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ABSTRACT
A method for approximate subsequence matching is introduced,
that significantly improves the efficiency of subsequence match-
ing in large time series data sets under the dynamic time warping
(DTW) distance measure. Our method is called EBSM, shorthand
for Embedding-Based Subsequence Matching. The key idea is to
convert subsequence matching to vector matching using an embed-
ding. This embedding maps each database time series into a se-
quence of vectors, so that every step of every time series in the
database is mapped to a vector. The embedding is computed by
applying full dynamic time warping between reference objects and
each database time series. At runtime, given a query object,an
embedding of that object is computed in the same manner, by run-
ning dynamic time warping between the reference objects andthe
query. Comparing the embedding of the query with the database
vectors is used to efficiently identify relatively few areasof interest
in the database sequences. Those areas of interest are then fully
explored using the exact DTW-based subsequence matching algo-
rithm. Experiments on a large, public time series data set produce
speedups of over one order of magnitude compared to brute-force
search, with very small losses (< 1%) in retrieval accuracy.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing methods; H.2.8
[Database Applications]: Data Mining; H.2.4 [Systems]: Multi-
media Databases

General Terms
Algorithms

1. INTRODUCTION
Time series data naturally appear in a wide variety of domains,

including scientific measurements, financial data, sensor networks,
audio, video, and human activity. Subsequence matching is the
problem of identifying, given a query time series and a database of
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time series, the databasesubsequence(i.e., some part of some time
series in the database) that is the most similar to the query sequence.
Achieving efficient subsequence matching is an important problem
in domains where the database sequences are much longer thanthe
queries, and where the best subsequence match for a query can
start and end at any position of any database sequence. Improved
algorithms for subsequence matching can make a big difference
in real-world applications such as query by humming [44], word
spotting in handwritten documents, and content-based retrieval in
large video databases and motion capture databases.

Naturally, identifying optimal subsequence matches assumes the
existence of a similarity measure between sequences, that can be
used to evaluate each match. A key requirement for such a measure
is that it should be robust to misalignments between sequences, so
as to allow for time warps (such as stretching or shrinking a por-
tion of a sequence along the time axis) and changes in sequence
length. This requirement effectively rules out Euclidean and more
generalLp measures. Typically, similarity between time series is
measured using dynamic time warping (DTW) [20], which is in-
deed robust to misalignments and time warps, and has given very
good experimental results for applications such as time series min-
ing and classification [16].

The classical DTW algorithm can be applied for full sequence
matching, so as to compute the distance between two time series.
With small modifications, the DTW algorithm can also be used
for subsequence matching, so as to find, for one time series, the
best matching subsequence in another time series [1, 21, 25,26,
31]. The complexity of the DTW algorithm scales linearly with
the length of the query and also scales linearly with the sizeof
the database (i.e., the sum of the lengths of all time series in the
database). While this complexity is definitely attractive compared
to exhaustively matching the query with every possible database
subsequence, in practice subsequence matching is still a computa-
tionally expensive operation in many real-world applications, espe-
cially in the presence of large database sizes.

1.1 Our Contributions
In this paper we present EBSM (shorthand for Embedding-Based

Subsequence Matching) a general method for speeding up subse-
quence matching in time series databases. Our method is the first
to explore the usage of embeddings for subsequence matchingfor
unconstrained DTW. The key differentiating features of ourmethod
are the following:

• EBSM converts, at least partially, subsequence matching un-
der DTW into a much easier vector matching problem. Vec-
tor matching is used to identify very fast a relatively small



number of candidate matches. The computationally expen-
sive DTW algorithm is only applied to evaluate those candi-
date matches.

• EBSM is the first indexing method, in the context of subse-
quence matching, that focuses on unconstrained DTW, where
optimal matches do not have to have the same length as the
query. The only alternative method for this setting, PDTW,
which uses piecewise aggregate approximation (PAA) [17],
is a generic method for speeding up DTW.

• Our implementation of PDTW (for the purpose of comparing
it to EBSM) is also a contribution, as it differs from the way
PDTW has been described by its creators [17]: we add a
refine step that significantly boosts the accuracy vs efficiency
trade-offs achieved by PDTW.

• In our experiments, EBSM provides the best performance in
terms of accuracy versus efficiency, compared to the current
state-of-the-art methods for subsequence matching under un-
constrained DTW: the exact SPRING method [31] that uses
the standard DTW algorithm, and the approximate PDTW
method [17].

The key idea behind our method is that the subsequence match-
ing problem can be partially converted to the much more manage-
able problem of nearest neighbor retrieval in a real vector space.
This conversion is achieved by defining an embedding that maps
each database sequence into a sequence of vectors. There is aone-
to-one correspondence between each such vector and a position in
the database sequence. The embedding also maps each query se-
ries into a vector, in such a way that if the query is very similar to a
subsequence, the embedding of the query is likely to be similar to
the vector corresponding to the endpoint of that subsequence.

Embeddings are defined by matching queries and database se-
quences with so-calledreference sequences, i.e., a relatively small
number of preselected sequences. The expensive operation of match-
ing database and reference sequences is performed offline. At run-
time, the embedding of the query is computed by matching the
query with the reference sequences, which is typically orders of
magnitude faster than matching the query with all database se-
quences. Then, the nearest neighbors of the embedded query are
identified among the database vectors. An additional refinement
step is performed, where subsequences corresponding to thetop
vector-based matches are evaluated using the DTW algorithm. Fig-
ure 1 illustrates the flowchart of the offline and the online stages of
the proposed method.

Converting subsequence matching to vector retrieval is compu-
tationally advantageous for the following reasons:

• Sampling and dimensionality reduction methods can easily
be applied to reduce the amount of storage required for the
database vectors, and the amount of time per query required
for vector matching.

• Numerous internal-memory and external-memory indexing
methods exist for speeding up nearest neighbor retrieval in
vector and metric spaces [4, 13, 41]. Converting subsequence
matching to a vector retrieval problem allows us to use such
methods for additional computational savings.

EBSM is an approximate method, that does not guarantee re-
trieving the correct subsequence match for every query. Perfor-
mance can be easily tuned to provide different trade-offs between
accuracy and efficiency. In the experiments, EBSM provides very
good trade-offs, by significantly speeding up subsequence match
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Figure 1: Flowchart of the offline and the online stages of the
proposed method. System modules are shown as rectangles,
and input/output arguments are shown as ellipses. The goal of
the online stage is to identify, given a query time seriesQ, its
optimal subsequence match in the database.

retrieval, even when only small losses in retrieval accuracy (incor-
rect results for less than1% of the queries) are allowed.

In Section 2 we discuss related work and we emphasize the key
differences between our method and existing methods. In Section 3
we provide necessary background information by defining what an
optimal subsequence match is, and describing how to use the DTW
algorithm to find that match. In Section 4 we define the proposed
novel type of embeddings that can be used to speed up subsequence
matching. Section 5 describes how the proposed embeddings can
be integrated within a filter-and-refine retrieval framework. In Sec-
tion 6 we describe how to optimize embedding quality using train-
ing data. Section 7 discusses the issue of how to handle domains
where there is a large difference in length between the smaller and
the larger queries that the system may have to handle. Finally, in
Section 8 we quantitatively evaluate our method on a large public
benchmark dataset, and we illustrate that our method can signifi-
cantly speed up subsequence matching compared to existing state-
of-the-art methods.

