
based subsequence matching, but retrieval complexityllifretar
to the product of the lengths of the query and the databasenresq.
Furthermore, as database sequences get longer, the tinpdextimyn
becomes similar to that of unoptimized DTW-based matching.

A method for efficient exact ranked subsequence matching is
proposed in [11]. In that method, queries and database segsie
are broken into segments, and lower bounds are establistied u
LB_Keogh [16], so as to prune the majority of candidate medch ~ Figure 2: Example of a warping path between a query sequence
There are two key differences between the method in [11] had t @ and a database sequencd’. Each black square indicates a
proposed EBSM method: First, the method in [11] can only find correspondence between an element ¢f and an element ofX..
subsequence matches that have the exact same length agthe qu
Our method has no such limitation. In practice, for efficienc
we make the assumption that the optimal subsequence magch ha -] ' |
length between zero and twice the length of the query. This is S€duence into a single vector, in such a way that if two sezpsen
much milder assumption than requiring the subsequencehntatc '€ similar to each other then the. embeddlngs of those two se-
have the exact same length as the query. Second, the method ifluénces are also expected to_be_ similar to each other. Hoveeve
[11] is only applicable to constrained DTW [16], where therpra ~ UETY Sequence can be very similar tsubsequencef a database
ing path has to stay close to the diagonal. Our method carbalso ~ S€duence, while being very dissimilar to the entire dattses
applied to unconstrained DTW. qguence. For that reason, existing embedding methods angseet

An efficient method for retrieving subsequences under DTW is ful for efficiently identifying subsequence matches. Inicast, the
presented in [28]. The key idea in that method is to speed up method proposed in this paper maps each database sequénce no
DTW by reducing the length of both query and database se@senc to a single vector, but to aequenceof vectors, so that there is
The length is reduced by representing sequences as ordsteedf] & One-to-one correspondence between each such vector and a p
monotonically increasing or decreasing segments. By usiogo- sition in the database sequence. If the query is very sirtolar
tonicity, that method is only applicable to 1D time seriesefted ~ Subsequence, we expect the embedding of the query to basimil
method that can also be used for multidimensional timesasie {© the vector corresponding to the endpoint of that subsexpie
PDTW [17]. In PDTW, time series are approximated by shorter Another way to illustrate the difference between the embegld
sequences, obtained by replacing each constant-lengtiofodue methods in [3, 7, 12, 14, 38] and EBSM (our method) is by consid
original sequence with the average value over that partémgw ering the case where the database contains just a singléoregy
sequence. We compare our method with a modified, improved ver Sequence. Existing embedding methods would simply map that
sion of PDTW in the experiments. sequence into a single vector. Comparing the embeddingeof th

The SPRING method for subsequence matching is proposed induery with that vector would not provide any useful inforfoat
[31]. In SPRING, optimal subsequence matches are identifjed Instead, EBSM maps the data_lbase sequence into a sequerece of v
running the DTW algorithm between the query and each dagabas t0rS- Comparing the embedding of the query with those vedtor

sequence. Subsequences are identified by prepending tadtters used to efficiently identify relatively fgw areas of interés the
sequence a “null” symbol that matches any sequence prefx wit database sequence. Those areas of interest are then folyraxk

zero cost (similar ideas are also used in [1, 21, 25, 26]). The using the exact DTW-based subsequence matching algorithm.

complexity of SPRING is still linear to both database sizél an

query size. In EBSM, we use SPRING for matching the query and 3. BACKGROUND: DTW

database sequences with the reference sequences, anfinfogre In this section we define dynamic time warping (DTW), both as a

the embedding-based retrieval results.) _distance measure between time series, and as an algorittavelo
Compared to SPRING, the key source of computational savings ,ating similarity between time series. We follow to a largeeet

in EBSM is that expensive DTW-based matching is only perfstm 4 descriptions in [16] and [31]. We use the following niutat
between the query and a small fraction of the database, ahéne

In particular, the above-mentioned embedding methods meip e

SPRING the query is matched to the entire database using DTW.
The price for this improved efficiency is that EBSM cannot gua
antee correct results for all queries, whereas SPRING isxaote
method. Still, it is often desirable in database appliceito trade
accuracy for efficiency, and our method, in contrast to SRRIN
provides the capability to achieve such trade-offs.

The method proposed in this paper is embedding-based. &ever
embedding methods exist in the literature for speeding sfadce
computations and nearest neighbor retrieval. Examplesudf s
methods include Lipschitz embeddings [12], FastMap [7]t-Me
ricMap [38], SparseMap [14], and query-sensitive embegkl{3].
Such embeddings can be used for speeding up sequence match-
ing, as done for example in [3, 14]. However , existing emlirsgld
methods are only applicable in the context of full sequenat&ch:
ing, not subsequence matching.The method proposed indpisrp
is applicable for subsequence matching.

e O, X, R, andS are sequences (i.e., time serie§).is typi-
cally a query sequenceX is typically a database sequence,
R is typically a reference sequence, aficcan be any se-
guence whatsoever.

¢ |S| denotes the length of any sequerite

e S; denotes the t-th step of sequerteln other words,S =
(81, ey S\S\)-

e S% denotes the subsequenceS$tarting at position and
ending at positiory. In other words,5*7 = (S,...,S;),
8,7 is thet — th step ofS*7, andS;” = S;1+—1.

e D:11(Q, X) denotes the full sequence matching cost between
@ and X. In full matching,@- is constrained to match with
X1, andQ|q) is constrained to match with| x|.

e D(Q, X) denotes the subsequence matching cost between
sequences) and X. This cost isasymmetric: we find the
subsequenc& *7 of X (whereX is typically a large database
sequence) that minimizeBr(Q, X*7) (whereQ is typi-
cally a query).

D; ;(Q, X) denotes the smallest possible cost of matching
(Q1,...,Q;:) to any suffix of (X1,..., X;) (i.e., Q1 does
not have to matclX, but@; has to match wittX ;). D; ;(Q, X)
is also defined fof = 0 andj = 0, as specified below.

D;(Q, X) denotes the smallest possible cost of matching
Q to any suffix of (X1,...,X;) (i.e., @1 does not have
to match X1, but Q|| has to match withX;). Obviously,
D;(Q,X) = Diq.;(Q, X).

e || X; — Y| denotes the distance betwe&n andY;.

Given a query sequencg and a database sequen€ethe sub-
sequence matching problem is the problem of finding the subse
quenceX®’ of X that is the best match for the entifg i.e., that
minimizes Dr1 (Q, X 7). In the next paragraphs we formally de-
fine what the best match is, and we specify how it can be cordpute

3.1 Legal Warping Paths

A Warping pathW = ((’1111’1711)1,2)7 ey (w‘w‘,l, w‘w‘,z)) de-
fines an alignment between two sequen@eand X. The i-th el-
ement of W is a pair(w;,1, w;,2) that specifies a correspondence
between elemen®.,, , of Q and elementX,,, , of X. The cost
C(Q, X, W) of warping pathi¥ for @ and X is the L,, distance

(for any choice ofp) between vector§Q., ;. .. 7Qw‘w‘,1) and
(le,zv s 7Xw\w\,2):
W]
C(Q,X, W) =% Z Hszl - Xwi,2Hp . (1)
=1

In the remainder of this paper, to simplify the notation, widl w
assume thap = 1. However, the formulation we propose can be
similarly applied to any choice of.

For W to be a legal warping path, in the context of subsequence
matching under DTWIV must satisfy the following constraints:

e Boundary conditions: w1,1 = 1 andww,; = |Q|. This
requires the warping path to start by matching the first el-
ement of the query with some element &f, and end by
matching the last element of the query with some element
of X.

Monotonicity: wit1,1 — wi1 > 0, wir1,2 — wi2 > 0.
This forces the warping path indices 1 andw; » to increase
monotonically withi.