2. RELATED WORK
The topic of efficient sequence matching has received significant

attention in the database community. However, several methods
assume that sequence similarity is measured using the Euclidean
distance [8, 23, 24] or variants [2, 10, 29, 42]. Naturally, such
methods cannot handle even the smallest misalignment caused by
time warps. In the remaining discussion we restrict our attention to
methods that are robust to such misalignments.

Dynamic time warping (DTW) [20] is a distance measure that
is robust to misalignments and time warps, and it is widely used
for time series matching. Time series matching methods can be
divided into two categories: 1). methods for full sequence match-
ing, where the best matches for a query are constrained to be entire
database sequences, and 2). methods for subsequence matching,
where the best matches for a query can be arbitrary subsequences
of database sequences. Several well-known methods only address
full sequence matching [16, 32, 34, 37, 43], and cannot be used for
efficient retrieval of subsequences.

The query-by-humming system described in [44] addresses the
problem of matching short melodies hummed by users to entire
songs stored in the database. That method cuts each song into
smaller, disjoint pieces, and performs full sequence matching be-
tween query melodies and the song pieces stored in the database.
A similar approach is taken in [30] for searching words in hand-
written documents: as preprocessing, the documents are segmented
automatically into words, and full sequence matching is performed
between query words and database words. Such approaches can
only retrieve pieces that the original database sequences have been



segmented to. In contrast, subsequence matching can retrieve any
database subsequence matching the query.

In [27] an indexing structure is proposed for unconstrainedDTW-
based subsequence matching, but retrieval complexity is still linear
to the product of the lengths of the query and the database sequence.
Furthermore, as database sequences get longer, the time complexity
becomes similar to that of unoptimized DTW-based matching.

A method for efficient exact ranked subsequence matching is
proposed in [11]. In that method, queries and database sequences
are broken into segments, and lower bounds are established using
LB_Keogh [16], so as to prune the majority of candidate matches.
There are two key differences between the method in [11] and the
proposed EBSM method: First, the method in [11] can only find
subsequence matches that have the exact same length as the query.
Our method has no such limitation. In practice, for efficiency,
we make the assumption that the optimal subsequence match has
length between zero and twice the length of the query. This isa
much milder assumption than requiring the subsequence match to
have the exact same length as the query. Second, the method in
[11] is only applicable to constrained DTW [16], where the warp-
ing path has to stay close to the diagonal. Our method can alsobe
applied to unconstrained DTW.

An efficient method for retrieving subsequences under DTW is
presented in [28]. The key idea in that method is to speed up
DTW by reducing the length of both query and database sequences.
The length is reduced by representing sequences as ordered lists of
monotonically increasing or decreasing segments. By usingmono-
tonicity, that method is only applicable to 1D time series. Arelated
method that can also be used for multidimensional timeseries is
PDTW [17]. In PDTW, time series are approximated by shorter
sequences, obtained by replacing each constant-length part of the
original sequence with the average value over that part in the new
sequence. We compare our method with a modified, improved ver-
sion of PDTW in the experiments.

The SPRING method for subsequence matching is proposed in
[31]. In SPRING, optimal subsequence matches are identifiedby
running the DTW algorithm between the query and each database
sequence. Subsequences are identified by prepending to the shorter
sequence a “null” symbol that matches any sequence prefix with
zero cost (similar ideas are also used in [1, 21, 25, 26]). The
complexity of SPRING is still linear to both database size and
query size. In EBSM, we use SPRING for matching the query and
database sequences with the reference sequences, and for refining
the embedding-based retrieval results.

Compared to SPRING, the key source of computational savings
in EBSM is that expensive DTW-based matching is only performed
between the query and a small fraction of the database, whereas in
SPRING the query is matched to the entire database using DTW.
The price for this improved efficiency is that EBSM cannot guar-
antee correct results for all queries, whereas SPRING is an exact
method. Still, it is often desirable in database applications to trade
accuracy for efficiency, and our method, in contrast to SPRING,
provides the capability to achieve such trade-offs.

The method proposed in this paper is embedding-based. Several
embedding methods exist in the literature for speeding up distance
computations and nearest neighbor retrieval. Examples of such
methods include Lipschitz embeddings [12], FastMap [7], Met-
ricMap [38], SparseMap [14], and query-sensitive embeddings [3].
Such embeddings can be used for speeding up sequence match-
ing, as done for example in [3, 14]. However , existing embedding
methods are only applicable in the context of full sequence match-
ing, not subsequence matching.The method proposed in this paper
is applicable for subsequence matching.
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Figure 2: Example of a warping path between a query sequence
Q and a database sequenceX. Each black square indicates a
correspondence between an element ofQ and an element ofX.

In particular, the above-mentioned embedding methods map each
sequence into a single vector, in such a way that if two sequences
are similar to each other then the embeddings of those two se-
quences are also expected to be similar to each other. However, a
query sequence can be very similar to asubsequenceof a database
sequence, while being very dissimilar to the entire database se-
quence. For that reason, existing embedding methods are notuse-
ful for efficiently identifying subsequence matches. In contrast, the
method proposed in this paper maps each database sequence not
to a single vector, but to asequenceof vectors, so that there is
a one-to-one correspondence between each such vector and a po-
sition in the database sequence. If the query is very similarto a
subsequence, we expect the embedding of the query to be similar
to the vector corresponding to the endpoint of that subsequence.

Another way to illustrate the difference between the embedding
methods in [3, 7, 12, 14, 38] and EBSM (our method) is by consid-
ering the case where the database contains just a single verylong
sequence. Existing embedding methods would simply map that
sequence into a single vector. Comparing the embedding of the
query with that vector would not provide any useful information.
Instead, EBSM maps the database sequence into a sequence of vec-
tors. Comparing the embedding of the query with those vectors is
used to efficiently identify relatively few areas of interest in the
database sequence. Those areas of interest are then fully explored
using the exact DTW-based subsequence matching algorithm.

3. BACKGROUND: DTW
In this section we define dynamic time warping (DTW), both as a

distance measure between time series, and as an algorithm for eval-
uating similarity between time series. We follow to a large extent
the descriptions in [16] and [31]. We use the following notation:

• Q, X, R, andS are sequences (i.e., time series).Q is typi-
cally a query sequence,X is typically a database sequence,
R is typically a reference sequence, andS can be any se-
quence whatsoever.

• |S| denotes the length of any sequenceS.

• St denotes the t-th step of sequenceS. In other words,S =
(S1, . . . , S|S|).

• Si:j denotes the subsequence ofS starting at positioni and
ending at positionj. In other words,Si:j = (Si, . . . , Sj),
Si:j

t is thet − th step ofSi:j , andSi:j
t = Si+t−1.

• Dfull(Q, X) denotes the full sequence matching cost between
Q andX. In full matching,Q1 is constrained to match with
X1, andQ|Q| is constrained to match withX|X|.



• D(Q, X) denotes the subsequence matching cost between
sequencesQ andX. This cost isasymmetric: we find the
subsequenceXi:j of X (whereX is typically a large database
sequence) that minimizesDfull(Q,Xi:j) (whereQ is typi-
cally a query).

• Di,j(Q, X) denotes the smallest possible cost of matching
(Q1, . . . , Qi) to any suffix of(X1, . . . , Xj) (i.e., Q1 does
not have to matchX1, butQi has to match withXj ). Di,j(Q,X)
is also defined fori = 0 andj = 0, as specified below.

• Dj(Q, X) denotes the smallest possible cost of matching
Q to any suffix of (X1, . . . , Xj) (i.e., Q1 does not have
to matchX1, but Q|Q| has to match withXj ). Obviously,
Dj(Q, X) = D|Q|,j(Q,X).

• ‖Xi − Yj‖ denotes the distance betweenXi andYj .

Given a query sequenceQ and a database sequenceX, the sub-
sequence matching problem is the problem of finding the subse-
quenceXi:j of X that is the best match for the entireQ, i.e., that
minimizesDfull(Q,Xi:j). In the next paragraphs we formally de-
fine what the best match is, and we specify how it can be computed.

3.1 Legal Warping Paths
A warping pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) de-

fines an alignment between two sequencesQ andX. The i-th el-
ement ofW is a pair(wi,1, wi,2) that specifies a correspondence
between elementQwi,1

of Q and elementXwi,2
of X. The cost

C(Q, X, W ) of warping pathW for Q andX is theLp distance
(for any choice ofp) between vectors(Qw1,1 , . . . , Qw|W |,1

) and
(Xw1,2 , . . . , Xw|W |,2

):

C(Q, X, W ) =
p

v

u

u

t

|W |
X

i=1

‖Qwi,1
− Xwi,2

‖p . (1)

In the remainder of this paper, to simplify the notation, we will
assume thatp = 1. However, the formulation we propose can be
similarly applied to any choice ofp.

ForW to be a legal warping path, in the context of subsequence
matching under DTW,W must satisfy the following constraints:

• Boundary conditions: w1,1 = 1 andw|W |,1 = |Q|. This
requires the warping path to start by matching the first el-
ement of the query with some element ofX, and end by
matching the last element of the query with some element
of X.

• Monotonicity: wi+1,1 − wi,1 ≥ 0, wi+1,2 − wi,2 ≥ 0.
This forces the warping path indiceswi,1 andwi,2 to increase
monotonically withi.

• Continuity: wi+1,1 − wi,1 ≤ 1, wi+1,2 − wi,2 ≤ 1. This
restricts the warping path indiceswi,1 andwi,2 to never in-
crease by more than1, so that the warping path does not skip
any elements ofQ, and also does not skip any elements ofX
between positionsXw1,2 andXw|W |,2

.

• (Optional) Diagonality: w|W |,2 − w1,2 = |Q| − 1, wi,2 −
w1,2 ∈ [wi,1−Θ(Q,wi,1), wi,1+Θ(Q,wi,1)], whereΘ(Q, t)
is some suitably chosen function (e.g.,Θ(Q, t) = ρ|Q|, for
some constantρ such thatρ|Q| is relatively small compared
to |Q|) . This is an optional constraint, employed by some
methods, e.g., [11, 16], and not employed by other methods,

e.g., [31]. The diagonality constraint imposes that the sub-
sequenceXw1,2 :w|W |,2 be of the same length asQ. Further-
more, the diagonality constraint severely restricts the number
of possible positionswi,2 of X that can match positionwi,1

of Q, given the initial match match(w1,1, w1,2). In the rest
of the paper, we will not consider this constraint, and in the
experiments this constraint is not employed.

3.2 Optimal Warping Paths and Distances
The optimal warping pathW ∗(Q, X) betweenQ andX is the

warping path that minimizes the costC(Q, X, W ):

W ∗(Q,X) = argminW C(Q, X, W ). (2)

We define the optimal subsequence matchM(Q, X) of Q in X
to be the subsequence ofX specified by the optimal warping path
W ∗(Q, X). In other words, ifW ∗(Q, X) = ((w∗

1,1, w
∗
1,2), . . . ,

(w∗
m,1, w

∗
m,2)), then M(Q,X) is the subsequenceXw∗

1,2:w∗
m,2 .

We define the partial dynamic time warping (DTW) distanceD(Q, X)
to be the cost of the optimal warping path betweenQ andX:

D(Q, X) = C(Q, X, W ∗(Q, X)). (3)

Clearly, partial DTW is an asymmetric distance measure.
To facilitate the description of our method, we will define two

additional types of optimal warping paths and associated distance
measures. First, we defineW ∗

full(Q,X) to be the optimalfull warp-
ing path, i.e., the pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2))
minimizingC(Q, X, W ) under the additional boundary constraints
that w1,2 = 1 andw|W |,2 = |X|. Then, we can define the full
DTW distance measureDfull(Q, X) as:

Dfull(Q, X) = C(Q, X, W ∗
full(Q,X)). (4)

DistanceDfull(Q,X) measures the cost of full sequence matching,
i.e., the cost of matching the entireQ with the entireX. In contrast,
D(Q, X) from Equation 3 corresponds to matching the entireQ
with asubsequenceof X.

We defineW ∗(Q,X, j) to be the optimal warping path match-
ing Q to a subsequence ofX ending atXj , i.e., the pathW =
((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) minimizingC(Q,X, W ) un-
der the additional boundary constraint thatw|W |,2 = j. Then, we
can defineDj(Q,X) as:

Dj(Q,X) = C(Q,X, W ∗(Q,X, j)). (5)

We defineM(R, X, j) to be the optimal subsequence match for
R in X under the constraint that the last element of this match is
Xj :

M(R, X, j) = argminXi:jDfull(R,Xi:j). (6)

Essentially, to identifyM(R, X, j) we simply need to identify the
start pointi that minimizes the full distanceDfull betweenR and
Xi:j .

3.3 The DTW Algorithm
Dynamic time warping (DTW) is a term that refers both to the

distance measures that we have just defined, and to the standard al-
gorithm for computing these distance measure and the correspond-
ing optimal warping paths.

We define an operation⊕ that takes as inputs a warping path
W = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) and a pair(w′, w′′)
and returns a new warping path that is the result of appending
(w′, w′′) to the end ofW :

W ⊕ (w′, w′′) = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2), (w
′, w′′)).

(7)



The DTW algorithm uses the following recursive definitions:

D0,0(Q, X) = 0, Di,0(Q,X) = ∞, D0,j(Q, X) = 0 (8)

W0,0(Q, X) = (), W0,j(Q,X) = () (9)

A(i, j) = {(i, j − 1), (i − 1, j), (i − 1, j − 1)} (10)

(pi(Q,X), pj(Q,X)) = argmin(s,t)∈A(i,j)Ds,t(Q, X) (11)

Di,j(Q,X) = ‖Qi − Xj‖ + Dpi(Q,X),pj(Q,X)(Q, X) (12)

Wi,j(Q, X) = Wpi(Q,X),pj(Q,X) ⊕ (i, j) (13)

D(Q, X) = min
j=1,...,|X|

{D|Q|,j(Q, X)} (14)

The DTW algorithm proceeds by employing the above equations
at each step, as follows:

• Inputs. A short sequenceQ, and a long sequenceX.

• Initialization. ComputeD0,0(Q, X), Di,0(Q,X), D0,j(Q,X).

• Main loop. For i = 1, . . . , |Q|, j = 1, . . . , |X|:

1. Compute(pi(Q, X), pj(Q, X)).

2. ComputeDi,j(Q, X).

3. ComputeWi,j(Q, X).

• Output. Compute and returnD(Q, X).

The DTW algorithm takes timeO(|Q||X|). By definingD0,j =
0 we essentially allow arbitrary prefixes ofX to be skipped (i.e.,
matched with zero cost) before matchingQ with the optimal sub-
sequence inX [31]. By definingD(Q, X) to be the minimum
D|Q|,j(Q, X), wherej = 1, . . . , |X|, we allow the best matching
subsequence ofX to end at any positionj. Overall, this definition
matches the entireQ with an optimal subsequence ofX.