Continuity: Wi+1,1 — Wi,1 < 17wi+1,2 — Ww;,2 < 1. This
restricts the warping path indices; ; andw; 2 to never in-
crease by more thah so that the warping path does not skip
any elements of), and also does not skip any elementsXof
between position(w, , andXw, ;| ,-

(Optional) Diagonality: w2 — w12 = |Q| — 1, wi 2 —

wi,2 € [’wz‘#l—@(Q,wi,l), w@l"‘@(Q,U)iJ)], where@(Q,t)

is some suitably chosen function (e.(Q,t) = p|Q|, for
some constang such thaip|Q| is relatively small compared

to |Q|) . This is an optional constraint, employed by some
methods, e.g., [11, 16], and not employed by other methods,

e.g., [31]. The diagonality constraint imposes that the sub
sequenceX “-2*Iwl.2 he of the same length @3. Further-
more, the diagonality constraint severely restricts thaiper

of possible positions; > of X that can match positiow; ;

of @, given the initial match matctwi,1,w1,2). In the rest

of the paper, we will not consider this constraint, and in the
experiments this constraint is not employed.

3.2 Optimal Warping Paths and Distances

The optimal warping patfV*(Q, X) between@ and X is the
warping path that minimizes the caS{Q, X, W):

W*(Q,X) = argminy, C(Q, X, W).)

We define the optimal subsequence matdfi@Q, X) of Q in X
to be the subsequence &f specified by the optimal warping path
W*(Q,X). In other words, ifW*(Q,X) = (wii,wlz),...,
(Wi, 1, Win2)), then M (Q, X) is the subsequencﬁ”“’h:w:ﬂﬂ.
We define the partial dynamic time warping (DTW) distafiz@), X)
to be the cost of the optimal warping path betwégand X:

D(Q, X) =C(Q, X, W"(Q, X)).

Clearly, partial DTW is an asymmetric distance measure.

To facilitate the description of our method, we will defineotw
additional types of optimal warping paths and associatsethdce
measures. First, we defif€,;;(Q, X) to be the optimalull warp-
ing path i.e., the patiV = ((w1,1,w12),. .., (Ww|1, Ww|2))
minimizing C'(Q, X, W) under the additional boundary constraints
thatw: 2 = 1 andww| 2 = |X|. Then, we can define the full
DTW distance measur®s,1(Q, X) as:

Dfull(Q7X) = C(Q7X7 Wf’:lll(Q7X))' (4)

DistanceDs.11 (@, X') measures the cost of full sequence matching,
i.e., the cost of matching the entiggwith the entireX. In contrast,
D(Q, X) from Equation 3 corresponds to matching the enire
with asubsequencef X .

We defineW*(Q, X, j) to be the optimal warping path match-
ing Q to a subsequence df ending atXj}, i.e., the pathV =
((wi,1,w1,2), - .., (Ww,1, ww),2)) MiNiMizingC(Q, X, W) un-
der the additional boundary constraint thaty| » = j. Then, we
can defineD; (Q, X) as:

We defineM (R, X, j) to be the optimal subsequence match for
R in X under the constraint that the last element of this match is
Xj:

®)

M(R, X, 7) = argmin y.; Dsan (R, X*7). (6)

Essentially, to identifyM (R, X, j) we simply need to identify the
start point; that minimizes the full distanc®;.n betweenk and
X,

3.3 The DTW Algorithm

Dynamic time warping (DTW) is a term that refers both to the
distance measures that we have just defined, and to the slaida
gorithm for computing these distance measure and the gumnes
ing optimal warping paths.

We define an operatios that takes as inputs a warping path
W = ((w1,17w172)7 (R (w\W\,ly w\W\,Q)) and a pair(wl7 wﬂ)
and returns a new warping path that is the result of appending
(w',w') to the end ofV:

W (w,7 w”) = ((wl,h w1’2)7 LR (w\W\,ly w\W\,2)7 (wlvw//))'

@)

The DTW algorithm uses the following recursive definitions:

Do,o(Q,X) =0,Di,0(Q, X) =00,D0,;(Q,X)=0 (8)
Woo(Q, X) = () Wo,; (@, X) = () 9)
A7) ={(,7-1),(E-1,7),6G-175-1)} (10)
((@, X), pi(Q, X)) = argmin ;yca (i, Ds.t(Q, X) (11)
1.0(Q, X) = 1Qi — X[l + Dyi(q,x) pi(@.x) (@, X) (12)

Wi 3(Q, X) = Whiq,x).pic@.x) ® (i,4) (13)
D@.X) = _min_{Dig;(Q. X)) (14)

The DTW algorithm proceeds by employing the above equations
at each step, as follows:

e Inputs. A short sequencé), and a long sequenckg.
e Initialization. ComputeDo 0(Q, X), D;,0(Q,X), Do,;(Q, X).
QLI =1,...,|X]:

1. Compute(pi(Q, X), pj(Q, X)).
2. ComputeD; ;(Q, X).
3. ComputdV; ;(Q, X).

e Output. Compute and retur(Q, X).

The DTW algorithm takes tim@(|Q|| X). By definingDo ; =
0 we essentially allow arbitrary prefixes &f to be skipped (i.e.,
matched with zero cost) before matchi@gwith the optimal sub-
sequence inX [31]. By defining D(Q, X) to be the minimum
Dq),;(Q, X), wherej = 1,...,|X]|, we allow the best matching
subsequence of to end at any positiori. Overall, this definition
matches the entir@ with an optimal subsequence &f.

For each positiory of sequenceX, the optimal warping path
W*(Q, X, j) is computed as valud/ g ;(Q, X) by the DTW al-
gorithm (step 3 of the main loop) . The globally optimal waugpi
pathW*(Q, X) is simplyW*(Q, X, jopt), Wherejqop: is the end-
point of the optimal matchjopt = argmin,_; | x{Djq;(Q,X)}.

4. EBSM: AN EMBEDDING FOR SUBSE-
QUENCE MATCHING

Let X = (Xi,...,X|x|) be a database sequence that is rela-
tively long, containing for example millions of elements.itidut
loss of generality, we can assume that the database onlginent
this one sequenc¥ (if the database contains multiple sequences,
we can concatenate them to generate a single sequenceh &ive
query sequencé), we want to find the subsequenceXfthat op-
timally matches under DTW. We can do that using brute-force
search, i.e., using the DTW algorithm described in the jorevi
section. This paper proposes a more efficient method. Ounadet
is based on defining a novel type of embedding funcfigrwhich
maps every querg) into ad-dimensional vector and every element
X; of the database sequence also ini@-@mensional vector. In
this section we describe how to define such an embeddinghend t
we provide some examples and intuition as to why we expett suc
an embedding to be useful.

Let R be a sequence, of relatively short length, that we shall
call areference objecor reference sequenceWe will use R to
create a 1D embedding”, mapping each query sequence into a
real numberF'(Q), and also mapping each stgmf sequenceX
into a real numbefF (X, j):

FHQ)
FY(X,j)

e Mainloop. Fori=1,...

(15)
(16)

Diryq|(R,Q) -
Dig (R, X) .