For each positionj of sequenceX, the optimal warping path
W ∗(Q, X, j) is computed as valueW|Q|,j(Q, X) by the DTW al-
gorithm (step 3 of the main loop) . The globally optimal warping
pathW ∗(Q, X) is simplyW ∗(Q, X, jopt), wherejopt is the end-
point of the optimal match:jopt = argminj=1,...,|X|{D|Q|,j(Q,X)}.

4. EBSM: AN EMBEDDING FOR SUBSE-
QUENCE MATCHING

Let X = (X1, . . . , X|X|) be a database sequence that is rela-
tively long, containing for example millions of elements. Without
loss of generality, we can assume that the database only contains
this one sequenceX (if the database contains multiple sequences,
we can concatenate them to generate a single sequence). Given a
query sequenceQ, we want to find the subsequence ofX that op-
timally matchesQ under DTW. We can do that using brute-force
search, i.e., using the DTW algorithm described in the previous
section. This paper proposes a more efficient method. Our method
is based on defining a novel type of embedding functionF , which
maps every queryQ into ad-dimensional vector and every element
Xj of the database sequence also into ad-dimensional vector. In
this section we describe how to define such an embedding, and then
we provide some examples and intuition as to why we expect such
an embedding to be useful.

Let R be a sequence, of relatively short length, that we shall
call a reference objector reference sequence. We will useR to
create a 1D embeddingF R, mapping each query sequence into a
real numberF (Q), and also mapping each stepj of sequenceX
into a real numberF (X, j):

F R(Q) = D|R|,|Q|(R, Q) . (15)

F R(X, j) = D|R|,j(R, X) . (16)

Naturally, instead of picking a single reference sequenceR, we
can pick multiple reference sequences to create a multidimensional
embedding. For example, letR1, . . . , Rd bed reference sequences.
Then, we can define ad-dimensional embeddingF as follows:

F (Q) = (F R1(Q), . . . , F Rd(Q)) . (17)

F (X, j) = (F R1(X, j), . . . , F Rd(X, j)) . (18)

Computing the set of all embeddingsF (X, j), for j = 1, . . . , |X|

is an off-line preprocessing step that takes timeO(|X|
Pd

i=1 |Ri|).
In particular, computing thei-th dimensionF Ri can be done simul-
taneously for all positions(X, j), with a single application of the
DTW algorithm with inputsRi (as the short sequence) andX (as
the long sequence). We note that the DTW algorithm computes
eachF Ri(X, j), for j = 1, . . . , |X|, as valueD|Ri|,j(Ri, X) (see
Section 3.3 for more details).

Given a queryQ, its embeddingF (Q) is computed online, by
applying the DTW algorithmd times, with inputsRi (in the role of
the short sequence) andQ (in the role of the long sequence). In to-
tal, these applications of DTW take timeO(|Q|

Pd

i=1 |Ri|). This
time is typically negligible compared to running the DTW algo-
rithm betweenQ andX, which takesO(|Q||X|) time. We assume
that the sum of lengths of the reference objects is orders of magni-
tude smaller than the length|X| of the database sequence.

Consequently, a very simple way to speed up brute force search
for the best subsequence match ofQ is to:

• CompareF (Q) to F (X, j) for j = 1, . . . , |X|.

• Choose somej’s such thatF (Q) is very similar toF (X, j).

• For each suchj, and for some length parameterL, run dy-
namic time warping betweenQ and(Xj−L+1:j) to compute
the best subsequence match forQ in (Xj−L+1:j).

As long as we can choose a small number of such promising
areas(Xj−L+1:j), evaluating only those areas will be much faster
than running DTW betweenQ andX. Retrieving the most similar
vectorsF (X, j) for F (Q) can be done efficiently by applying a
multidimensional vector indexing method to these embeddings [9,
40, 33, 5, 22, 6, 15, 39, 19, 35].

We claim that, under certain circumstances, ifQ is similar to a
subsequence ofX ending atXj , and if R is some reference se-
quence, thenF R(Q) is likely to be similar toF R(X, j). Here we
provide some intuitive arguments for supporting this claim.

Let’s consider a very simple case, illustrated in Figure 3. In this
case, the queryQ is identical to a subsequenceXi′:j . Consider a
reference sequenceR, and suppose thatM(R, X, j) (defined as in
Equation 6) isXi:j , and thati ≥ i′. In other words,M(R, X, j)

is a suffix ofXi′:j and thus a suffix ofQ (sinceXi′:j = Q). Note
that the following holds:

F R(Q) = D|R|,|Q|(R,Q) = D|R|,j(R,X) = F R(X, j). (19)

In other words, ifQ appears exactly as a subsequenceXi′:j of X,
it holds thatF R(Q) = F R(X, j), under the conditionthat the
optimal warping path aligningR with X1:j does not start before
positioni′, which is where the appearance ofQ starts.

This simple example illustrates an ideal case, where the query Q

has an exact matchXi′:j in the database. The next case to consider
is whenXi′:j is a slightly perturbed version ofQ, obtained, for
example, by adding noise from the interval[−ǫ, ǫ] to eachQt. In
that case, assuming always thatM(R, X, j) = Xi:j andi ≥ i′,
we can show that|F R(Q) − F R(X, j)| ≤ (2|Q| − 1)ǫ. This
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Figure 3: (a) Example of an optimal warping path
W ∗(R, Q, |Q|) aligning a reference object R to a suffix of
Q. F R(Q) is the cost of W ∗(R, Q, |Q|). (b) Example of a
warping path W ∗(R,X, j), aligning a reference objectR to
a subsequenceXi:j of sequenceX. F R(X, j) is the cost of
W ∗(R, X, j). The query Q from (a) appears exactly in X,
as subsequenceXi′:j , and i′ < i. Under these conditions,
F R(Q) = F R(X, j). (c) Similar to (b), except that i′ > i.
In this case, typicallyF R(Q) 6= F R(X, j).

is obtained by taking into account that warping pathW ∗(R,X, j)
cannot be longer than2|Q| − 1 (as long asi ≥ i′).

There are two cases we have not covered:

• Perturbations along thetemporalaxis, such as repetitions, in-
sertions, or deletions. Unfortunately, for unconstrainedDTW,
due to the non-metric nature of the DTW distance measure,
no existing approximation method can make any strong math-
ematical guarantees in the presence of such perturbations.

• The case wherei < i′, i.e., the optimal path matching the
reference sequence to a suffix ofX1:j starts before the be-
ginning ofM(Q, X, j). We address this issue in Section 7.

Given the lack of mathematical guarantees, in order for the pro-
posed embeddings to be useful in practice, the followingstatistical
property has to hold empirically: given positionjopt(Q), such that
the optimal subsequence match ofQ in X ends atjopt(Q), and
given some random positionj 6= jopt(Q), it should be statistically
very likely thatF (Q) is closer toF (X, jopt(Q)) than toF (X, j).
If we have access to query samples during embedding construc-
tion, we can actually optimize embeddings so thatF (Q) is closer
to F (X, jopt(Q)) than toF (X, j) as often as possible, over many
random choices ofQ andj. We do exactly that in Section 6.

5. FILTER-AND-REFINED RETRIEVAL
Our goal in this paper is to design a method for efficiently re-

trieving, given a query, its best matching subsequence fromthe
database. In the previous sections we have defined embeddings that
map each query object and each database position to ad-dimensional
vector space. In this section we describe how to use such embed-
dings in an actual system.

5.1 General Framework
The retrieval framework that we use is filter-and-refine retrieval,

where, given a query, the retrieval process consists of a filter step
and a refine step [12]. The filter step typically provides a quick
way to identify a relatively small number of candidate matches.
The refine step evaluates each of those candidates using the original
matching algorithm (DTW in our case), in order to identify the
candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retrieval ef-
ficiency with small, or zero loss in retrieval accuracy. Retrieval
efficiency depends on the cost of the filter step (which is typically
small) and the cost of evaluating candidates at the refine step. Eval-
uating a small number of candidates leads to significant savings
compared to brute-force search (where brute-force search,in our
setting, corresponds to running SPRING [31], i.e., runningDTW
betweenQ andX). Retrieval accuracy, given a query, depends on
whether the best match is included among the candidates evaluated
during the refine step. If the best match is among the candidates,
the refine step will identify it and return the correct result.

Within this framework, embeddings can be used at the filter step,
and provide a way to quickly select a relatively small numberof
candidates. Indeed, here lies the key contribution of this paper, in
the fact that we provide a novel method for quick filtering, that can
be applied in the context of subsequence matching. Our method
relies on computationally cheap vector matching operations, as op-
posed to requiring computationally expensive applications of DTW.
To be concrete, given ad-dimensional embeddingF , defined as in
the previous sections,F can be used in a filter-and-refine frame-
work as follows:

Offline preprocessing step:Compute and store vectorF (X, j)
for every positionj of the database sequenceX.

Online retrieval system: Given a previously unseen query ob-
jectQ, we perform the following three steps:

• Embedding step: computeF (Q), by measuring the dis-
tances betweenQ and the chosen reference sequences.

• Filter step: Select database positions(X, j) according to the
distance between eachF (X, j) andF (Q). These database
positions are candidateendpointsof the best subsequence
match forQ.

• Refine step:Evaluate selected candidate positions(X, j) by
applying the DTW algorithm.

In the next subsections we specify the precise implementation of
the filter step and the refine step.

5.2 Speeding Up the Filter Step
The simplest way to implement the filter step is by simply com-

paringF (Q) to every singleF (X, j) stored in our database. The
problem with doing that is that it may take too much time, espe-
cially with relatively high-dimensional embeddings (for example,
40-dimensional embeddings are used in our experiments). Inorder
to speed up the filtering step, we can apply well-known techniques,
such as sampling, PCA, and vector indexing methods. We should
note that these three techniques are all orthogonal to each other.

In our implementation we use sampling, so as to avoid compar-
ing F (Q) to the embedding of every single database position. The
way the embeddings are constructed, embeddings of nearby posi-
tions, such asF (X, j) andF (X, j + 1), tend to be very similar.
A simple way to apply sampling is to choose a parameterδ, and
sample uniformly one out of everyδ vectorsF (X, j). That is,
we only store vectorsF (X, 1), F (X, 1 + δ), F (X, 1 + 2δ), . . ..



Given F (Q), we only compare it with the vectors that we have
sampled. If, for a database position(X, j), its vectorF (X, j)
was not sampled, we simply assign to that position the distance
betweenF (Q) and the vector that was actually sampled among
{F (X, j − ⌊δ/2⌋), . . . , F (X, j + ⌊δ/2⌋)}.

PCA can also be used, in principle, to speed up the filter step,
by reducing the dimensionality of the embedding. Finally, vector
indexing methods [9, 40, 33, 5, 22, 6, 15, 39, 19, 35] can be applied
to speed up retrieval of the nearest database vectors. Such indexing
methods may be particularly useful in cases where the embedding
of the database does not fit in main memory; in such cases, external
memory indexing methods can play a significant role in optimizing
disk usage and overall retrieval runtime.

Our implementation at this point is a main-memory implemen-
tation, where the entire database embedding is stored in memory.
In our experiments, using sampling parameterδ = 9, and without
any further dimensionality reduction or indexing methods,we get
a very fast filter step: the average running time per query forthe
filter step is about0.5% of the average running time of brute-force
search. For that reason, at this point we have not yet incorporated
more sophisticated methods, that might yield faster filtering.

5.3 The Refine Step for Unconstrained DTW
The filter step ranks all database positions(X, j) in increasing

order of the distance (or estimated distance, when we use approx-
imations such as PCA, or sampling) betweenF (X, j) andF (Q).
The task of the refine step is to evaluate the topp candidates, where
p is a system parameter that provides a trade-off between retrieval
accuracy and retrieval efficiency.

Algorithm 1 describes how this evaluation is performed. Since
candidate positions(X, j) actually represent candidateendpoints
of a subsequence match, we can evaluate each such candidate end-
point by starting the DTW algorithm from that endpoint and going
backwards. In other words, the end of the query is aligned with the
candidate endpoint, and DTW is used to find the optimal start (and
corresponding matching cost) for that endpoint.

If we do not put any constraints, the DTW algorithm will go all
the way back to the beginning of the database sequence. However,
subsequences ofX that are much longer thanQ are very unlikely
to be optimal matches forQ. In our experiments,99.7% out of
the1000 queries used in performance evaluation have an optimal
match no longer than twice the length of the query. Consequently,
we consider that twice the length of the query is a pretty reason-
able cut-off point, and we do not allow DTW to consider longer
matches.

One complication is a case where, as the DTW algorithm moves
backwards along the database sequence, the algorithm gets to an-
other candidate endpoint that has not been evaluated yet. That
endpoint will need to be evaluated at some point anyway, so we
can save time by evaluating it now. In other words, while eval-
uating one endpoint, DTW can simultaneously evaluate all other
endpoints that it finds along the way. The two adjustments that we
make to allow for that are that:

• The “sink state”Q|Q|+1 matches candidate endpoints (that
have not already been checked) with cost 0 and all other
database positions with cost∞.

• If in the process of evaluating a candidate endpointj we find
another candidate endpointj′, we allow the DTW algorithm
to look back further, up to positionj′ − 2|Q| + 1.

The endpoint array in Algorithm 1 keeps track, for every pair
(i, j), of the endpoint that corresponds to the cost stored incost[i][j].

input : Q: query.
X: database sequence.
sorted: an array of candidate endpointsj, sorted in
decreasing order ofj.
p: number of candidates to evaluate.

output : (X, jstart), (X, jend): start and end point of estimated best
subsequence match.
distance: distance between query and estimated best sub-
sequence match.
columns: number of database positions evaluated by DTW
(this is a key measure of retrieval efficiency).

for i = 1 to |X| do
unchecked[i] = 0;

end
for i = 1 to p do

unchecked[sorted[i]] = 1;

end
distance = ∞;
columns = 0;
// main loop, check all candidates sorted[1], ..., sorted[p].
for k = 1 to p do

candidate = sorted[k];
if (unchecked[candidate] == 0) then continue;
j = candidate + 1;
for i = |Q| + 1 to 1 do

cost[i][j] = ∞;

end
while (true) do

j = j − 1;
if (candidate − j ≥ 2 ∗ |Q|) then break;
if (unchecked[j] == 1) then

unchecked[j] = 0;
candidate = j; // found another candidate endpoint.
cost[|Q| + 1][j] = 0;
endpoint[|Q| + 1][j] = j;

else
cost[|Q| + 1][j] = ∞; // j is not a candidate endpoint.

end
for i = |Q| to 1 do

previous = {(i + 1, j), (i, j + 1), (i + 1, j + 1)};
(pi, pj) = argmin(a,b)∈previouscost[a][b];
cost[i][j] = |Qi − Xj | + cost[pi][pj ];
endpoint[i][j] = endpoint[pi][pj];

end
if (cost[1][j] < distance) then

distance = cost[1][j];
jstart = j;
jend = endpoint[1][j];

end
columns = columns + 1;
if (min{cost[i][j]|i = 1, . . . , |Q|} ≥ distance) then break;

end
end
//final alignment step
start = jend − 3|Q|;
end = jend + |Q|;
Adjust jstart andjstart by running the DTW algorithm betweenQ and
Xstart:end;

Algorithm 1. The refine step for unconstrained DTW.