Naturally, instead of picking a single reference sequeRcee
can pick multiple reference sequences to create a multitiioeal
embedding. Forexample, &, ..., Rq bed reference sequences.
Then, we can define@&dimensional embedding' as follows:

FQ = (F™Q),....F'(Q). an
F(X,j) = (FU(Xj),....FH(X,5). (18
Computing the set of all embedding¥ X, j), forj = 1,...,|X]|

is an off-line preprocessing step that takes tigx| "¢ | |R;|).
In particular, computing theth dimension7%: can be done simul-
taneously for all position$X, j), with a single application of the
DTW algorithm with inputsR; (as the short sequence) axd(as
the long sequence). We note that the DTW algorithm computes
eachF " (X, j),forj = 1,...,|X|, as valueD|g, ;(R:, X) (see
Section 3.3 for more details).
Given a quenyQ, its embeddingF’(Q) is computed online, by
applying the DTW algorithnal times, with inputsR; (in the role of
the short sequence) andgl(in the role of the long sequence). In to-
tal, these applications of DTW take tin&(|Q| >, |R;|). This
time is typically negligible compared to running the DTW @lg
rithm betweert) and X, which takesO(|Q||X|) time. We assume
that the sum of lengths of the reference objects is ordersagfnia
tude smaller than the leng{X| of the database sequence.
Consequently, a very simple way to speed up brute force lsearc
for the best subsequence matchpfs to:

e CompareF'(Q)to F(X,j)forj =1,...,|X|.

e Choose somg's such thatF’(Q) is very similar toF' (X, j).

e For each suclj, and for some length parametgr run dy-
namic time warping betweef and (X7~ ***7) to compute
the best subsequence matchdpin (X7~L+17),

As long as we can choose a small number of such promising
areas(X7~ E+14) evaluating only those areas will be much faster
than running DTW betwee® and X . Retrieving the most similar
vectorsF'(X, j) for F(Q) can be done efficiently by applying a
multldlmen5|onal vector indexing method to these embegki[d,
40, 33, 5, 22, 6, 15, 39, 19, 35].

We claim that, under certain circumstancesRifs similar to a
subsequence ok ending atX;, and if R is some reference se-
quence, thet(Q) is likely to be similar toF (X, j). Here we
provide some intuitive arguments for supporting this claim

Let's consider a very simple case, illustrated in FigurerBthis

case, the querg) is identicalto a subsequencﬁi,:j. Consider a
reference sequende, and suppose thadt/ (R, X, j) (defined as in
Equation 6) isX*/, and thati > ¢'. In other words,M (R, X,)
is a suffix of X*7 and thus a suffix of) (sinceX** = Q). Note
that the following holds:

F*(Q) = DirjjI(R, Q) = Dir); (R, X) = F*(X,5). (19)
In other words, ifQ appears exactly as a subsequeﬁ(déj of X,

it holds thatF¥(Q) = F®(X,j), under the conditiorthat the
optimal warping path alignind? with X9 does not start before
positiond’, which is where the appearance@fstarts.

This simple example illustrates an ideal case, where theyqe
has an exact match 7 in the database. The next case to consider
is when X* is a slightly perturbed version af, obtained, for
example, by adding noise from the interyale, €] to eachQ;. In
that case, assuming always tHat(R, X,j) = X%/ andi > 7/,
we can show thatF®(Q) — FE(X,)| < (2|Q| — 1)e. This

@ (b) 5.1 General Framework

The retrieval framework that we use is filter-and-refineiesl,

R R where, given a query, the retrieval process consists ofex filep
and a refine step [12]. The filter step typically provides ackui

- P i way to identify a relatively small number of candidate mateh

Q Q The refine step evaluates each of those candidates usindgdheb
X matching algorithm (DTW in our case), in order to identifyeth

candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retiagef-
ficiency with small, or zero loss in retrieval accuracy. Reial
R efficiency depends on the cost of the filter step (which isogity
small) and the cost of evaluating candidates at the refipe Ebeal-
uating a small number of candidates leads to significaningavi

©

Q compared to brute-force search (where brute-force seamabur
X setting, corresponds to running SPRING [31], i.e., runrigWV
between and X). Retrieval accuracy, given a query, depends on
whether the best match is included among the candidatesatel
. . . during the refine step. If the best match is among the carefidat

Figure 3: (@) Example of an optimal warping path the refine step will identify it and return the correct result

w (RhQ |Q[) aligning a ref*erence object R to a suffix of Within this framework, embeddings can be used at the filep,st

Q. F7(Q) is the cost of W*(R, Q,|QI). (b) Example of a and provide a way to quickly select a relatively small numbfr

warping path WZ_(Rv X, j), aligning a Ir%efere'nc.e object? to candidates. Indeed, here lies the key contribution of thjsep, in

a subsequenceX™ of sequenceX. F™(X,j) is the cost of the fact that we provide a novel method for quick filteringtthan

W™ (R, X, j). The query Q from (a) appears exactly in X, be applied in the context of subsequence matching. Our metho

as subsequenceX’ 7, and i’ < 4. Under these conditions, relies on computationally cheap vector matching operatias op-

FRQ) = F®(X,j). (c) Similar to (b), except thati’ > i. posed to requiring computationally expensive applicatiofDTW.

In this case, typically F*(Q) # F™(X, j). To be concrete, given @&dimensional embedding, defined as in
the previous sectionds’ can be used in a filter-and-refine frame-
work as follows:

is obtained by taking into account that warping péith (2, X', j) Offline preprocessing step:Compute and store vectdt(X, ;)

cannot be longer tha2iQ| — 1 (as long ag > i'). for every positionj of the database sequenge

There are two cases we have not covered: Online retrieval system: Given a previously unseen query ob-

. . . . ject@, we perform the following three steps:
e Perturbations along themporalaxis, such as repetitions, in-

sertions, or deletions. Unfortunately, for unconstraiBadn, e Embedding step: compute F(Q), by measuring the dis-
due to the non-metric nature of the DTW distance measure, tances betwee@ and the chosen reference sequences.
no existing approximation method can make any strong math-
ematical guarantees in the presence of such perturbations. e Filter step: Select database positiof¥’, j) according to the
distance between eadh(X, j) and F(Q). These database
e The case where < ¢, i.e., the optimal path matching the positions are candidatendpointsof the best subsequence
reference sequence to a suffix &7 starts before the be- match for@.

ginning of M (Q, X, j). We address this issue in Section 7.)] N
¢ Refine step:Evaluate selected candidate positi¢fs ;) by

Given the lack of mathematical guarantees, in order for tioe p applying the DTW algorithm.
posed embeddings to be useful in practice, the follovgtadistical)] o
property has to hold empirically: given positigg.. (Q), such that In.the next subsecﬂong we specify the precise implememtafi
the optimal subsequence match@fin X ends atjop:(Q), and the filter step and the refine step.
given some random positigh# jopt (Q), it should be statistically : :
very likely that F'(Q) is closer toF()E’, j)opt(Q)) than toF'(X, j). 5.2 Speedmg Up the Filter Step
If we have access to query samples during embedding construc ~ The simplest way to implement the filter step is by simply com-

tion, we can actually optimize embeddings so tH&t)) is closer paring F(Q) to every singleF'(X;, j) stored in our database. The
to F(X, jopt (Q)) than toF (X, j) as often as possible, over many p.roblen.] with dplng that |s.that |t. may take toq much time, espe
random choices aof) and;j. We do exactly that in Section 6. cially with relatively high-dimensional embeddings (fotaenple,

40-dimensional embeddings are used in our experimentsxder

to speed up the filtering step, we can apply well-known temphes,

such as sampling, PCA, and vector indexing methods. We ghoul

note that these three techniques are all orthogonal to eaeh o
5. FILTER-AND-REFINED RETRIEVAL In our implementation we use sampling, so as to avoid compar-

Our goal in this paper is to design a method for efficiently re- ing F(Q) to the embedding of every single database position. The

trieving, given a query, its best matching subsequence fitoen way the embeddings are constructed, embeddings of neadiy po
database. In the previous sections we have defined embsdtiatg tions, such a#'(X, j) and F(X, j + 1), tend to be very similar.
map each query object and each database positiodi-thraensional A simple way to apply sampling is to choose a paraméteand
vector space. In this section we describe how to use suchc&embe sample uniformly one out of every vectors F'(X,j). That is,
dings in an actual system. we only store vectord’(X,1), F(X,1 + ¢), F(X,1 4 20),....

Given F(Q), we only compare it with the vectors that we have
sampled. If, for a database positi¢iX, j), its vector F'(X, j)
was not sampled, we simply assign to that position the distan
betweenF(Q) and the vector that was actually sampled among
{F(X,j—[6/2]),..., F(X,j + |6/2))}.

PCA can also be used, in principle, to speed up the filter step,
by reducing the dimensionality of the embedding. Finallctor
indexing methods [9, 40, 33, 5, 22, 6, 15, 39, 19, 35] can béapp
to speed up retrieval of the nearest database vectors. Sdeking
methods may be particularly useful in cases where the enigdd
of the database does not fitin main memory; in such casesnakte
memory indexing methods can play a significant role in opting
disk usage and overall retrieval runtime.

Our implementation at this point is a main-memory implemen-
tation, where the entire database embedding is stored inomyem
In our experiments, using sampling parameiet 9, and without
any further dimensionality reduction or indexing methodas, get
a very fast filter step: the average running time per quenyther
filter step is abou®.5% of the average running time of brute-force
search. For that reason, at this point we have not yet incatpd
more sophisticated methods, that might yield faster fitigri

5.3 The Refine Step for Unconstrained DTW

The filter step ranks all database positid®, j) in increasing
order of the distance (or estimated distance, when we us®xapp
imations such as PCA, or sampling) betwdefX, j) and F(Q).

The task of the refine step is to evaluate thepg@andidates, where
p is a system parameter that provides a trade-off betweeievetr
accuracy and retrieval efficiency.

Algorithm 1 describes how this evaluation is performed. c8in
candidate position$X, j) actually represent candidaémndpoints
of a subsequence match, we can evaluate each such candidate e
point by starting the DTW algorithm from that endpoint andngp
backwards. In other words, the end of the query is alignet thi¢
candidate endpoint, and DTW is used to find the optimal saaud (
corresponding matching cost) for that endpoint.

If we do not put any constraints, the DTW algorithm will go all
the way back to the beginning of the database sequence. legwev
subsequences df that are much longer tha@ are very unlikely
to be optimal matches faR. In our experiments99.7% out of
the 1000 queries used in performance evaluation have an optimal
match no longer than twice the length of the query. Consdfyien
we consider that twice the length of the query is a prettyapas
able cut-off point, and we do not allow DTW to consider longer
matches.

One complication is a case where, as the DTW algorithm moves
backwards along the database sequence, the algorithmogats t
other candidate endpoint that has not been evaluated yeat Th
endpoint will need to be evaluated at some point anyway, so we
can save time by evaluating it now. In other words, while eval
uating one endpoint, DTW can simultaneously evaluate kot
endpoints that it finds along the way. The two adjustmentstiea
make to allow for that are that:

e The “sink state”Q q|+1 matches candidate endpoints (that
have not already been checked) with cost 0 and all other
database positions with cost.

o Ifin the process of evaluating a candidate endpgine find
another candidate endpoift we allow the DTW algorithm
to look back further, up to positiofl — 2|Q| + 1.

The endpoint array in Algorithm 1 keeps track, for every pair
(4, 4), of the endpoint that corresponds to the cost storedst|<][].

input 1 Q: query.
X: database sequence.
sorted: an array of candidate endpoints sorted in
decreasing order of.
p: number of candidates to evaluate.

output (X, Jstart), (X, jena): Start and end point of estimated best
subsequence match.
distance: distance between query and estimated best sub-
sequence match.
columns: number of database positions evaluated by DTW
(this is a key measure of retrieval efficiency).

for : = 1to | X| do
| unchecked[i] = 0;

end
for = 1topdo

| unchecked [sorted[s]] = 1;
end

distance = oo;
columns = 0;
/I main loop, check all candidates sorted[1], ..., sorted[p
for k=1topdo
candidate = sorted[k];
if (unchecked [candidate] == 0) then continug
7 = candidate + 1,
fori=|Q|+ 1to1do
| cost[i][j] = oo;
end
while (true) do
j=Ji—-1
if (candidate — j > 2 x |Q]) then break;
if (unchecked[j] == 1) then
unchecked[j] = 0;
candidate = j; // found another candidate endpoint.
cost[|Q| + 1][j] = 0;
endpoint[|Q| + 1][5] = 7;
else
| cost[|Q| + 1][j] = oo; I j is not a candidate endpoint.
end
for i = |Q|to 1 do
previous = {(i + 1,7), (i,5 + 1), (i + 1,5 + 1)}
(pi) pj) = a‘rgn’lin(a,b)Eprcviouscost [a’} [b} ;
cost[i][j] = |Qi — Xj| + cost[pi][p;];
endpoint[i][j] = endpoint|p;][p;];
nd
(cost[1][j] < distance) then
distance = cost[1][4];
Jjstart = J;
Jend = Cndeint[l] []]'

= D

end

columns = columns + 1;

if (min{cost[i][j]li =1,...,|Q|} > distance) then break;
end

end

/ffinal alignment step
start = jend — 3‘Q‘;
end = jcnd + |Q|'

Adjust jstart @ndjstart by running the DTW algorithm betweeR and
Xstart:cnd;

Algorithm 1. The refine step for unconstrained DTW.

This is useful in the case where multiple candidate endpaing
encountered, so that when the optimal matching score isdfoun
(stored in variablelistance), we know what endpoint that match-
ing score corresponds to.

6. EMBEDDING OPTIMIZATION

In this section, we present an approach for selecting nefere
objects in order to improve the quality of the embedding. Gbal

input : X: database sequence.
Qs: training query set.
d: embedding dimensionality.

RSK: initial set ofk reference subsequences. is to create an embedding where the rankings of differensesub
quences with respect to a query in the embedding space résemb
output : R: set ofd reference subsequences. the rankings of these subsequences in the original spaceau

proach is largely an adaptation of the method proposed if. [36

/I select d reference sequences with highest variance fi8k R The first step is based on the max variance heuristic, i @idém

R={R1,..,Rq |R; € RSK with mazimum variance}

CreateEmbedding(R, X); that we should select subsequences that cover the domaie &=
OldSEE = 0; much as possible) and have distances to other subsequeitbes w
for i = 110 |Qgs| do high variance. In particular, we select uniformly at randibsnbse-

| OldSEE+ = EE(Qslil); quences with sizes betweéminimum query size)/2ndmaximum
end query sizédrom different locations in the database sequence. Then,
=1 we compute the DTW distances for each pair of thedit) val-
while (true) do ues) and we select tHesubsequences with the highest variance in

Il consider replacind?; with another reference object

CandR — RSK — R .th.e.lr distances to the othér— 1 subsequences. Thus we select an
for i = 0to |CandR| do initial set of & reference objects. _
CreateEmbedding(R — {R;} + {CandR][i]}, X); The next step is to use a learning approach to select the final
newSEE = 0; set of reference objects assuming that we have a set of sasmple
for i = 1to |Qg| do that is representative of the query distribution. The infouthis
| newSEE+ = EE(Qsli]); algorithm is a set ok reference objectRSK selected from the
end previous step, the number of final reference objecfehered <
if (newSEE < oldSEE) then k) and a set of sample queri€s. The main idea is to seledtout
iﬁS:Eg“:"f;[;]SEE of thek reference objects so as to minimize the embedding error on
' the sample query set. The embedding eE8Y Q) of a queryQ is
end defined as the number of vectaf§ X, j) in the embedding space
end that the embedding of the queRy(Q) is closer to than it is to the
j=(j modd) +1; embedding ofF' (X, jq), wherejq is the endpoint of the optimal
subsequence match @fin the database.
end Initially, we selectd initial reference objectsR, ..., Rs and
we create the embedding of the database and the quer@.set
using the selected;’s. Then, for each query, we compute the
Algorithm 2. The training algorithm for selection of embedding error and we compute the sum of these errors dver al
reference objects. queries, i.e.SEE = ZQGQS EE(Q). The nest step, is to con-