This is useful in the case where multiple candidate endpoints are
encountered, so that when the optimal matching score is found
(stored in variabledistance), we know what endpoint that match-
ing score corresponds to.



input : X: database sequence.
QS : training query set.
d: embedding dimensionality.
RSK: initial set ofk reference subsequences.

output : R: set ofd reference subsequences.

// select d reference sequences with highest variance from RSK
R = {R1, .., Rd |Ri ∈ RSK with maximum variance}
CreateEmbedding(R, X);
oldSEE = 0;
for i = 1 to |QS| do

oldSEE+ = EE(QS[i]);

end
j = 1;
while (true) do

// consider replacingRj with another reference object
CandR = RSK − R;
for i = 0 to |CandR| do

CreateEmbedding(R − {Rj} + {CandR[i]}, X);
newSEE = 0;
for i = 1 to |QS| do

newSEE+ = EE(QS[i]);

end
if (newSEE < oldSEE) then

Rj = CandR[i];
oldSEE = newSEE;

end
end
j = (j mod d) + 1;

end

Algorithm 2. The training algorithm for selection of
reference objects.

Thecolumns variable, which is an output of Algorithm 1, mea-
sures the number of database positions on which DTW is applied.
These database positions include both each candidate endpoint and
all other positionsj for whichcost[i][j] is computed. Thecolumns
output is a very good measure of how much time the refine step
takes, compared to the time it would take for brute-force search,
i.e., for applying the original DTW algorithm as described in Sec-
tion 3. In the experiments, one of the main measures of EBSM ef-
ficiency (the DTW cell cost) is simply defined as the ratio between
columns and the length|X| of the database.

We note that each application of DTW in Algorithm 1 stops
when the minimumcost[i][j] over all i = 1, . . . , |Q| is higher
than the minimum distance found so far. We do that because any
cost[i][j − 1] will be at least as high as the minimum (over alli’s)
of cost[i][j], except ifj − 1 is also a candidate endpoint (in which
case, it will also be evaluated during the refine step).

The refine step concludes with a final alignment/verificationop-
eration, that evaluates, using the original DTW algorithm,the area
around the estimated optimal subsequence match. In particular, if
jend is the estimated endpoint of the optimal match, we run the
DTW algorithm betweenQ andX(jend−3|Q|):(jend+|Q|). The pur-
pose of this final alignment operation is to correctly handlecases
wherejstart andjend are off by a small amount (a fraction of the
size ofQ) from the correct positions. This may arise when the opti-
mal endpoint was not included in the original set of candidates ob-
tained from the filter step, or when the length of the optimal match
was longer than2|Q|.

6. EMBEDDING OPTIMIZATION
In this section, we present an approach for selecting reference

objects in order to improve the quality of the embedding. Thegoal
is to create an embedding where the rankings of different subse-
quences with respect to a query in the embedding space resemble
the rankings of these subsequences in the original space. Our ap-
proach is largely an adaptation of the method proposed in [36].

The first step is based on the max variance heuristic, i.e., the idea
that we should select subsequences that cover the domain space (as
much as possible) and have distances to other subsequences with
high variance. In particular, we select uniformly at randoml subse-
quences with sizes between(minimum query size)/2andmaximum
query sizefrom different locations in the database sequence. Then,
we compute the DTW distances for each pair of them (O(l2) val-
ues) and we select thek subsequences with the highest variance in
their distances to the otherl − 1 subsequences. Thus we select an
initial set ofk reference objects.

The next step is to use a learning approach to select the final
set of reference objects assuming that we have a set of samples
that is representative of the query distribution. The inputto this
algorithm is a set ofk reference objectsRSK selected from the
previous step, the number of final reference objectsd (whered <
k) and a set of sample queriesQs. The main idea is to selectd out
of thek reference objects so as to minimize the embedding error on
the sample query set. The embedding errorEE(Q) of a queryQ is
defined as the number of vectorsF (X, j) in the embedding space
that the embedding of the queryF (Q) is closer to than it is to the
embedding ofF (X, jQ), wherejQ is the endpoint of the optimal
subsequence match ofQ in the database.

Initially, we selectd initial reference objectsR1, . . . , Rd and
we create the embedding of the database and the query setQs

using the selectedRi’s. Then, for each query, we compute the
embedding error and we compute the sum of these errors over all
queries, i.e.,SEE =

P

Q∈Qs
EE(Q). The nest step, is to con-

sider a replacement of thei-th reference object with an object in
RSK − {R1, . . . , Rd}, and re-estimate theSEE. If SEE is re-
duced, we make the replacement and we continue with the next
(i + 1)-th reference object. This process starts fromi = 1 un-
til i = d. After we replace thed-th reference object we continue
again with the first reference object. The loop continues until the
improvement of theSEE over all reference objects falls below a
threshold. The pseudo-code of the algorithm is shown in Algorithm
2. To reduce the computation overhead of the technique we usea
sample of the possible replacements in each step. Thus, instead of
considering all objects inRSK − {R1, . . . , Rd} for replacement,
we consider only a sample of them. Furthermore, we use a sample
of the database entries to estimate theSEE.

Note that the embedding optimization method described here
largely follows the method described in [36]. However, the ap-
proach in [36] was based on the Edit distance, which is a metric,
and therefore a different optimization criterion was used.In partic-
ular, in [36], reference objects are selected based on the pruning
power of each reference object. Since DTW is not a metric, refer-
ence objects in our setting do not have pruning power, unlesswe
allow some incorrect results. That is why we use the sum of errors
as our optimization criterion.

7. HANDLING VERY LARGE RANGES OF
QUERY LENGTHS

In Section 4 and in Figure 3 we have illustrated that, intuitively,
when the queryQ has a very close matchXi:j in the database, we
expectF R(Q) andF R(X, j) to be similar, as long asM(R, X, j)
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Figure 4: Distribution of lengths of the 40 reference objects
chosen by the embedding optimization algorithm in our exper-
iments.

is a suffix ofM(Q, X, j). If we fix the length|Q| of the query, as
the length|R| of the reference object increases, it becomes more
and more likely thatM(R, X, j) will start before the beginning of
M(Q, X, j). In those cases,F R(Q) andF R(X, j) can be very
different, even in the ideal case whereQ is identical toXi:j .

In our experiments, the minimum query length is 152 and the
maximum query length is 426. Figure 4 shows a histogram of the
lengths of the 40 reference objects that were chosen by the em-
bedding optimization algorithm in our experiments. We notethat
smaller lengths have higher frequencies in that histogram.We inter-
pret that as empirical evidence for the argument that long reference
objects tend to be harmful when applied to short queries, andit is
better to have short reference objects applied to long queries. Over-
all, as we shall see in the experiments section, this 40-dimensional
embedding provides very good performance.

At the same time, in any situation where there is a large dif-
ference in scale between the shortest query length and the longest
query length, we are presented with a dilemma. While long ref-
erence objects may hurt performance for short queries, using only
short reference objects gives us very little information about the
really long queries. To be exact, given a reference objectR and
a database position(X, j), F R(X, j) only gives us information
about subsequenceM(R, X, j). If Q is a really long query and
R is a really short reference object, proximity betweenF (Q) and
F (X, j) cannot be interpreted as strong evidence of a good sub-
sequence match for the entireQ ending at positionj; it is simply
strong evidence of a good subsequence match ending at position j
for some smallsuffixof Q defined byM(R, Q, |Q|).