sider a replacement of thieth reference object with an object in
RSK — {Ru,...,Ra}, and re-estimate th8EE. If SEE is re-
The columns variable, which is an output of Algorithm 1, mea- duced, we make the replacement and we continue with the next

sures the number of database positions on which DTW is applie (¢ + 1)-th reference object. This process starts from- 1 un-
These database positions include both each candidateiehdpd til ¢ = d. After we replace thel-th reference object we continue
all other positiong for which cost [4][;] is computed. Theolumns again with the first reference object. The loop continues! tme
output is a very good measure of how much time the refine step improvement of thesEE over all referen_ce opjects fall_s below a
takes, compared to the time it would take for brute-forcectea threshold. The pseudo-code of the algorithm is shown in Aligm
i.e., for applying the original DTW algorithm as describeddec- 2. To reduce the computation overhegd of the technique wa use
tion 3. In the experiments, one of the main measures of EBSM ef Sample of the possible replacements in each step. Thusathst
ficiency (the DTW cell cost) is simply defined as the ratio begw ~ considering all objects ilRSK — {R1, ..., Rq} for replacement,

columns and the lengthX | of the database. we consider only a s_ample of_them. Furthermore, we use a sampl
We note that each application of DTW in Algorithm 1 stops ©f the database entries to estimate $ifi. .
when the minimumcost|i][j] over alli = 1,...,|Q| is higher Note that the embedding optlr_mzatl_on method described here
than the minimum distance found so far. We do that because any'argely follows the method described in [36]. However, tipe a
cost[i][j — 1] will be at least as high as the minimum (over i) proach in [36] was based on the Edit distance, which is a metri
of cost[i][4], except ifj — 1 is also a candidate endpoint (in which and therefore a different opumlzatlon criterion was uslaobar_tlc-
case, it will also be evaluated during the refine step). ular, in [36], reference objects are selected based on ey
The refine step concludes with a final alignment/verificatipn power of each reference object. Since DTW is not a metrigrref
eration, that evaluates, using the original DTW algorithine, area ence ObJeCt$ in our setting do not.have pruning power, uniess
around the estimated optimal subsequence match. In partidiu allow some incorrect results. That is why we use the sum afrerr

jena is the estimated endpoint of the optimal match, we run the as our optimization criterion.
DTW algorithm betweers) and X Vena =31@D:Gena @D The pur-

pose of this final alignment operation is to correctly harclses 7. HANDLING VERY LARGE RANGES OF

where jsiare andjena are off by a small amount (a fraction of the

size of@Q) from the correct positions. This may arise when the opti- QU ERY LENGTHS
mal endpoint was not included in the original set of candidatb- In Section 4 and in Figure 3 we have illustrated that, inteity,
tained from the filter step, or when the length of the optimatech when the query) has a very close matck*” in the database, we

was longer thar|Q)|. expectF*(Q) and F* (X, 5) to be similar, as long a8/ (R, X, j)

N w
T T

number of reference sequences

[
T

0 | .
50 150 200 250 300

reference sequence length

100 350 400

Figure 4: Distribution of lengths of the 40 reference objecs
chosen by the embedding optimization algorithm in our exper
iments.

is a suffix of M (Q, X, j). If we fix the length|Q| of the query, as
the length|R| of the reference object increases, it becomes more
and more likely that\/ (R, X, 7) will start before the beginning of
M(Q, X, 7). Inthose casesk(Q) and FT(X, j) can be very
different, even in the ideal case whepeis identical toX 7.

In our experiments, the minimum query length is 152 and the
maximum query length is 426. Figure 4 shows a histogram of the
lengths of the 40 reference objects that were chosen by the em
bedding optimization algorithm in our experiments. We nibtat
smaller lengths have higher frequencies in that histogk&minter-
pret that as empirical evidence for the argument that lofereace
objects tend to be harmful when applied to short queries,itasd
better to have short reference objects applied to long gae@ver-
all, as we shall see in the experiments section, this 40utinaeal
embedding provides very good performance.

At the same time, in any situation where there is a large dif-
ference in scale between the shortest query length and tigeso
query length, we are presented with a dilemma. While long ref
erence objects may hurt performance for short queriesgusity
short reference objects gives us very little informatiomwtbthe
really long queries. To be exact, given a reference ohjeend
a database positiofX, j), F*(X,j) only gives us information
about subsequenc® (R, X, 7). If Q is a really long query and
R is a really short reference object, proximity betweg(Q) and
F(X,7) cannot be interpreted as strong evidence of a good sub-
sequence match for the enti¢g ending at positiory; it is simply
strong evidence of a good subsequence match ending atmogiti
for some smalbuffixof @ defined byM (R, Q, |Q|).

The simple solution in such cases is to use, for each quely, on
embedding dimensions corresponding to a subset of the cheke
erence objects. This subset of reference objects shou&lbagths
that are not larger than the query length, and are not too much
smaller than the query length either (e.g., no smaller tt@hthe
query length). To ensure that for any query length there isfa s
ficient number of reference objects, reference object lengan
be splitintod rangegr, rs), [rs, rs?), [rs?,rs%), ... [rs?™ ", rs?),
wherer is the minimum desired reference object lengttf! is the
highest desired reference object length, arig determined given
r,d andrs®. Then, we can constrain thkdimensional embedding

so that for each randes’, 7s* ™) there is only one reference object
with length in that range.

We do not use this approach in our experiments, becausethe si
ple scheme of using all reference objects for all querieksarell
enough. However, it is important to have in mind the limibag of
this simple scheme, and we believe that the remedy we have out
lined here is a good starting point for addressing thesedimons.

8. EXPERIMENTS

We evaluate the proposed method on time series data obtained
from the UCR Time Series Data Mining Archive [18]. We compare
our method to the two state-of-the-art methods for subserpie
matching under unconstrained DTW:

e SPRING: the exact method proposed by Sakurai et al. [31],
which applies the DTW algorithm as described in Section
3.3.

e Modified PDTW: a modification of the approximate method
based on piecewise aggregate approximation that was pro-
posed by Keogh et al. [17].

Actually, as formulated in [17], PDTW (given a sampling pate
yields a specific accuracy and efficiency, by applying DTWhtaler,
subsampled versions of que€y and database sequenke Even
with the smallest possible sampling rate of 2, for which thiginal
PDTW cost is25% of the cost of brute-force search, the original
PDTW method has an accuracy rate of less thiad. We modify
the original PDTW so as to significantly improve those resuds
follows: in our modified PDTW, the original PDTW of [17] is u$e
as a filtering step, that quickly identifies candidate enapposi-
tions, exactly as the proposed embeddings do for EBSM. We the
apply the refine step on top of the original PDTW rankingsngsi
the exact same algorithm (Algorithm 1) for the refine ste tha
use in EBSM. We will see in the results that the modified PDTW
works very well, but still not as well as EBSM.

We do not make comparisons to the subsequence matchinganetho
of [11], because the method in [11] is designed for indexiag-c
strained DTW (whereas in the experiments we use unconsttain
DTW), and thus would fail to identify any matches whose léngt
is not equal to the query length. As we will see in Section 8.3,
the method in [11] would fail to identify optimal matches fitve
majority of the queries.

8.1 Datasets

To create a large and diverse enough dataset, we combiresl thr
of the datasets from UCR Time Series Data Mining Archive [18]
The three UCR datasets that we used are shown on Table 1.

Each of the three UCR datasets contains a test set and agraini
set. As can be seen on Table 1, the original split into trgjirind
test sets created test sets that were significantly largerttie cor-
responding training sets, for two of the three datasets.rdierato
evaluate indexing performance, we wanted to create a rfflyi
large database, and thus we generated our database uslaggthe
test sets, and we used as queries the time series in thegaieis.

More specifically, our database is a single time sekiethat was
generated by concatenating all time series in the origiest| $ets:
455 time series of length 270 from the 50Words dataset, G t
series of length 152 from the Wafer dataset, and 3000 timessef
length 426 from the Yoga dataset. The leng of the database
is obviously the sum of lengths of all these time series, tiidds
up to 2,337,778.

Our set of queries was the set of time series in the origiadhtr
ing sets of the three UCR datasets. In total, this set ineldd&0

Name 50Words | Wafer | Yoga
Length of each time series 270 152 | 426
Size of “training set” (used 450 1000 | 300
by us as set of queries)

Number of time series used for 192 428 | 130
validation (subset of set of queries)

Number of time series used for

measuring performance (subset 258 572 170
of set of queries)

Size of “test set” (used 455 6164 | 3000
by us to generate the database)

Table 1: Description of the three UCR datasets we combined to
generate our dataset. For each original UCR dataset we show
the sizes of the original training and test sets. We note that
in our experiments, we use the original training sets to obt
queries for embedding optimization and for performance evé
uation, and we use the original test sets to generate the long
database sequence (of length 2,337,778).

time series. We randomly chose 750 of those time series ak a va
idation set of queries, that was used for embedding optiiiza
using Algorithm 2. The remaining 1000 queries were used &b-ev
uate indexing performance. Naturally, the set of 1000 qseuised

for performance evaluation was completely disjoint frora fet of
queries used during embedding optimization.

8.2 Performance Measures

Our method is approximate, meaning that it does not guagante
finding the optimal subsequence match for each query. The two
key measures of performance in this context are accuracefind
ciency. Accuracy is simply the percentage of queries in atua-
tion set for which the optimal subsequence match was suctigss
retrieved. Efficiency can be evaluated using two measures:

e DTW cell cost: For each query), the DTW cell cost is the
ratio of number of cellgi][5] visited by Algorithm 1 over
number of cells[¢][j] using the SPRING method (for the
SPRING method, this number is the product of query length
and database length). For PDTW with sampling rateve
addsi2 to this ratio, to reflect the cost of running the DTW al-

accuracy vs. DTW cell cost for PDTW and EBSM

0.14 T T T
=— PDTW-13
o PDTW-11
0.12 b
0.1 4
@
38 0.08 B
°
o
E 0.06 4
[a)
0.04 i
0.02 b
0 | | | |
0.85 0.9 0.95 1
accuracy
accuracy vs. retrieval runtime cost for PDTW and EBSM
0.18 T T T T
w— PDTW-13
|| PDTW-11 |
0.16]).a . PDTW-9
= = =PDTW-7
0.14 ——EBSM-9 1
g 0.12 B
o
Q
£ o1 |
c
2
B 0.08F J
>
g
B 0.06F e 1
-\-vn‘.\r‘!\;\‘l T -
0.04 B
0.02 B
0 | | | |
0.85 0.9 0.95 1
accuracy

Figure 5: Comparing the accuracy versus efficiency trade-
offs achieved by EBSM with sampling rate 9 and by modified
PDTW with sampling rates 7, 9, 11, and 13. The top figure mea-

gorithm between the subsampled query and the subsampledsures efficiency using the DTW cell cost, and the bottom figure
database. For the entire test set of 1000 queries, we reportmeasures efficiency using the retrieval runtime cost. The s

the average DTW cell cost over all queries.

Retrieval runtime cost: For each quen, given an in-
dexing method, the retrieval runtime cost is the ratio of to-
tal retrieval time for that query using that indexing method
over the total retrieval time attained for that query usihg t
SPRING method. For the entire test set, we report the aver-
age retrieval runtime cost over all 1000 queries. While run-
time is harder to analyze, as it depends on diverse thinds suc

as cache size, memory bus bandwidth, etc., runtime is also a

more fair measure for comparing EBSM to PDTW, as it in-

cludes the costs of both the filter step and the refine step. The

DTW cell cost ignores the cost of the filter step for EBSM.

shown are average costs over our test set of 1000 queries. Not
that SPRING, being an exact method, corresponds to a single
point (not shown on these figures), with perfect accuracy 1 ah
maximal DTW cell cost 1 and retrieval runtime cost 1.

queries of length 426. The system was implemented in C++, and

run on an AMD Opteron 8220 SE processor running at 2.8GHz.
Trade-offs between accuracy and efficiency can be obtaiegd v

easily, for both EBSM and the modified PDTW, by changing pa-

rameterp of the refine step (see Algorithm 1). Increasing the value

of p increases accuracy, but decreases efficiency, by incgebsth

the DTW cell cost and the running time.

We remind the reader that the SPRING method simply uses the We should emphasize the runtime retrieval cost dependseon th

standard DTW algorithm of Section 3.3. Consequently, bynilefi
tion, the DTW cell cost of SPRING is always 1, and the retiieva
runtime cost of SPRING is always 1. The actual average rgnnin
time of the SPRING method over all queries we used for perfor-
mance evaluation was: 4.43 sec/query for queries of lenfth 1
7.23 sec/query for queries of length 270, and 11.30 sec/doer

retrieval method, the data set, the implementation, andyktem
platform. On the other hand, the DTW cell cost only depends on
the retrieval method and the data set; different implentamts of

the same method should produce the same results (or vergsimi
when random choices are involved) on the same data set fegard
of the system platform or any implementation details.

600

5001

iy

o

o
T

3001

number of queries

N

o

o
T

100

e T

1 1.5 2 25
ratio of subsequence match length to query length

o]
0.5

Figure 6: Distribution of lengths of optimal subsequence
matches (as fractions of the query length) for the 1000 quegis
used for performance evaluation. We note that a significant
fraction of the optimal matches have lengths that are not ide-
tical to the query length.

8.3 Results

We compare EBSM to modified PDTW and SPRING. We note
that the SPRING method guarantees finding the optimal subse-
guence match, whereas modified PDTW (like EBSM) is an approx-
imate method. For EBSM, unless otherwise indicated, we ased
40-dimensional embedding, with a sampling rate of 9. Foetne
bedding optimization procedure of Section 6, we used paeune
I = 1755 (I was the number of candidate reference objects before
selection using the maximum variance criterion) &ne: 1000 (k
was the number of candidate reference objects selected loase
the maximum variance criterion).

Figure 5 shows the trade-offs of accuracy versus efficienbijeaed.
We note that EBSM provides very good trade-offs between-accu
racy and retrieval cost. Also, EBSM significantly outpenfiarthe
modified PDTW, in terms of both DTW cell cost and retrieval+un
time cost. For many accuracy settings, EBSM attains cosédlem
by a factor of 2 or more compared to PDTW. As highlights, for
99.5% retrieval accuracy our method is about 21 times faster than
SPRING (retrieval runtime cost = 0.046), and $8% retrieval ac-
curacy our method is about 47 times faster than SPRING éxetfi
runtime cost = 0.021).

Figure 6 shows a histogram of the length of the optimal sub-
sequence match for each query, as a fraction of the lengthadf t
query. The statistics for this histogram were collectediadl 1000
queries used for performance evaluation. We see that,uajthtor
the majority of cases the match length is fairly close to thery
length, it is only for a minority of queries that the matchdémis
exactly equal to the query length. We should note that theesub
quence matching method of [11] would fail to identify any ofas
whose length is not equal to the query length. As a resultoitlad/
not be meaningful to compare the performance of our method ve
sus the method in [11] for this dataset.