The simple solution in such cases is to use, for each query, only
embedding dimensions corresponding to a subset of the chosen ref-
erence objects. This subset of reference objects should have lengths
that are not larger than the query length, and are not too much
smaller than the query length either (e.g., no smaller than half the
query length). To ensure that for any query length there is a suf-
ficient number of reference objects, reference object lengths can
be split intod ranges[r, rs), [rs, rs2), [rs2, rs3), . . . [rsd−1, rsd),
wherer is the minimum desired reference object length,rsd is the
highest desired reference object length, ands is determined given
r, d andrsd. Then, we can constrain thed-dimensional embedding

so that for each range[rsi, rsi+1) there is only one reference object
with length in that range.

We do not use this approach in our experiments, because the sim-
ple scheme of using all reference objects for all queries works well
enough. However, it is important to have in mind the limitations of
this simple scheme, and we believe that the remedy we have out-
lined here is a good starting point for addressing these limitations.

8. EXPERIMENTS
We evaluate the proposed method on time series data obtained

from the UCR Time Series Data Mining Archive [18]. We compare
our method to the two state-of-the-art methods for subsequence
matching under unconstrained DTW:

• SPRING: the exact method proposed by Sakurai et al. [31],
which applies the DTW algorithm as described in Section
3.3.

• Modified PDTW: a modification of the approximate method
based on piecewise aggregate approximation that was pro-
posed by Keogh et al. [17].

Actually, as formulated in [17], PDTW (given a sampling rate)
yields a specific accuracy and efficiency, by applying DTW to smaller,
subsampled versions of queryQ and database sequenceX. Even
with the smallest possible sampling rate of 2, for which the original
PDTW cost is25% of the cost of brute-force search, the original
PDTW method has an accuracy rate of less than50%. We modify
the original PDTW so as to significantly improve those results, as
follows: in our modified PDTW, the original PDTW of [17] is used
as a filtering step, that quickly identifies candidate endpoint posi-
tions, exactly as the proposed embeddings do for EBSM. We then
apply the refine step on top of the original PDTW rankings, using
the exact same algorithm (Algorithm 1) for the refine step that we
use in EBSM. We will see in the results that the modified PDTW
works very well, but still not as well as EBSM.

We do not make comparisons to the subsequence matching method
of [11], because the method in [11] is designed for indexing con-
strained DTW (whereas in the experiments we use unconstrained
DTW), and thus would fail to identify any matches whose length
is not equal to the query length. As we will see in Section 8.3,
the method in [11] would fail to identify optimal matches forthe
majority of the queries.

8.1 Datasets
To create a large and diverse enough dataset, we combined three

of the datasets from UCR Time Series Data Mining Archive [18].
The three UCR datasets that we used are shown on Table 1.

Each of the three UCR datasets contains a test set and a training
set. As can be seen on Table 1, the original split into training and
test sets created test sets that were significantly larger than the cor-
responding training sets, for two of the three datasets. In order to
evaluate indexing performance, we wanted to create a sufficiently
large database, and thus we generated our database using thelarge
test sets, and we used as queries the time series in the training sets.

More specifically, our database is a single time seriesX, that was
generated by concatenating all time series in the original test sets:
455 time series of length 270 from the 50Words dataset, 6164 time
series of length 152 from the Wafer dataset, and 3000 time series of
length 426 from the Yoga dataset. The length|X| of the database
is obviously the sum of lengths of all these time series, which adds
up to 2,337,778.

Our set of queries was the set of time series in the original train-
ing sets of the three UCR datasets. In total, this set includes 1750



Name 50Words Wafer Yoga
Length of each time series 270 152 426
Size of “training set” (used 450 1000 300
by us as set of queries)
Number of time series used for 192 428 130
validation (subset of set of queries)
Number of time series used for
measuring performance (subset 258 572 170
of set of queries)
Size of “test set” (used 455 6164 3000
by us to generate the database)

Table 1: Description of the three UCR datasets we combined to
generate our dataset. For each original UCR dataset we show
the sizes of the original training and test sets. We note that,
in our experiments, we use the original training sets to obtain
queries for embedding optimization and for performance eval-
uation, and we use the original test sets to generate the long
database sequence (of length 2,337,778).

time series. We randomly chose 750 of those time series as a val-
idation set of queries, that was used for embedding optimization
using Algorithm 2. The remaining 1000 queries were used to eval-
uate indexing performance. Naturally, the set of 1000 queries used
for performance evaluation was completely disjoint from the set of
queries used during embedding optimization.

8.2 Performance Measures
Our method is approximate, meaning that it does not guarantee

finding the optimal subsequence match for each query. The two
key measures of performance in this context are accuracy andeffi-
ciency. Accuracy is simply the percentage of queries in our evalua-
tion set for which the optimal subsequence match was successfully
retrieved. Efficiency can be evaluated using two measures:

• DTW cell cost: For each queryQ, the DTW cell cost is the
ratio of number of cells[i][j] visited by Algorithm 1 over
number of cells[i][j] using the SPRING method (for the
SPRING method, this number is the product of query length
and database length). For PDTW with sampling rates, we
add 1

s2 to this ratio, to reflect the cost of running the DTW al-
gorithm between the subsampled query and the subsampled
database. For the entire test set of 1000 queries, we report
the average DTW cell cost over all queries.

• Retrieval runtime cost: For each queryQ, given an in-
dexing method, the retrieval runtime cost is the ratio of to-
tal retrieval time for that query using that indexing method
over the total retrieval time attained for that query using the
SPRING method. For the entire test set, we report the aver-
age retrieval runtime cost over all 1000 queries. While run-
time is harder to analyze, as it depends on diverse things such
as cache size, memory bus bandwidth, etc., runtime is also a
more fair measure for comparing EBSM to PDTW, as it in-
cludes the costs of both the filter step and the refine step. The
DTW cell cost ignores the cost of the filter step for EBSM.

We remind the reader that the SPRING method simply uses the
standard DTW algorithm of Section 3.3. Consequently, by defini-
tion, the DTW cell cost of SPRING is always 1, and the retrieval
runtime cost of SPRING is always 1. The actual average running
time of the SPRING method over all queries we used for perfor-
mance evaluation was: 4.43 sec/query for queries of length 152,
7.23 sec/query for queries of length 270, and 11.30 sec/query for

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

accuracy

D
T

W
 c

el
l c

os
t

accuracy vs. DTW cell cost for PDTW and EBSM

 

 

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

accuracy

re
tr

ie
va

l r
un

tim
e 

co
st

accuracy vs. retrieval runtime cost for PDTW and EBSM

 

 

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

Figure 5: Comparing the accuracy versus efficiency trade-
offs achieved by EBSM with sampling rate 9 and by modified
PDTW with sampling rates 7, 9, 11, and 13. The top figure mea-
sures efficiency using the DTW cell cost, and the bottom figure
measures efficiency using the retrieval runtime cost. The costs
shown are average costs over our test set of 1000 queries. Note
that SPRING, being an exact method, corresponds to a single
point (not shown on these figures), with perfect accuracy 1 and
maximal DTW cell cost 1 and retrieval runtime cost 1.

queries of length 426. The system was implemented in C++, and
run on an AMD Opteron 8220 SE processor running at 2.8GHz.

Trade-offs between accuracy and efficiency can be obtained very
easily, for both EBSM and the modified PDTW, by changing pa-
rameterp of the refine step (see Algorithm 1). Increasing the value
of p increases accuracy, but decreases efficiency, by increasing both
the DTW cell cost and the running time.