Figure 7 shows how the performance of EBSM varies with dif-
ferent sampling rates. For all results in that figure, 40etisional
embeddings were used, optimized using Algorithm 2. Sargplin
rates between 1 and 15 all produced pretty similar DTW cedtzo

accuracy vs. DTW cell cost for different sampling rates

0.12

= = =EBSM-23

== EBSM-15
= EBSM-9
017, EBSM-1]
0.08 7
8 0.06 B
g
a
0.04- B
0.02 4
0 : ‘ : :
0.85 0.9 0.95 1
accuracy
accuracy vs. retrieval runtime cost for different sampling rates
0.12 T T T
= = =EBSM-23
== EBSM-15
= EBSM-9 !
0171, EBSM-1 ro
0.08 4
o
£
50.06F 7
®
]
g
0.04r- 7
002 = == 1
0 I I I I
0.85 0.9 0.95 1

accuracy

Figure 7: Accuracy vs. efficiency for EBSM with sampling
rates 1, 9, 15, and 23. The top figure measures efficiency using
the DTW cell cost, and the bottom figure measures efficiency
using the retrieval runtime cost. The costs shown are averay
costs over our test set of 1000 queries.

for EBSM, but a sampling rate of 23 produced noticeably worse
DTW cell costs. In terms of retrieval runtime, a samplingerat
1 performed much worse compared to sampling rates of 9 and 15,
because the cost of the filter step is much higher for sampéitey
1: the number of vector comparisons is equal to the lengtthef t
database divided by the sampling rate.

Figure 8 compares different methods for embedding construc
tion. For all results in that figure, 40-dimensional embeddiand
a sampling rate of 9 were used. We notice that selecting-refer
ence objects using the max variance heuristic (i.e., usiyg the
first two lines of Algorithm 2) improves performance signéfitly
compared to random selection. Using the full Algorithm 2 dan-
bedding construction improves performance even more.

Figure 9 shows how the performance of EBSM varies with dif-
ferent embedding dimensionality, for optimized (using étithm
2) and unoptimized embeddings. For all results in that figare
sampling rate of 9 was used. For optimized embeddings, mger
of DTW cell cost, performance clearly improves with incred.sli-

accuracy vs. DTW cell cost for for different embedding construction methods

0.2 T T — T
= Random Reference Objects N
0.18H ' After Max-Variance B 1
= Full Algorithm 2 H
0.16 .

0.14

DTW cell cost
o

©

= N

o
o
©

©
o
&

o
=]
B
T
I

o
o
[N
T
i

I
0.95 1

I I
0.85 0.9
accuracy

accuracy vs. retrieval runtime cost for different embedding construction methods
0.2

- Random Reference Objects f
0.18H " After Max-Variance d 4
= Full Algorithm 2 -

0.16

0.14

0.12

0.1

retrieval runtime cost

I I I
0.85 0.9 0.95 1

accuracy

Figure 8: Accuracy vs. efficiency for EBSM, using embeddings
constructed randomly, optimized with the max variance heurs-
tic, and optimized using Algorithm 2 for embedding optimiza-
tion. The top figure measures efficiency using the DTW cell
cost, and the bottom figure measures efficiency using the re-
trieval runtime cost. The costs shown are average costs over
our test set of 1000 queries.

mensionality up to about 40 dimensions, and does not changh m

9. DISCUSSION AND FUTURE WORK

EBSM, the method proposed in this paper, was shown to signif-
icantly outperform the current state-of-the-art methonissubse-
guence matching under unconstrained DTW. At the same timee, t
idea of using embeddings to speed up subsequence matcking op
up several directions for additional investigation, bathifnprov-
ing performance under unconstrained DTW, and for extenttieg
current formulation to additional settings.

The proposed embeddings treat every position of every datab
sequence as a candidatedpointfor the optimal subsequence match.
Itis fairly straightforward to change our formulation satlit treats
every database position as a candidatetpoint The open ques-
tion is how to combine both approaches, by simultaneoushgus
embeddings of endpoints and embeddings of startpoints.

It is worth noting that the PDTW method of [17] is not a direct
competitor of our method, but rather a complimentary metttioat
can possibly be combined with our method to provide everebett
results. For example, PDTW can be used to speed up comphéng t
embedding of the query, or to introduce a PDTW-based adiditio
filter step after our current filter step and before the finfihesment.
Alternatively, our method could be used to quickly identindi-
date database areas which would then be explored using PDTW.
Identifying the best way to combine EBSM with PDTW is an in-
teresting topic for future work.

The discussion in this paper has focused on finding the optima
subsequence match for each query. It is pretty straightfaivo
also apply our method for retrieving top-k subsequence hestc
we simply modify the refine step to return the k-best startpoi
endpoint pairs. It will be interesting to evaluate how aecyrand
efficiency vary withk.

Another interesting direction is applying our method irfefiént
settings, such as subsequence matching under constraifdd D
and the edit distance. The key idea of embedding database pos
tions, as opposed to existing approaches that embed eatabate
sequences, can readily be extended to both constrained DitW a
the edit distance. Perhaps by exploiting known lower bousfds
constrained DTW [16], or by using the metric properties & &ulit
distance, we can obtain an exact indexing scheme for emiigddi
based subsequence matching under those distance measures.

In conclusion, the proposed EBSM method is the first subse-
guence matching method for unconstrained DTW that convatts
least partially, the subsequence matching problem intochreas-
ier vector matching problem. As a result, a relatively smatinber
of database areas of interest can be identified very fast teeeor-
ders of magnitude faster compared to brute-force searchriex
periments. The computationally expensive DTW algorithrstil
employed within EBSM, but only to refine results by evalugtin

between 40 and 160. Actually, 160 dimensions give a somewhat the jdentified database areas of interest. The resultingeedd

worse DTW cell cost compared to 40 dimensions, providing evi
dence that our embedding optimization method suffers fronilc
effect of overfitting as the number of dimensions increa¥éken
reference objects are selected randomly, overfitting isanassue.
As we see in Figure 9, a 160-dimensional unoptimized emingddi
yields a significantly lower DTW cell cost than lower-diménrsl
unoptimized embeddings.

In terms of offline preprocessing costs, selecting 40 refezee-
guences using Algorithm 2 took about 3 hours, and computieg t
40-dimensional embedding of the database took about 240dsc

Code and datasets for duplicating the experiments desidhibie
are publicly available on our project website, at two mirsdes:

e http://cs-peopl e. bu. edu/ panagpap/ ebsnl

e http://crystal.uta.edu/~athitsos/ebsn

retrieval system is one to two orders of magnitude faster brate-
force search,with relatively small losses in accuracy, pradides
state-of-the-art performance in the experiments.

Acklownedgements

This work was supported in part by grants NSF HCC-0705749 and
NSF CAREER 11S-0133825. V. Athitsos’ research was also sup-
ported by his UT Arlington startup grant. D. Gunopulos’ rasdn
was supported by the NSF [1S-0534781, Aware and HealthitCh
projects.

10. REFERENCES

[1] J. Alon, V. Athitsos, and S. Sclaroff. Accurate and effiai
gesture spotting via pruning and subgesture reasoning. In

accuracy vs. DTW cell cost for different dimensions, for optimized embeddings

accuracy vs. retrieval runtime cost for different dimensions, for optimized embeddings
0.12 T T

= EBSM-160

0.12 ‘ : ‘ =
— EBSM-160 ;
- - EBSM-80 5
|| = = =EBSM-40]
011 — EBSM-20 "
- = EBSM-10 .
- - =EBSM-5 1"
0.08} ;
3
o
o
3 0.06
2
=
[a]
0.04]
0.02 1

I I
0.85 0.9 0.95 1

accuracy

accuracy vs. DTW cell cost for different dimensions, for unoptimized embeddings
0.18

= EBSM-160 ’

|| - - EBSM-80 ‘! i
0-16/1 _ . _EBSM-40 K
——EBSM-20 y
0.14 1
0.12 1
7
o
3 01 1
3
o
E 0.08 —
[a)
0.06 1
0.04 ,
0.02 1
0 ‘ ‘ ‘ ‘
0.85 0.9 0.95 1
accuracy

1
- = EBSM-80 '
- = =EBSM-40 '
0.1 — EBSM-20 !)
- = EBSM-10 "
- - =EBSM-5 | ;
% 0.08 : 1
© 1
o i
£ '
S 0.06 ' 1
©]
3 '
© 0,04 1
002km===m2 7 nrmarr i

0.9
accuracy

accuracy vs. retrieval runtime cost for different dimensions, for unoptimized embeddings

0.18 ‘ ‘ T ‘
——EBSM-160 i |
|| == EBSM-80 i i i
018/l . - - EBSM-40 o
——EBSM-20 S
0.141 ~ ; 1
012 1
o
Q
£ 01 1
<
E
T 0.08 1
=
2
5 ,

L L
0.9 0.95 1
accuracy

|
0.85

Figure 9: Accuracy vs. efficiency for EBSM, using embeddingwith different dimensionality. The plots on the left measue efficiency
using the DTW cell cost, and the plots on the right measure effiency using the retrieval runtime cost. The costs shown araverage
costs over our test set of 1000 queries. The top plots show téts for embeddings optimized using Algorithm 2. The bottomplots
show results for embeddings with randomly selected referere objects.

IEEE Workshop on Human Computer Interactipages
189-198, 2005.

[2] T. Argyros and C. Ermopoulos. Efficient subsequence
matching in time series databases under time and amplitude

transformations. Iinternational Conference on Data
Mining, pages 481-484, 2003.

[3] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. $coff.

[4]

(5]

[6

—_

Query-sensitive embeddings. ACM International
Conference on Management of Data (SIGMQpyges
706-717, 2005.

C. Bohm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improvirey t
performance of multimedia databasA&€M Computing
Surveys33(3):322—-373, 2001.

K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high dimensional
spaces. Irinternational Conference on Very Large Data
Basespages 89-100, 2000.

0. Egecioglu and H. Ferhatosmanoglu. Dimensionality
reduction and similarity distance computation by inner

(7]

(8]

(9]

[10]

[11]

product approximations. Imternational Conference on
Information and Knowledge Managemgpages 219-226,
2000.

C. Faloutsos and K. I. Lin. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditionatlan
multimedia datasets. IACM International Conference on
Management of Data (SIGMODpages 163-174, 1995.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databasésCm
International Conference on Management of Data
(SIGMOD) pages 419-429, 1994.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. International Conference on
Very Large Databasepages 518-529, 1999.

D. Q. Goldin and P. C. Kanellakis. On similarity queries
time-series data: Constraint specification and
implementation. Irinternational Conference on Principles
and Practice of Constraint Programmingages 137-153,
1995.

W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

subsequence matching in time-series databases. In
International Conference on Very Large Data Bases (VLDB)
pages 423-434, 2007.

G. Hjaltason and H. Samet. Properties of embedding
methods for similarity searching in metric spacesEE
Transactions on Pattern Analysis and Machine Intelligence
25(5):530-549, 2003.

G. R. Hjaltason and H. Samet. Index-driven similariégch

in metric spacesACM Transactions on Database Systems
28(4):517-580, 2003.

G. Hristescu and M. Farach-Colton. Cluster-presegvin
embedding of proteins. Technical Report 99-50, CS
Department, Rutgers University, 1999.

K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality
reduction for similarity searching in dynamic databasas. |
ACM International Conference on Management of Data
(SIGMOD) pages 166-176, 1998.

E. Keogh. Exact indexing of dynamic time warping. In
International Conference on Very Large Data Bagesges
406-417, 2002.

E. Keogh and M. Pazzani. Scaling up dynamic time warping
for data mining applications. IRroc. of SIGKDD 2000.

E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The
UCR time series classification/clustering homepage:
www.cs.ucr.edufeamonn/time_series_data/, 2006.

N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. LDC:
Enabling search by partial distance in a hyper-dimensional
space. IHEEE International Conference on Data
Engineearingpages 6-17, 2004.

J. B. Kruskall and M. Liberman. The symmetric time
warping algorithm: From continuous to discrete. Time

Warps Addison-Wesley, 1983.

H. Lee and J. Kim. An HMM-based threshold model
approach for gesture recognitidEEE Transactions on
Pattern Analysis and Machine Intelligen@1(10):961-973,
October 1999.

C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.
Clustering for approximate similarity search in
high-dimensional spacekcEE Transactions on Knowledge
and Data Engineeringl4(4):792—-808, 2002.

Y. Moon, K. Whang, and W. Han. General match: a
subsequence matching method in time-series databaset base
on generalized windows. IACM International Conference
on Management of Data (SIGMO[ages 382-393, 2002.
Y. Moon, K. Whang, and W. Loh. Duality-based
subsequence matching in time-series databas¢SHB
International Conference on Data Engineering (ICDE)
pages 263-272, 2001.

P. Morguet and M. Lang. Spotting dynamic hand gestures i
video image sequences using hidden Markov models. In
IEEE International Conference on Image Processipages
193-197, 1998.

R. Oka. Spotting method for classification of real waodlata.
The Computer Journa#1(8):559-565, July 1998.

S. Park, W. W. Chu, J. Yoon, and J. Won. Similarity seasth
time-warped subsequences via a suffix tteormation
Systems28(7), 2003.

S. Park, S. Kim, and W. W. Chu. Segment-based approach
for subsequence searches in sequence databases. In
Symposium on Applied Computjnzages 248-252, 2001.
D. Rafiei and A. O. Mendelzon. Similarity-based quefi@s

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

time series data. IACM International Conference on
Management of Data (SIGMODpages 13-25, 1997.

T. M. Rath and R. Manmatha. Word image matching using
dynamic time warping. IhREEE Conference on Computer
Vision and Pattern Recognition (CVP,Rplume 2, pages
521-527, 2003.

Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream
monitoring under the time warping distance.lREE
International Conference on Data Engineering (ICDE)
2007.

Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast
similarity search under the time warping distance. In
Principles of Database Systems (POD®)ges 326-337,
2005.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
A-tree: An index structure for high-dimensional spacesigsi
relative approximation. Itnternational Conference on Very
Large Data Basegages 516-526, 2000.

Y. Shou, N. Mamoulis, and D. W. Cheung. Fast and exact
warping of time series using adaptive segmental
approximationsMachine Learning58(2-3):231-267, 2005.
E. Tuncel, H. Ferhatosmanoglu, and K. Rose. VQ-indax: A
index structure for similarity searching in multimedia
databases. IRroc. of ACM Multimediapages 543-552,
2002.

J. Venkateswaran, D. Lachwani, T. Kahveci, and

C. Jermaine. Reference-based indexing of sequence
databases. Imternational Conference on Very Large
Databases (VLDB)pages 906—-917, 2006.

M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and

E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measuresAGM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 216-225, 2003.

X.Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,
and K. Zhang. An index structure for data mining and
clustering.Knowledge and Information Systems
2(2):161-184, 2000.

R. Weber and K. Bo6hm. Trading quality for time with
nearest-neighbor search. Imternational Conference on
Extending Database Technology: Advances in Database
Technologypages 21-35, 2000.

R. Weber, H.-J. Schek, and S. Blott. A quantitative gsial
and performance study for similarity-search methods in
high-dimensional spaces. International Conference on
Very Large Data Basepages 194-205, 1998.

D. A. White and R. Jain. Similarity indexing: Algorithen
and performance. I8torage and Retrieval for Image and
Video Databases (SPIF)ages 62-73, 1996.

H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shiratd, a
D. R. Kaeli. Subsequence matching on structured time series
data. INnACM International Conference on Management of
Data (SIGMOD) pages 682-693, 2005.

B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficientieatal
of similar time sequences under time warping|EEE
International Conference on Data Engineerjmmages
201-208, 1998.

Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. lCM International
Conference on Management of Data (SIGMOf@gges
181-192, 2003.