We should emphasize the runtime retrieval cost depends on the
retrieval method, the data set, the implementation, and thesystem
platform. On the other hand, the DTW cell cost only depends on
the retrieval method and the data set; different implementations of
the same method should produce the same results (or very similar,
when random choices are involved) on the same data set regardless
of the system platform or any implementation details.
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Figure 6: Distribution of lengths of optimal subsequence
matches (as fractions of the query length) for the 1000 queries
used for performance evaluation. We note that a significant
fraction of the optimal matches have lengths that are not iden-
tical to the query length.

8.3 Results
We compare EBSM to modified PDTW and SPRING. We note

that the SPRING method guarantees finding the optimal subse-
quence match, whereas modified PDTW (like EBSM) is an approx-
imate method. For EBSM, unless otherwise indicated, we useda
40-dimensional embedding, with a sampling rate of 9. For theem-
bedding optimization procedure of Section 6, we used parameters
l = 1755 (l was the number of candidate reference objects before
selection using the maximum variance criterion) andk = 1000 (k
was the number of candidate reference objects selected based on
the maximum variance criterion).

Figure 5 shows the trade-offs of accuracy versus efficiency achieved.
We note that EBSM provides very good trade-offs between accu-
racy and retrieval cost. Also, EBSM significantly outperforms the
modified PDTW, in terms of both DTW cell cost and retrieval run-
time cost. For many accuracy settings, EBSM attains costs smaller
by a factor of 2 or more compared to PDTW. As highlights, for
99.5% retrieval accuracy our method is about 21 times faster than
SPRING (retrieval runtime cost = 0.046), and for90% retrieval ac-
curacy our method is about 47 times faster than SPRING (retrieval
runtime cost = 0.021).

Figure 6 shows a histogram of the length of the optimal sub-
sequence match for each query, as a fraction of the length of that
query. The statistics for this histogram were collected from all 1000
queries used for performance evaluation. We see that, although for
the majority of cases the match length is fairly close to the query
length, it is only for a minority of queries that the match length is
exactly equal to the query length. We should note that the subse-
quence matching method of [11] would fail to identify any matches
whose length is not equal to the query length. As a result, it would
not be meaningful to compare the performance of our method ver-
sus the method in [11] for this dataset.

Figure 7 shows how the performance of EBSM varies with dif-
ferent sampling rates. For all results in that figure, 40-dimensional
embeddings were used, optimized using Algorithm 2. Sampling
rates between 1 and 15 all produced pretty similar DTW cell costs
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Figure 7: Accuracy vs. efficiency for EBSM with sampling
rates 1, 9, 15, and 23. The top figure measures efficiency using
the DTW cell cost, and the bottom figure measures efficiency
using the retrieval runtime cost. The costs shown are average
costs over our test set of 1000 queries.

for EBSM, but a sampling rate of 23 produced noticeably worse
DTW cell costs. In terms of retrieval runtime, a sampling rate of
1 performed much worse compared to sampling rates of 9 and 15,
because the cost of the filter step is much higher for samplingrate
1: the number of vector comparisons is equal to the length of the
database divided by the sampling rate.

Figure 8 compares different methods for embedding construc-
tion. For all results in that figure, 40-dimensional embeddings and
a sampling rate of 9 were used. We notice that selecting refer-
ence objects using the max variance heuristic (i.e., using only the
first two lines of Algorithm 2) improves performance significantly
compared to random selection. Using the full Algorithm 2 forem-
bedding construction improves performance even more.

Figure 9 shows how the performance of EBSM varies with dif-
ferent embedding dimensionality, for optimized (using Algorithm
2) and unoptimized embeddings. For all results in that figure, a
sampling rate of 9 was used. For optimized embeddings, in terms
of DTW cell cost, performance clearly improves with increased di-
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Figure 8: Accuracy vs. efficiency for EBSM, using embeddings
constructed randomly, optimized with the max variance heuris-
tic, and optimized using Algorithm 2 for embedding optimiza-
tion. The top figure measures efficiency using the DTW cell
cost, and the bottom figure measures efficiency using the re-
trieval runtime cost. The costs shown are average costs over
our test set of 1000 queries.

mensionality up to about 40 dimensions, and does not change much
between 40 and 160. Actually, 160 dimensions give a somewhat
worse DTW cell cost compared to 40 dimensions, providing evi-
dence that our embedding optimization method suffers from amild
effect of overfitting as the number of dimensions increases.When
reference objects are selected randomly, overfitting is notan issue.
As we see in Figure 9, a 160-dimensional unoptimized embedding
yields a significantly lower DTW cell cost than lower-dimensional
unoptimized embeddings.

In terms of offline preprocessing costs, selecting 40 reference se-
quences using Algorithm 2 took about 3 hours, and computing the
40-dimensional embedding of the database took about 240 seconds.

Code and datasets for duplicating the experiments described here
are publicly available on our project website, at two mirrorsites:

• http://cs-people.bu.edu/panagpap/ebsm/

• http://crystal.uta.edu/~athitsos/ebsm/

9. DISCUSSION AND FUTURE WORK
EBSM, the method proposed in this paper, was shown to signif-

icantly outperform the current state-of-the-art methods for subse-
quence matching under unconstrained DTW. At the same time, the
idea of using embeddings to speed up subsequence matching opens
up several directions for additional investigation, both for improv-
ing performance under unconstrained DTW, and for extendingthe
current formulation to additional settings.

The proposed embeddings treat every position of every database
sequence as a candidateendpointfor the optimal subsequence match.
It is fairly straightforward to change our formulation so that it treats
every database position as a candidatestartpoint. The open ques-
tion is how to combine both approaches, by simultaneously using
embeddings of endpoints and embeddings of startpoints.

It is worth noting that the PDTW method of [17] is not a direct
competitor of our method, but rather a complimentary method, that
can possibly be combined with our method to provide even better
results. For example, PDTW can be used to speed up computing the
embedding of the query, or to introduce a PDTW-based additional
filter step after our current filter step and before the final refinement.
Alternatively, our method could be used to quickly identifycandi-
date database areas which would then be explored using PDTW.
Identifying the best way to combine EBSM with PDTW is an in-
teresting topic for future work.

The discussion in this paper has focused on finding the optimal
subsequence match for each query. It is pretty straightforward to
also apply our method for retrieving top-k subsequence matches:
we simply modify the refine step to return the k-best startpoint-
endpoint pairs. It will be interesting to evaluate how accuracy and
efficiency vary withk.

Another interesting direction is applying our method in different
settings, such as subsequence matching under constrained DTW
and the edit distance. The key idea of embedding database posi-
tions, as opposed to existing approaches that embed entire database
sequences, can readily be extended to both constrained DTW and
the edit distance. Perhaps by exploiting known lower boundsof
constrained DTW [16], or by using the metric properties of the edit
distance, we can obtain an exact indexing scheme for embedding-
based subsequence matching under those distance measures.

In conclusion, the proposed EBSM method is the first subse-
quence matching method for unconstrained DTW that converts, at
least partially, the subsequence matching problem into a much eas-
ier vector matching problem. As a result, a relatively smallnumber
of database areas of interest can be identified very fast, over two or-
ders of magnitude faster compared to brute-force search in our ex-
periments. The computationally expensive DTW algorithm isstill
employed within EBSM, but only to refine results by evaluating
the identified database areas of interest. The resulting end-to-end
retrieval system is one to two orders of magnitude faster than brute-
force search,with relatively small losses in accuracy, andprovides
state-of-the-art performance in the experiments.
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